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VON NEUMANN COMPUTERS After the 1940s the computer industry began a rapid develop-
ment with the speed and cost of computer systems improving

The term von Neumann computer has two common meanings. by a factor of 2 every two years. Amazingly, this trend has
Its strictest definition refers to a specific type of computer or- continued, in principle, through today.
ganization, or architecture, in which instructions and data are Computer applications initially served the needs of the
stored together in a common memory. This type of architec- military. They soon found their way into the commercial mar-
ture is distinguished from the Harvard architecture in which ket, however, where they revolutionized every business they
separate memories are used to store instructions and data. encountered. The development of microprocessors brought the
The term von Neumann computer also is used colloquially to von Neumann computer onto the desks of secretaries, the
refer in general to computers that execute a single sequence counters of sales clerks, the office tables of homes, and into
of instructions that operate on a single stream of data values. small appliances and children’s games. Accompanying organi-
That is, colloquially, von Neumann computers are the typical zations were created to support the computer era in various
computers available today. ways. Notable among these are the many computer science

There is some controversy among historians of technology and engineering departments established at universities and
about the true origins of many of the fundamental concepts two professional societies, the IEEE Computer Society and
in a von Neumann computer. Thus, since John von Neumann the Association for Computing Machinery (ACM).
brought many of these concepts to fruition in a computer built
at the Princeton Institute for Advanced Study (see Fig. 1),

The von Neumann Computer Architecturemany people in the field of computer science and engineering
prefer to use the term Princeton computer instead of von Neu- The heart of the von Neumann computer architecture is the
mann computer. The intention of this terminology is to ac- central processing unit (CPU), consisting of the control unit
knowledge the important concepts introduced by many other and the arithmetic and logic unit (ALU). The CPU interacts
individuals while not overemphasizing von Neumann’s contri- with a memory and an input/output (I/O) subsystem and exe-
butions. Recognizing that many people in addition to von cutes a stream of instructions (the computer program) that
Neumann contributed to the fundamental ideas embodied in process the data stored in memory and perform I/O opera-
this widely adopted computer architecture, this article never- tions. The key concept of the von Neumann architecture is
theless uses the colloquial version of the term von Neumann that data and instructions are stored in the memory system
computer to refer to any computer with the fundamental in exactly the same way. Thus, the memory content is defined
characteristics described later. The term Princeton architec- entirely by how it is interpreted. This is essential, for exam-
ture is then used to distinguish between computers with the ple, for a program compiler that translates a user-under-
split (Harvard) and unified (Princeton) memory organiza- standable programming language into the instruction stream
tions. understood by the machine. The output of the compiler is or-

dinary data. However, these data can then be executed by the
History CPU as instructions.
The von Neumann computer concept was developed in the A variety of instructions can be executed for moving and
1940s when the first electronic computers were built. Nearly modifying data, and for controlling which instructions to exe-
all modern computers are based on this stored program cute next. The collection of instructions is called the instruc-
scheme, in which both machine instructions and program tion set, and, together with the resources needed for their exe-
data are stored in computer memory in the same manner. cution, the instruction-set architecture (ISA). The instruction

execution is driven by a periodic clock signal. Although sev-
eral substeps have to be performed for the execution of each
instruction, sophisticated CPU implementation technologies
exist that can overlap these steps such that, ideally, several
instructions can be executed per clock cycle. Clock rates of
today’s processors are in the range of 200 to 600 MHz,
allowing up to 600 million basic operations (such as adding
two numbers or copying a data item to a storage location) to
be performed per second.

With the continuing progress in technology, CPU speeds
have increased rapidly. As a result, the limiting factors for
the overall speed of a computer system are the much slower
I/O operations and the memory system since the speed of
these components have improved at a lower rate than CPU
technology. Caches are an important means for improving the
average speed of memory systems by keeping the most fre-
quently used data in a fast memory that is close to the pro-
cessor. Another factor hampering CPU speed increases is the
inherently sequential nature of the von Neumann instructionFigure 1. John von Neumann in front of the computer he built at
execution. Methods of executing several instructions simulta-the Institute for Advanced Study in Princeton (Courtesy of the Ar-
neously have been developed in the form of parallel pro-chives of the Institute for Advanced Study; Alan Richards, photog-

