
314 RECURSION

public static int power(int x, int y) 	
if (y �� 0// precondition: x � 0) 	

return(1);

 else 	

return(power(x, y � 1) � x);






Figure 2. A Java function for computing xy recursively.

Figure 3 illustrates how the computation of 27 proceeds us-
ing the recursive Java function power(x,y). The left-hand
side of this figure shows that each successive call is comput-

RECURSION ing a solution to a smaller and smaller problem until the base
case is reached. The base case is then solved directly (in this

Recursion is a programming technique that enables the solu- example x0 � 1) and its value is returned to the point from
tion to certain problems to be computed in terms of solutions which it was called in order to compute the solution for 21.
to smaller instances of the problem. Recursion offers precise This is in turn computed by using the result from computing
and succinct descriptions of many algorithms, especially those 20 � 1 and multiplying it by 2. Each successive computed
that are naturally expressed in terms of solutions to subprob- value is returned to the point from which it was called until
lems. A procedure that successively calls itself a subprocedure the value for the initial call is returned (at the top right of
is called a recursive procedure and the procedure call to the the figure).
recursive procedure is called a recursive call. Recursive calls Figure 4 provides a different illustration of how 27 would
are usually made with smaller and simpler instances of the be computed using the example Java function power(x,y).
problem. In order to terminate the recursive calls, every re- Again, we see that the function depends on a call to itself to
cursive procedure must have a solution directly defined for compute the solution to a subproblem. In this instance, 27 is
at least one so-called base case. The base cases provide the computed by first computing 26 and then multiplying that re-
foundations upon which the recursive solutions are computed. sult by 2. However, the solution to 26 first requires computing

For example, a function to compute xy (assuming x � 0, a solution to 25. The value of 25 first depends on computing a
y � 0, and x and y are integers) can be expressed recursively solution for 24 and so on. The subproblems become progres-
as shown in Fig. 1. In this example, the base case is x0 � 1. sively smaller until the base case is reached, for which the

Such a function can be succinctly encoded in a program- solution is known. At that point the known solution is re-
ming language that supports recursion. Most modern pro- turned and is used in computing the solution for the larger
gramming languages (e.g., Pascal, C, C��, and Java) support problem. The results of each subproblem are returned and
recursion. Figure 2 shows a function written in Java which used to solve progressively larger problems until the original
recursively computes xy. However, if recursion is not directly problem has been solved.
supported by the language, as is the case with Fortran, re- Finally, note that there is a distinction between a function
cursion can be simulated using a stack. A stack is ideal for that is implemented recursively and a recursive function. The
implementing recursion because it enables all of the subprob- latter has a precise meaning in theoretical computer science,
lems to be stored and retrieved in the order in which they where it refers to the class of functions that can be computed
need to be solved. Recall that the solution to a recursive prob- by any computer. See COMPUTABILITY.
lem cannot be computed until the solutions to all of its sub-
problems are known. Using a stack, each new subproblem
that is generated can be pushed onto the stack. When a base
case is reached it provides the necessary information to solve
the subproblem currently on the top of the stack. Hence, once
a base case is reached, the subproblems stored on the stack
can be successively popped and solved. As computation con-
tinues, additional subproblems may be encountered and the
stack will then grow until a base case is again reached. The
solution to a base case is again used to pop and solve succes-
sive subproblems. Once the last subproblem is popped off the
stack and solved, the stack will be empty and the original
problem will be solved.

power(x,y) � 1 if y � 0
� power(x, y�1) � x if y � 0

=power(2,6)*2

=power(2,5)*2

. 
. 

. 
.

=power(2,1)*2

=power(2,0)*2

= 1

Base case

power(2, 7)
power(2,7)=128

power(2,6)=64

power(2,5)=32

power(2,2)=4

power(2,1)=2

power(2,0)=1

x = 2, y = 7

Returned valuesRecursive calls

x = 2, y = 6

x = 2, y = 5

x = 2, y = 2

x = 2, y = 1

x = 2, y = 0

Figure 3. An example of recursive calls and return values.Figure 1. A recursive definition for computing xy.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



RECURSIVE FILTERS 315

power(2,7) � (power(2,6) � 2)
� ((power(2,5) � 2) � 2)
� (((power(2,4) � 2) � 2) � 2)
� ((((power(2,3) � 2) � 2) � 2) � 2)
� (((((power(2,2) � 2) � 2) � 2) � 2) � 2)
� ((((((power(2,1) � 2) � 2) � 2) � 2) � 2) � 2)
� (((((((power(2,0) � 2) � 2) � 2) � 2) � 2) � 2) � 2)
� (((((((1 � 2) � 2) � 2) � 2) � 2) � 2) � 2)
� ((((((2 � 2) � 2) � 2) � 2) � 2) � 2)
� (((((4 � 2) � 2) � 2) � 2) � 2)
� ((((8 � 2) � 2) � 2) � 2)
� (((16 � 2) � 2) � 2)
� ((32 � 2) � 2)
� (64 � 2)
� 128

Figure 4. Computing power(2,7).

ACKNOWLEDGMENTS

T. Brecht and S. McIlraith gratefully acknowledge the sup-
port of the Natural Sciences and Engineering Research Coun-
cil (NSERC). T. Pitassi’s research is supported by NSF Grant
CCR-9457782, US-Israel BSF Grant 95-00238, and Grant
INT-9600919/ME-103 from NSF and MŠMT (Czech Re-
public).

BIBLIOGRAPHY

T. A. Standish, Data Structures, Algorithms and Software Principles
in C, Reading, MA: Addison-Wesley, 1995.

T. A. Standish, Data Structures in Java, Reading, MA: Addison-Wes-
ley, 1998.

N. Wirth, Algorithms � Data Structures � Programs, Englewood
Cliffs, NJ: Prentice-Hall, 1976.

A helpful book on the subject of thinking recursively is:
E. S. Roberts, Thinking Recursively, New York: Wiley, 1986.

TIMOTHY BRECHT

University of Waterloo

SHEILA MCILRAITH

Stanford University

TONIANN PITASSI

University of Arizona


