
398 STACK SIMULATION

STACK SIMULATION

Trace-driven simulation is a standard process for analyzing
memory system performance. Given a sequence of memory
addresses, trace-driven simulation is often used to produce
performance metrics such as miss and/or write-back ratios.
These results can then be incorporated into a system model
to predict sytem performance under different memory design
choices. The time-consuming trace-driven simulation is usu-
ally repeated for many alternative memory configurations
with multiple traces obtained from various environments,
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making the whole process very tedious and more time con-
suming.

Stack simulation is a one-pass simulation technique for an-
alyzing memory system performance. It is a powerful ap-
proach to generate miss ratios and write-back ratios for mul-
tiple memory configurations in a single run. In this article,
we first introduce the general stack simulation algorithm. 1001000
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Since cache is an important part of any modern memory sys-
tem, we will use cache as an example of the memory system, Figure 2. Increment right-matched counters M(i), i � 0 and calcu-

late stack distance d(n), U � n � 0. Stack distance d(3) � M(7) � 1;and then devise efficient stack simulation algorithms to speed
d(2) � M(2) 	 M(7) � 2; d(1) � M(1) 	 M(2) 	 M(7) � 3; andup trace-driven cache simulation.
d(0) � M(0) 	 M(1) 	 M(2) 	 M(7) � 5.Mattson and his colleagues (1) proposed an efficient trace-

driven simulation method for storage hierarchies. Their ap-
proach, called stack algorithm, uses a common stack to store right-matched counter, until the reference is found or the end
references and allows miss ratios for all cache sizes to be com- of the stack is reached. The reference in Fig. 2 was found at
puted in a single pass over the reference trace. Traiger and the bottom of the stack. If the reference is found in the stack,
Slutz (2) extended the stack algorithm to compute miss ratios it is moved to the top of the stack; otherwise a new stack
for variable line sizes and variable associativity in a single element is created at the top of the stack using the reference.
pass. When the referenced block is found, the right-matched count-

The stack algorithm works as long as the replacement pol- ers are used to calculate the stack distance of the block. The
icy, such as the LRU (least recently used) replacement policy, right-matched counters are reset to zero at the beginning of
guarantees the inclusion property, that is, the contents of any each stack search for the next reference.
size cache is a superset of those in a smaller cache. For fully Stack distance is defined as the position of a block in a
associative caches, the references at any time can be repre- virtual stack, which represents a set of blocks, such as a cache
sented as a stack, with the upper d elements of the stack set. If the block is found at the top of the stack, its stack
representing the lines present in a cache with d blocks (cache distance is 1. Since multiple caches with different number of
lines). For a reference that is in the stack with stack distance sets are usually considered during a stack simulation, stack
d from the top of the stack (where the stack distance is one), distances of a reference may be different in different caches.
all caches with d blocks or more would have a hit. Figure 1 In Fig. 2, d(0) � 5 indicates that the reference 1001000 would
shows the basic concept of stack simulation for fully associa- be found at the fifth position in a fully associative cache (or
tive memories. memory). Similarly, d(1) � 3 indicates that the reference

The basic block in the stack could be a cache line or a main would be found in the third position of the set in a cache with
memory page. In Fig. 1 the blocks a, b, c, and d are accessed two sets. Likewise, d(2) � 2 and d(3) � 1 indicate that the
one at a time in sequence. The top of the stack always holds reference would be found in the second position of the set in
the most recently accessed block, regardless of memory size. a cache with four sets, and in the first position of the set in a
In addition, the replacement policy is LRU, that is, the least cache with eight sets. Figure 3 shows the position of the cur-
recently used block is replaced by a new block. rent referenced block if the stack is divided into two or four

For fully associative memories, there is only one stack and sets.
the stack simulation runs as follows: For each referenced If a block y is ahead of x in a 2n-set cache, it will also be
block one searches the stack for the block until it is found or found ahead of x in a 2i-set cache, 0 � i � n. Note that a
until the end of the stack is reached. During the search each cache with only one set is a fully associative cache. Since each
block in the stack is compared with the referenced block, and block is associated with an address in the stack, blocks in the
a vector of right-matched counters, M(i), is used to record the stack with exactly n right-matched bits would be found in the
number of blocks in the stack with exactly i right-matched same set in a 2i-set cache, i � n. If the current reference x is
bits. found in the stack, the distance counters M(i), 0 � i � U,