rapher). cessing architectures.
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Types of von Neumann Computers Today PCs started out as economical computer systems for small
business applications and home use, since their price rangeToday, the von Neumann scheme is the basic architecture of
allowed for fewer peripheral devices than typical worksta-most computers appearing in many forms, including super-
tions. Initially they were desktop, single-user systems with nocomputers, workstations, personal computers, and laptops.
network support. Although announced and manufactured by
IBM, PCs included a processor from Intel and an operatingSupercomputers. The term supercomputer has been used to
system from Microsoft. The huge market that PCs have foundrefer to the fastest computer available at any given time. Su-
have made the prices even more competitive and have madepercomputers use the fastest hardware technology available.
it possible to add peripheral devices and network support thatFor example, when the Cray-1 computer was introduced in
are typical of workstation setups. As a result, their applica-1976, it achieved a clock rate of 80 MHz, which was much
tion range has become huge. Parallel and network-connectedfaster than clock rates in conventional electronics technology
PCs are now becoming commonly available and are competingat that time. In addition, its vector operations could process
with one of the last bastions in the supercomputer realm.an array of data as one instruction, leading to significant
Newest generations of PC operating systems, such as Win-speed increases in applications that exhibited certain regular
dows NT, now include multiuser and multitasking capabili-characteristics. Such characteristics often can be found in sci-
ties, offering the support that used to be associated withence and engineering applications, which became the primary
UNIX-based machines.application domain of supercomputers. Several supercom-

puter generations following the Cray-1 system maintained a
large performance lead over their competitors, which were Laptops. Computers that are light and small enough to
primarily the machines based on fast microprocessors. Devel- carry from place to place began to appear in the mid-1970s in
opers sought to increase the speed further by developing par- the form of pocket calculators with programming capabilities.
allel computer architectures, which can process data using Laptop computers are advanced versions of this concept. To-
several processors concurrently. However, due to the fast day they include capabilities that are no different from mid-
progress in microprocessor technology, the speed advantage size PCs. Low-power devices, flat high-resolution color dis-
of supercomputers reduced enough that customers were no plays, miniature disks, and read-only memory compact disc
longer willing to pay the significantly higher prices. By the (CD-ROM) technology make laptop computers powerful, por-
mid-1990s, most of the former supercomputer vendors merged table additions, or even alternatives, to fixed office PCs. Con-
with microprocessor manufacturers. nections with the main office computers are typically provided

through plug-in network connectors when in the office, or
Workstations. Workstations are relatively powerful sys- through modem connections, possibly via portable phones.

tems that are used primarily by one person. They usually fit
on or under an engineer’s desk. Workstations were an alter-

Applicationsnative to mainframes and minicomputers, which served a
number of users and were placed in a computer center or in a Computer applications have emerged in every conceivable
department’s computer room, respectively. When introduced, area. They have penetrated equally into commercial, engi-
workstations were substantially more powerful than personal neering, science, home, and hobby activities. Thanks to In-
computers (PCs), due to their faster processor technology, ternet connections (see NETWORK COMPUTING), computers can
greater amounts of memory, and expensive peripheral de- be set up in practically any location on our planet and appli-
vices. Typically, workstations are connected to a powerful net- cations can be used and controlled remotely.
work that allows communication with other computers and Computer applications serve numerous purposes. They
the use of remote resources, such as large storage devices and provide convenience (e.g., composing a letter); they allow in-
high-speed compute servers. Through this network, the com- formation to be retrieved (from the Internet or from local da-
puters and their peripheral devices can be accessed by several

tabases); they support online record keeping and decision
users, in which case one may use the term server instead of

making (e.g., inventory control and automatic orders); theyworkstation. Workstations are typically used by scientists and
control peripheral devices (e.g., the control of assembly linesengineers who run compute-intensive applications. The pre-
or robot devices); and they process signals (e.g., audio, video,dominant workstation operating system is the UNIX system
radar, or signals from outer space). In addition, one can create(see also UNIX).
experiments ‘‘in the computer’’ by computing and simulatingSimilar to the development of the supercomputer market,
the exact behavior of the experiment’s substances. This areaworkstations experienced increasing difficulties in main-
of computer applications will be described in more detailtaining their user communities against the overpowering
later.market of PCs, which offer an inexpensive and almost infinite

There are virtually no limits to computer applications.range of utilities and conveniences. Although the large in-
However, in practice, computer speeds, the development costsstalled base of workstation infrastructures cannot be replaced
for computer applications, and the accuracy with which aas easily as supercomputers could, the advantages of PC’s
problem in the real world can be represented and modeled inover workstation environments is beginning to have an im-
the computer create bounds. One of the hardest limitations ispact. For example, some experts see a trend of replacing the
that of software development costs. Measured productivityworkstation operating system UNIX with Microsoft’s Win-
rates for new software are very low (e.g., a few programmingdows NT.
lines per day, if one factors in the entire software develop-
ment process). The search for more advanced ways of speci-Personal Computers. Personal computers had existed sev-

eral years before the announcement of the ‘‘IBM PC’’ in 1981. fying and coding an application in a computer is ongoing and
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is perhaps the greatest challenge for the future of all types Mauchly, whose goal was to establish a strong commercial
base for the electronic computer.of computers.

The development of Electronic Discrete Variable Auto-
matic Computer (EDVAC), a follow-up project to ENIAC, be-

HISTORICAL PERSPECTIVES gan when von Neumann, Eckert, and Mauchly were actively
collaborating. At this time, substantial differences in view-

Evolution of the von Neumann Computer points began to emerge. In 1945, von Neumann wrote the pa-
per ‘‘First Draft of a Report on the EDVAC,’’ which was theComputer Technology Before the Electronic Computer. Ideas
first written description of what has become to be called theof an analytical machine to solve computing problems date
von Neumann stored-program computer concept (3,4). Theback to Charles Babbage around 1830, with simple pegged-
EDVAC, as designed by the University of Pennsylvaniacylinder automata dating back even significantly further (1).
Moore School staff, differed substantially from this design, ev-Babbage described four logical units for his machine concept:
idencing the diverging viewpoints. As a result, von Neumannmemory, input/output, arithmetic units, and a decision mech-
engaged in the design of a machine of his own at the Instituteanism based on computation results. The latter is a funda-
for Advanced Study (IAS) at Princeton University, referred tomental concept that distinguishes a computer from its simple
as the IAS computer. This work has caused the terms vonsequencer predecessors. While Babbage’s machine had to be
Neumann architecture and Princeton architecture to becomeconstructed from mechanical building blocks, it took almost
essentially synonymous.100 years before his ideas were realized with more advanced

technology such as electromechanical relays (e.g., the Bell
The Stored-Program Concept. Given the prior technology ofLaboratories Model 1 in 1940) and vacuum tubes (ENIAC in

the Babbage machine and ENIAC, the direct innovation of1946).
the von Neumann concept was that programs no longer
needed to be encoded by setting mechanical switch arrays.The Birth of Electronic Computers. The electronic numerical
Instead, instructions could be placed in memory in the sameintegrator and computer (ENIAC) is considered to be the first
way as data (4). It is this equivalence of data and instructionsmodern, electronic computer. It was built from 1944 through
that represents the real revolution of the von Neumann idea.1946 at the University of Pennsylvania’s Moore School of

One advantage of the stored-program concept that the de-Electrical Engineering (2). The leading designers were John
signers envisioned was that instructions now could bePresper Eckert, Jr. and John William Mauchly. ENIAC in-
changed quickly, which enabled the computer to performcluded some 18,000 vacuum tubes and 1,500 relays. Addition
many different jobs in a short time. However, the storageand subtraction were performed with 20 accumulators. There
equivalence between data and instructions allows an evenalso was a multiplier, a divider, and square-root unit. Input
greater advantage: programs can now be generated by otherand output was given in the form of punch cards. An elec-
programs. Examples of such program-generating programstronic memory was available for storing tabular functions and
include compilers, linkers, and loaders, which are the com-numerical constants. Temporary data produced and needed
mon tools of a modern software environment. These toolsduring computation could be stored in the accumulators or
automate the tasks of software development that previouslypunched out and later reintroduced.
had to be performed manually.The designers expected that a problem would be run many

Of comparably less significance was the issue of self-modi-times before the machine had to be reprogrammed. As a re-
fying code. Conceivably, programs can change their own in-sult, programs were ‘‘hardwired’’ in the form of switches lo-
structions as they execute. Although it is possible to writecated on the faces of the various units. This expectation, and
programs that perform amazing actions in this way, self-mod-the technological simplicity driven by wartime needs, kept the
ifying code is now considered a characteristic of bad softwaredesigners from implementing the more advanced concept of
design.storing the instructions in memory. However, in the view of

some historians, the designers of ENIAC originated the
History of Applicationsstored-program idea, which now is often attributed to John

von Neumann. While from a 1990s perspective it is evident that every com-
puter generation created new applications that exceeded the
highest expectations, this potential was not foreseeable at thevon Neumann’s Contribution. John von Neumann was born

in Hungary in 1903. He taught at the University of Berlin beginning of the computer age. The driving applications for
ENIAC, EDVAC, and the IAS computer were primarily thosebefore moving to the United States in 1930. A chemical engi-

neer and mathematician by training, his well-respected work of military relevance. These included the calculation of ballis-
tic tables, weather prediction, atomic energy calculations, cos-in the United States, which was centered around physics and

applied mathematics, made him an important consultant to mic ray studies, thermal ignition studies, random number
studies, and the design of wind tunnels.various U.S. government agencies. He became interested in

electronic devices to accelerate the computations of problems Although the ENIAC designers Eckert and Mauchly recog-
nized the importance of a strong industrial base, actually cre-he faced for projects at Los Alamos National Laboratory dur-

ing World War II. von Neumann learned about ENIAC in ating this base was difficult. Initially, the U.S. Army not only
funded the development of the new technology, but it also1944 and became a consultant to its design team. His primary

interest in this project was the logical structure and mathe- sponsored customers to use it. As in many other disciplines,
applications in research and government agencies precededmatical description of the new technology. This interest was

in some contrast to the engineering view of Eckert and commercial applications. The introduction of computers in the
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late 1940s started a decade of initial installations and explo- Factors Contributing to the Success
ration by commercial companies. An important machine at of the von Neumann Computer
that time was the IBM 604, available in 1948, which was sim-