Figure 2 shows a five-block stack and current referenced have been incremented for all elements ahead of the line.
block with address 1001000. The top block address also ends Therefore, the stack distance of x in a 2n-set cache is the num-
with binary 00, that is, having two right-matched bits com- ber of elements found in the stack with at least n right-
pared to the current reference. Therefore, the right-matched matched bits, that is,
counter M(2) is incremented from 0 to 1. Each block encoun-
tered during the stack search increments one and exactly one d(n) =

∑
i≥n

M(i) (1)

Thus the current reference x is a hit in a 2n-set s-way cache
if the set-associativity s � d(n), otherwise a miss. This implies
that we can calculate miss ratios for multiple cache configu-
rations in a single simulation run.
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The number of bits in an address may be big, which in turnFigure 1. Stack representation of fully associative memories with up
to four basic blocks and access sequence a, b, c, d. requires a long vector for right-matched counters. In addition,
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Figure 3. Block position if the stack is
divided into two or four sets.
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searching a single common stack for every reference may be STACK SIMULATION FOR WRITE-BACK CACHES
still time consuming. To improve the basic stock simulation
technique, one needs to limit the cache configurations under Write-back caches are different from write-through caches.

The latter modifies the next-level memory when a cache lineinvestigation.
In reality, the cache configurations under investigation is is written, while the former does not modify the next-level

memory until the dirty cache line is replaced. Write-backlikely limited. For example, the number of sets in the cache
may vary from 2L to 2U sets. Modern processor caches typi- caches usually reduce bus traffic at the expense of additional

hardware. To quantify bus traffic for write-back caches, thecally have set-associativity not greater than 8. If a cache has
1024 cache lines, the minimal number of sets would be 128 number of write-backs is as important as the number of

misses.(i.e., L � 7) for an eight-way cache, and the maximal number
of sets would be 1024 (i.e., U � 10) for a direct-mapped cache. There have been a number of papers in the literature deal-

ing with efficient trace-driven cache simulation based on theThe lower bound L, if it is not zero, provides an opportu-
nity to speed up the simulation with multiple stacks. Multiple stack algorithm. In particular, Thompson and Smith (3) pro-

posed an efficient stack algorithm to obtain the number ofstacks reduce the length of each stack, thus reducing the time
needed to search for a new block. For example, L � 1 indi- write-backs, as well as the number of misses for fully associa-

tive caches, by attaching a dirty level to each element in thecates that one may use two stacks instead of one, and for each
reference a stack is chosen based on the right-most binary stack. A dirty level is a kind of stack distance associated with

each block in a stack to indicate how far the dirty block hasdigit of the reference address. In this case all the blocks in
the stack will have at least one right-matched bit when com- been pushed into the stack. Since a cache line may have dif-

ferent stack distances in caches with different numbers ofpared to the reference address. Thus, there is no need to use
right-matched counters M(i), i � L. sets, it would have different dirty levels as well in these

caches. Wang and Baer (4) extended the approach by at-The upper bound U also limits the number of right-
matched counters needed during each stache search. If the taching a vector of dirty level rather than a single dirty level.

A vector of dirty level L(i), where L � i � U, is requirednumber of sets under investigation is at most 2U, there is no
need to keep right-matched counters M(i), i � U. In this case, for each block in a stack to calculate the number of write-

backs. A dirty level 0 indicates a clean line, while a nonzerowhenever there are more than U right-matched bits between
the block in the stack and the newly referenced address, one dirty level indicates how far the dirty line has been pushed
increments M(U).