Progress in Hardware Technology and Computer Architec-ilar to ENIAC’s design. It included 1400 vacuum tubes and
ture. Progress in electronics technology is the basic enablercould perform 60 program steps (see Ref. 5 for a description
for the revolution of the von Neumann machine. This progressof early computer installations). Computer customers in this
was initiated during World War II when there were enormousera were manufacturers of aircraft and electronic compo-
advances in the development of electronics. While the vacuumnents, large banks, and insurance companies. In the 1950s,
tube was a first step, orders of magnitude improvement inthe new computer technology was not yet of great value to
computing speeds, miniaturization, and power consumptionother types of businesses.
has been achieved with the transistor and with integrated cir-In the second half of the 1960s and the 1970s, computers
cuits. The improvements in computer speeds and the cost ofbegan to be widely adopted by businesses. An important com-
electronic components in the past five decades amount to ap-puter in this period was the IBM System 360, which substan-
proximately a factor of 2 every two years.tially dominated its competitors (namely Burroughs, Control

These numbers are even more remarkable if we considerData, General Electric, Honeywell, NCR, RCA, and Sperry
that the source of this information is a 20-year review of in-Rand). A notable competitor in the late 1960s was Control
formation processing, made in 1988 (9), in which trends thatData Corporation with its CDC 6600 and successors. CDC
were predicted 20 years earlier were indeed confirmed. Fur-achieved a 5% market share by focusing on applications in
thermore, even if we include 1998 data points, the somewhatscience and engineering. A new company, Digital Equipment
simplistic, linear predictions of 1968 are still true in principle.Corporation, was founded at this time and gained a large
[A few representative 1998 data points are the following: costmarket share with its PDP8 minicomputer, which was priced
per logic element: $8/1 Mbyte RAM � 10�6 $1/logic elementwell below the IBM System 360. Applications in this period
(assuming one logic element per memory cell); fastest re-included accounting, inventory control, retail, banking, insur-
ported computer: 1 tera-OPS � 1012 operations/s).] A fewance, and diverse areas of manufacturing.
caveats are necessary, however. For example, the peak perfor-A massive use of computers followed in the 1980s and
mance of 1 tera-OPS has been reported for a parallel-pro-early 1990s, affecting almost all manufacturing and service
cessor architecture, where the performance of the individualsectors. Computers became cheaper, faster, and more reliable.
processors are approximately 3 orders of magnitude less.Peripheral devices, such as disks and terminals, made the in-

teraction with the computer more convenient and allowed the Hence, to maintain the previous rate of performance improve-
storage and retrieval of large volumes of data. The many ex- ment, computer systems must use a mix of raw hardware
isting applications then could be performed online rather speed and architectural innovations. One could argue that, in
than in batch mode. This capability then enabled new appli- fact, the rate of performance increase of individual processors
cations, such as decision-support systems. For example, daily has slowed down significantly over the past few years.
online access to financial performance figures of a company In addition to the basic hardware components, significant
could be obtained, and computers supported the tasks of fi- progress has been made in combining these elements into
nancial modeling and planning, sales, marketing, and human powerful computer architectures. In part, these innovations
resource management. In retail applications, real-time inven- were driven by the rapid miniaturization of the fundamental
tory control emerged, optical character recognition (OCR) be- components. For example, it became possible to place a grow-
came important, and the universal product code (UPC) was ing number of processor components onto one chip, although
developed. A further enabler of the fast dissemination of the determining the most effective mix for these functional units
new technology was the microcomputer. However, it was not is an ongoing problem. Furthermore, the question of how to
taken seriously by commercial enterprises until IBM intro- best serve the software systems that harness the processors
duced its first personal computer (PC) in 1981. This initiated has become of paramount importance. In all this progress, the
a shift of computer applications from mainframes (see also basic stored-program concept has remained the same, al-
MAINFRAMES) to PCs. While this shift happened for business though its specific realization in processors, memory modules,
and commercial applications first, the trend is still ongoing peripheral devices, and interconnections have changed sig-
for scientific and engineering applications, which were once nificantly.
the clear domain of mainframe high-performance computers.

In the last decade of the millennium, computers have
Progress in Software Technology. The ENIAC computer wasstarted to penetrate every aspect of life. Microprocessors

programmed with switch arrays on its front panels. Today,serve as control units of small and large appliances of every
software costs dominate hardware costs by far. This changekind. Personal computers are found in most households of
from almost ignorance of the software problem to making it amodern countries, and they are companions for business and
number one priority may be considered more important thanleisure travelers worldwide. The Internet has enabled mobile
the progress in hardware technology. Nevertheless, enormouscomputing. Such travel computers started out as important
advances in software technology have been made over thetools for sales representatives, giving them access to home
past five decades. Computer languages have been developeddatabases, electronic mail, and the World-Wide Web (see NET-

that allow a problem to be coded in a user-oriented mannerWORK COMPUTING). These developments of the computer indus-
(known as high-level languages). Powerful translators (seetry and its applications were led by the United States, al-
also PROGRAM COMPILERS) have been developed that can trans-though Europe and Japan followed with only a few years
form these languages into the efficient, low-level machinedelay (6–8). It reasonably can be assumed that in other coun-

tries similar developments are happening or will happen. code understood by the processing units.
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Operating systems have been created that make it possible Historians date the beginning of an actual computer science,
defined to be the ‘‘systematic study of computers and informa-to use a computer system in a convenient, interactive way.

Operating systems also offer the programmer a rich applica- tion processing,’’ to the late 1950s. However, more important
is the fact that systematic methods for describing both hard-tion program interface, which permits and coordinates a wide

range of calls to existing software modules (called libraries) ware and software have indeed emerged and have led to the
support of the new computer age by the academic community.that perform commonly needed functions. Examples are func-

tions that write to a disk file, prompt the user to select from
a command menu, visualize a data structure as a three-di- Professional Societies. Substantial support for a discipline
mensional graph, or solve a system of linear equations. While also comes from its associated professional organizations. Two
basic functions are usually part of the operating system itself, such organizations were founded shortly after the ENIAC
less commonly used ones can be found in an ever-growing computer became operational. These are the IEEE Computer
range of available library packages (see also UNIX). Society, founded in 1946, and the Association for Computing

At the highest software layer, full applications have been Machinery (ACM), founded in 1947. Both organizations sup-
developed to perform an increasing range of tasks. Many ap- port the community by sponsoring workshops, conferences,
plications are parametrizable so that they can be adapted to technical committees, and special interest groups; by estab-
new problems and to user preferences. For example, a chem- lishing distinguished lecturer programs and committees that
ist may find a standard application package that performs give recommendations regarding university curricula; and by
the simulation of a new substance. The application may be publishing professional journals (12).
purchased commercially or even may be freely available, al-
though free applications typically come without support (see Standardization. Standards help promote a technology by
also PUBLIC DOMAIN SOFTWARE). Obtaining good support is cru- substantially reducing development costs for machine and
cial for many application users since a thorough knowledge of component interfaces and learning costs for users who have
the application is necessary to determine if it can be adapted to interact with the machines. A number of computer-related
to the problem at hand. If not, then the expensive develop- standards have emerged. Some are conscious efforts to set
ment of a new application may become necessary. As com- standards, while others have emerged as de facto standards
puter applications become more sophisticated, their develop- or as a result of all but one offerer leaving the market.
ment costs grow enormously. This cost represents a Explicit international standards are administered by the
significant limit to the seemingly unbounded opportunities for International Standards Organization (ISO). They cover
computer-based problem solving, as discussed later. areas such as information encoding, programming languages,

documentation, networking, computer graphics, microproces-
Computer Science and Engineering. Despite his very practi- sor systems, peripheral devices, interconnections, and many

cal achievements, John von Neumann devoted most of his ef- aspects of computer applications. An example of a de facto
forts to developing the fundamental concepts and logical un- standard is the UNIX operating system, which has emerged
derpinnings of the new electronic computers. He made many as the system of choice for workstation and high-speed com-
important contributions, not only in terms of computer archi- puters. A standard resulting from all but one offerer leaving
tecture, but also in software principles. He developed flow dia- the market is the PC with its DOS/Windows user interface.
gramming techniques and computer algorithms for diverse It has emerged as the most widely used business and home
mathematical problems. His vision becomes evident in his computer, dominating its initial competitors.
early discussions of parallel-processing concepts, techniques Standard methods for measuring computer systems perfor-
that deal with fast computation but slow input/output, algo- mance are also important because they allow the comparison
rithms for solving partial differential equations, and errors of different systems using the same measuring stick. A nota-
introduced by finite computer precision (10). ble effort has been made by the Standard Performance Evalu-

While von Neumann’s work represents a substantial initial ation Corporation (SPEC). SPEC benchmarks are available
contribution to the new discipline of computer science and en- for most workstation and PC systems to compare computation
gineering, many others have also influenced its evolution. For rates based on a range of application programs. New bench-
example, a very notable contribution has been made by Don- marks for measuring graphics, network, and high-perfor-
ald E. Knuth in The Art of Computer Programming (11), mance computers also are being developed.
which represents a conscious effort to place computer pro-
gramming on a foundation of mathematical principles and
theorems. This type of work has led to the acceptance of com- ORGANIZATION AND OPERATION OF