Let S be the maximal set-associativity under investigation.
A distance counter, D(n, i), where L � n � U and 1 � s � S,
is used to record the number of references that have stack
distance d(n) � s. Stack distances are calculated using Eq.
(1). The distance counters are then used to calculate the num-
ber of misses for different cache configurations. Assuming the
total number of references is N, the number of misses for a
2n-set s-way cache is given by

miss(n, s) = N −
s∑

i=1

D(n, i) (2)

Figure 4 shows the generic stack algorithm with multiple
stacks to calculate miss ratios in a single run. At line 4 a
stack is chosen for search. During the stack search the num-
ber of right-matched bits are determined, and the correspond-
ing right-matched counter is incremented. At lines 11, 12, and
13, stack distance d is calculated starting from d(U). Only one
variable d is used for d(n), U � n � L. At line 16, the algo-

1. FOR each reference X DO �
2. N		
3. M(i) � 0 for all i, L �� i �� U
4. a � X mod (2 �� L)
5. search stack(a) �

/� for each element Y in stack �/
6. b � number of right-matched bits (X vs Y)
7. M(min(b, U))		
8. � until X is found or end-of-stack
9. IF found THEN �
10. d � 0
11. FOR (i � U; i �� L; i--) DO �
12. d � d 	 M(i)
13. DC(i, d)		

�
14. move the line to top of stack(a)

� ELSE �
15. bring new tag X to top of stack(a)

� �
16. gather statistics

rithm calculates the number of misses for each cache config-
uration based on Eq. (2). Figure 4. Stack algorithm.
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into the stack. When a missed line is brought into a stack, the write-avoided counter is incremented before moving the
line back to the top of the stack, where its position is 1.the elements of its dirty level vector are initialized to zeroes

if it is a read miss, or to ones if it is a write miss. The dirty Stack simulation is a powerful approach to generate cache
performance metrics in a single run. It takes a sequence oflevels of a clean line remain zero until the line is written; in

such a case the line is brought to the top of the stack and its addresses, called an address trace, as input. Since trace files
are large, and since typically a number of cache configura-dirty levels are updated to ones.

For a reference X which is found in the stack with dirty tions are under investigation, it makes sense to use stack sim-
ulation techniques to speed up such a tedious performancelevel L(n) � 1 and stack distance d(n), its dirty level for a 2n-

set cache is given by L(n) � max[d(n), L(n)]. That is, its dirty analysis process.
level L(n) is increased to its current stack distance d(n) for a
2n-set cache if d(n) � L(n); otherwise L(n) remains un-
changed. CACHE TYPES AND ADVANCED STACK SIMULATION

To calculate the number of write-backs for caches with dif-
ferent numbers of sets and set-associativity, Wang and Baer Trace-driven simulation takes a sequence of addresses as in-
(4) use an array of write-avoided counters A(n, s), where L � put. In many cases the addresses are either virtual addresses
n � U and 1 � s � S, to record the number of writes that generated from a software simulator, or real addresses col-
have L(n) � s. For a write access with L(n) � s, a 2n-set cache lected from a piece of hardware that monitors bus addresses.
having a set-associativity s or larger would have the dirty While page offsets are the same in a virtual address and its
line, that is, the reference doesn’t have to be written back. corresponding real address, the virtual page number is usu-
Therefore the write-avoided counter A(n, s) is incremented by ally different from its corresponding real page number. A real
one. After the write-avoided counters have been updated for address is an address that requires no address translation, or
a write access, its dirty level vector is then set to all one, in it is referred to as a virtual address. For a small cache whose
that the dirty line is now at the top of the stack. Let the total size is not larger than its set-associativity times the page size,
number of write accesses be W. The number of write-backs the high-order bits in the page offset are enough to index the
for a 2n-set s-way cache is given by cache. For example, if the page size is 4 kbytes and cache line

size is 32 bytes, a four-way 16 kbyte cache would have 128
sets, requiring 7 bits to choose a set out of the 128 sets. The
7 most significant bits in the page offset (12 bits in total for a

wback(n, s) = W −
s∑

i=1

A(n, i) (3)

4 kbyte page) is enough to index the cache.
The result of a trace-driven simulation is only as good asFigure 5 shows the stack algorithm to obtain miss and write-

its input trace. If the input trace makes no sense for the cacheback ratios for write-back caches. Use L(i)�Y to represent the
configuration, the result may be meaningless. For smalldirty level L(i) of a block Y in the stack. At line 15 of Fig. 5,
caches, real address traces usually provide more accuratethe dirty level is updated to show how far the line has been

pushed into the stack if the line is dirty. At lines 17 and 18, simulation results. Even if real address traces are not avail-