THE VON NEUMANN ARCHITECTUREputer science and engineering by the academic community,
which is important since this acceptance adds legitimacy to

As shown in Fig. 2, the heart of a computer system with athe field and causes a systematic search for innovations.
Since the design of ENIAC and the IAS computer, there von Neumann architecture is the CPU. This component

fetches (i.e., reads) instructions and data from the main mem-has been a growing trend to deal with software issues more
than hardware issues. This shift has been caused, in part, by ory and coordinates the complete execution of each instruc-

tion. It is typically organized into two separate subunits: thethe steady increase in software costs, but it also indicates a
tendency to move discussions from the immediate practical arithmetic and logic unit (ALU) and the control unit. The

ALU combines and transforms data using arithmetic opera-problems that need to be engineered to more theoretical, for-
mal considerations. Even five decades after Mauchly and Eck- tions, such as addition, subtraction, multiplication, and divi-

sion, and logical operations, such as bitwise negation, AND,ert’s dispute with von Neumann, the issue of how theoretical
or practical computer science should be is still under debate. and OR. The control unit interprets the instructions fetched
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guished from data. Similarly, different types of data, such as
a floating-point value, an integer value, or a character code,
are all indistinguishable. The meaning of a particular bit pat-
tern stored in the memory is determined entirely by how the
CPU interprets it. An interesting consequence of this feature
is that the same data stored at a given memory location can
be interpreted at different times as either an instruction or

Control unit

ALU

CPU

Memory I/O

as data. For example, when a compiler executes, it reads the
source code of a program written in a high-level language,Figure 2. The basic components of a computer with a von Neumann
such as Fortran or Cobol, and converts it to a sequence ofarchitecture are the memory, which stores both instructions and
instructions that can be executed by the CPU. The output ofdata, the central processing unit (CPU), which actually executes the
the compiler is stored in memory like any other type of data.instructions, and the input/output (I/O) devices, which provide an in-

terface to the outside world. However, the CPU can now execute the compiler output data
simply by interpreting them as instructions. Thus, the same
values stored in memory are treated as data by the compiler,
but are subsequently treated as executable instructions byfrom the memory and coordinates the operation of the entire
the CPU.system. It determines the order in which instructions are exe-

Another consequence of this concept is that each instruc-cuted and provides all of the electrical signals necessary to
tion must specify how it interprets the data on which it oper-control the operation of the ALU and the interfaces to the
ates. Thus, for instance, a von Neumann architecture willother system components.
have one set of arithmetic instructions for operating on inte-The memory is a collection of storage cells, each of which
ger values and another set for operating on floating-pointcan be in one of two different states. One state represents a
values.value of ‘‘0,’’ and the other state represents a value of ‘‘1.’’ By

The second key feature is that memory is accessed bydistinguishing these two different logical states, each cell is
name (i.e., address), independent of the bit pattern stored atcapable of storing a single binary digit, or bit, of information.
each address. Because of this feature, values stored in mem-These bit storage cells are logically organized into words, each
ory can be interpreted as addresses as well as data or instruc-of which is b bits wide. Each word is assigned a unique ad-
tions. Thus, programs can manipulate addresses using thedress in the range [0, . . ., N � 1].
same set of instructions that the CPU uses to manipulateThe CPU identifies the word that it wants either to read
data. This flexibility of how values in memory are interpretedor write by storing its unique address in a special memory
allows very complex, dynamically changing patterns to beaddress register (MAR). (A register temporarily stores a value
generated by the CPU to access any variety of data structurewithin the CPU.) The memory responds to a read request by
regardless of the type of value being read or written. Variousreading the value stored at the requested address and passing
addressing modes are discussed further in the followingit to the CPU via the CPU-memory data bus. The value then
section.is temporarily stored in the memory buffer register (MBR)

Finally, another key concept of the von Neumann scheme(also sometimes called the memory data register) before it is
is that the order in which a program executes its instructionsused by the control unit or ALU. For a write operation, the
is sequential, unless that order is explicitly altered. A specialCPU stores the value it wishes to write into the MBR and the
register in the CPU called the program counter contains thecorresponding address in the MAR. The memory then copies
address of the next instruction in memory to be executed.the value from the MBR into the address pointed to by the
After each instruction is executed, the value in the programMAR.
counter is incremented to point to the next instruction in theFinally, the input/output (I/O) devices interface the com-
sequence to be executed. This sequential execution order canputer system with the outside world. These devices allow pro-
be changed by the program itself using branch instructions,grams and data to be entered into the system and provide a
which store a new value into the program counter register.means for the system to control some type of output device.
Alternatively, special hardware can sense some externalEach I/O port has a unique address to which the CPU can
event, such as an interrupt, and load a new value into theeither read or write a value. From the CPU’s point of view,
program counter to cause the CPU to begin executing a newan I/O device is accessed in a manner very similar to the way
sequence of instructions. While this concept of performing oneit accesses memory. In fact, in some systems the hardware
operation at a time greatly simplifies the writing of programsmakes it appear to the CPU that the I/O devices are actually
and the design and implementation of the CPU, it also limitsmemory locations. This configuration, in which the CPU sees
the potential performance of this architecture. Alternativeno distinction between memory and I/O devices, is referred to
parallel architectures that can execute multiple instructionsas memory-mapped I/O. In this case, no separate I/O instruc-
simultaneously are discussed later.tions are necessary.