1. FOR each reference X DO �
2. N		
3. IF write THEN W		
4. M(i) � 0 for all i, L �� i �� U
5. a � X mod (2 �� L)
6. search stack(a) �

/� for each element Y in stack �/
7. b � number of right-matched bits (X vs Y)
8. M(min(b, U))		
9. � until found or end-of-stack
10. IF found THEN �
11. d � 0
12. FOR (i � U; i �� L; i--) DO �
13. d � d 	 M(i)
14. DC(i, d)		
15. IF L(i)FY !� 0 THEN L(i)FY � max(d, L(i)FY)
16. IF write THEN �
17. A(i, L(i)FY)		
18. L(i)FY � 1

� �
19. move the line to top of stack(a)

� ELSE �
20. bring new tag X to top of stack(a)
21. IF read THEN L(i)FX � 0, for all L �� i �� U
22. ELSE /� write �/ L(i)FX � 1, for all L �� i �� U

� �
23. gather statistics

Figure 5. Stack algorithm for write-back R/R-type caches.



402 STACK SIMULATION

able, virtual address traces are commonly used in trace- computer systems, causing problems known as synonyms in
virtually indexed caches. When two virtual addresses map todriven simulation to estimate cache performance and still

provide reasonable estimated results. the same real address and the line has been brought into a
virtually indexed cache using one of the virtual addresses, theOn the other hand, modern caches may be much larger

than memory page size, and so extra index bits are needed. set selected by the current virtual address is called the pri-
mary set, while all other sets in which the synonym line mightThe index bits may come from the virtual page number or

real page number. In addition, the address tags stored in the be found are called the synonym sets.
In a V/R-type cache, synonym may or may not cause anycache directory may also be either virtual or real. To classify

cache types, both index and tags are used. Since both the in- problems. In fact, it is a primary hit as long as the line is
found in the primary set. If the synonym line is not found index and tag could be virtual and real, there are four possible

combinations or types, namely, R/R, V/R, V/V, and R/V (5). the primary set, additional cycles may be needed to access
synonym sets for the cache line. In order to distinguish differ-R/R-type caches, indexed by real addresses and having

real tags, are used in many conventional computer systems, ent cases in a V/R-type cache, alias is defined as the case in
which the two virtual addresses differ only in the bit positionsincluding the VAX 11/780 (6), IBM 3033 (7), and MIPS R3000

(8). Since the page offset in a virtual address is the same as that are not used to index the cache, and pseudonym is de-
fined as the case in which the two virtual addresses differ inthat in the real address, many small R/R-type caches use bits

from the page offset to select a set of cache lines while simul- the bit positions used to index the cache. In other words, it is
an alias when the line is found in the primary set, and atanously performing virtual-to-real address translation. All

small caches with size not greater than its set-associativity pseudonym when the line is found in a synonym set.
Given traces with both virtual and real addresses, ad-times page size are considered as R/R-type caches. Con-

versely, a cache indexed by virtual addresses and having vir- vanced stack simulation algorithm (17) has been developed to
calculate the number of pseudonym as well as misses andtual tags is called a V/V-type cache, such as those in the Ber-

kely SPUR (9), the MU-5 (10), and the first-level cache in write-backs for V/R-type caches in a single run. The algo-
rithm may be extended further for R/V-type and V/V-typeMIPS R6000 (11).

Caches need not be completely virtual or real. The cache caches, or a combined cache with two basic types.
in IBM 3090 system (12), for example, is indexed by virtual
addresses, while real address tags are used in the cache direc- CONCLUSION
tory to compare with translated real addresses from the TLB.
Such a cache is a V/R-type cache. Similar to V/V-type caches, Stack simulation is a powerful approach to calculate perfor-
the advantage of a virtually indexed cache is the inherent mance metrics for a number of cache configurations in a sin-
parallel accesses to the table look-aside buffer (TLB) and the gle run. It saves the total simulation time and makes trace-
cache array. Other existing commercial systems having virtu- driven simulation less tedious.
ally indexed caches with real tags include the HP Precision
Architecture (13), MIPS R4000, and ELXSI 6400.
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