Instruction TypesKey Features

A processor’s instruction set is the collection of all the instruc-Given the basic organization, processors with a von Neumann
tions that can be executed. The individual instructions can bearchitecture generally share several key features that distin-
classified into three basic types: data movement, data trans-guish them from simple preprogrammed (or hardwired) con-
formation, and program control. Data movement instructionstrollers. First, instructions and data are both stored in the

same main memory. As a result, instructions are not distin- simply move data between registers or memory locations, or
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between I/O devices and the CPU. Data movement instruc- Both data transformation and data movement instructions
implicitly assume that the next instruction to be executed istions are actually somewhat misnamed since most move oper-

ations are nondestructive. That is, the data are not actually the next instruction in the program sequence. Program-con-
trol instructions, such as branches and jumps, on the othermoved but, instead, are copied from one location to another.

Nevertheless, common usage continues to refer to these oper- hand, must explicitly specify the address of the next instruc-
tion to be executed. Note that conditional branch instructionsations as data movement instructions. Data transformation

instructions take one or more data values as input and per- actually specify two addresses. The target address of the
branch, which is the address of the instruction the programform some operation on them, such as an addition, a logical

OR, or some other arithmetic or logical operation, to produce should begin executing if the branch outcome is taken, is ex-
plicitly specified. If the branch is not taken, however, it isa new value. Finally, program control instructions can alter

the flow of instruction execution from its normal sequential implicitly specified that the next instruction in sequential or-
der should be executed.order by loading a new value into the program counter. This

change in the instruction execution order can be done condi- The instruction set architecture (ISA) of a processor is the
combination of all the different types of instructions it cantionally on the results of previous instructions.

In addition to these three basic instruction types, more re- execute plus the resources accessible to the instructions, such
as the registers, the functional units, the memory, and thecent processors have added instructions that can be broadly

classified as system control instructions. These types of in- I/O devices. The ISA gives each type of processor its unique
‘‘personality’’ since it determines the programmer’s view ofstructions generally are not necessary for the correct opera-

tion of the CPU but, instead, are used to improve its perfor- what the processor can do. In contrast, the implementation of
the processor determines how the ISA actually performs themance. For example, some CPUs have implemented prefetch

instructions that can begin reading a location in memory even desired actions. As a result, it is entirely possible to have sev-
eral different implementations of an ISA, each of which canbefore it is needed (13). A variety of other system control in-

structions also can be supported by the system. have different performance characteristics.
Each instruction must explicitly or implicitly specify the

following information (14): Instruction Execution

Executing instructions is a two-step process. First, the next
1. The operation to be performed, which is encoded in the instruction to be executed, which is the one whose address is

op-code. in the program counter, is fetched from the memory and
2. The location of the operands, which are the input data stored in the instruction register (IR) in the CPU. The CPU

on which to perform the operation. then executes the instruction to produce the desired result.
This fetch-execute cycle, which is called an instruction cycle,3. The destination location, which is where the result of
is then repeated for each instruction in the program.the operation will be stored.

In fact, the execution of an instruction is slightly more4. The next instruction to be executed.
complex than is indicated by this simple fetch-execute cycle.
The interpretation of each instruction actually requires theAll instructions must explicitly specify the op-code, although
execution of several smaller substeps called microoperations.not all instructions will need to specify both source and desti-
The microoperations performed for a typical instruction exe-nation operations. The addressing mode used by an instruc-
cution cycle are described in the following steps:tion specifies the location of the source and destination op-

erands, which may be, for example, registers, memory
1. Fetch an instruction from memory at the addressaddresses, or I/O ports. With the implicit addressing mode,

pointed to by the program counter. Store this instruc-the instruction assumes that the operation is in a predeter-
tion in the IR.mined location. This mode is commonly used to access certain

2. Increment the value stored in the program counter tointernal registers. The immediate addressing mode is used to
point to the next instruction in the sequence of instruc-access a constant data value that has been encoded as part of
tions to be executed.the instruction itself. The direct addressing mode, in contrast,

3. Decode the instruction in the IR to determine the opera-uses a constant value encoded in the instruction as the ad-
tion to be performed and the addressing modes of thedress of either a register or a location in memory.
operands.With indirect addressing, the value encoded in the instruc-

tion is the address of a register or memory location that con- 4. Calculate any address values needed to determine the
tains the actual address of the desired operand. This ad- locations of the source operands and the address of the
dressing mode is commonly used to manipulate pointers, destination.
which are addresses stored in memory. Finally, indexing is an 5. Read the values of the source operands.
addressing mode that can be used to scan efficiently through

6. Perform the operation specified by the op-code.regular data structures, such as arrays. With this mode, the
7. Store the results at the destination location.address of the desired operand is found by adding a value in
8. Go to step 1 to repeat this entire process for the next in-an index register to a given base address. Thus subsequent

struction.elements in an array, for instance, can be accessed simply by
incrementing the value stored in the index register. While
these are the basic addressing modes, a variety of combina- Notice that not all of these microoperations need to be per-

formed for all types of instructions. For instance, a condi-tions of these modes have been implemented in different pro-
cessors (15,16). tional branch instruction does not produce a value to be
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stored at a destination address. Instead, it will load the ad- ture and organization, such as very deep pipelining, the cycle
time of CPUs has reduced at a rate much faster than the timedress of the next instruction to be executed (i.e., the branch

target address) into the program counter if the branch is to required to access memory. As a result, a significant imbal-
ance between the potential performance of the CPU and thebe taken. Otherwise, if the branch is not taken, the program

counter is not changed, and executing this instruction has no memory has developed. Since the overall performance of the
system is limited by its slowest component, this imbalanceeffect. Similarly, an instruction that has all of its operands

available in registers will not need to calculate the addresses presents an important performance bottleneck. This limita-
tion often has been referred to as the von Neumann bottle-of its source operands.

The time at which each microoperation can execute is coor- neck (19).
dinated by a periodic signal called the CPU’s clock. Each mi-
crooperation requires one clock period to execute. The time Latency and Bandwidth
required to execute the slowest of these microoperations de-

Memory performance can be characterized using the parame-
termines the minimum period of this clock, which is referred

ters latency and bandwidth. Memory latency is defined to be
to as the CPU’s cycle time. The reciprocal of this time is the

the time that elapses from the initiation of a request by the
CPU’s clock rate. The minimum possible value of the cycle

CPU to the memory subsystem until that request is satisfied.
time is determined by the electronic circuit technology used

For example, the read latency is the time required from when
to implement the CPU. Typical clock rates in today’s CPUs

the CPU issues a read request until the value is available for
are 200 MHz to 300 MHz, which corresponds to a cycle time

use by the CPU. The bandwidth, on the other hand, is the
of 3.3 ns to 5 ns. The fastest CPUs, as of the time of this

amount of data that can be transferred per unit time from the
writing, are reported at 1000 MHz.

memory to the processor. It is typically measured in bits per
An instruction that requires all seven of these microoper-

second. While the description of the basic organization in the
ations to be executed will take seven clock cycles to complete

previous section on organization and operation implies that
from the time it is fetched to the time its final result is stored

only a single word is transferred from the memory to the CPU
in the destination location. Thus, the combination of the num-

per request, it is relatively simple to increase the memory
ber of microoperations to be executed for each instruction, the

bandwidth by increasing the width of the data bus between
mix of instructions executed by a program, and the cycle time

the CPU and the memory. That is, instead of transferring
determine the overall performance of the CPU.

only a single word from the memory to the CPU per request,
A technique for improving performance takes advantage of

multiple words can be transferred, thereby scaling up the
the fact that, if subsequent instructions are independent of

memory bandwidth proportionally. For example, in a CPU
each other, the microoperations for the different instructions

with a 64-bit word size, the eight bytes (1 byte � 8 bits) that
can be executed simultaneously. This overlapping of instruc-

constitute a single word could be transferred from the mem-
tions, which is called pipelining, allows a new instruction to

ory to the CPU as eight single-byte chunks in eight separate
begin executing each CPU cycle without waiting for the com-

cycles. Alternatively, the memory bandwidth could be in-
pletion of the previous instructions. Of course, if an instruc-

creased by a factor of 8 if all eight bytes are transferred in
tion is dependent on a value that will be produced by an in-

a single cycle. In high-performance systems, it would not be
struction still executing, the dependent instruction cannot

unusual to transfer 128 to 256 bits (two to four 64-bit words)
begin executing until the first instruction has produced the

per cycle.
needed result. While pipelining can improve the performance

Another approach for improving the memory bandwidth is
of a CPU, it also adds substantial complexity to its design and

to split the memory into two separate systems, one for storing
implementation.

data and the other for storing instructions. This type of com-
If the depth of the instruction pipeline is n, then up to n

puter organization is referred to as a Harvard architecture
independent instructions can be in various phases of execu-

(see HARVARD ARCHITECTURE). It was developed by a research
tion simultaneously. As a result, the time required to execute

group at Harvard University at roughly the same time as von
all of the instructions in a program can be reduced by at most

Neumann’s group developed the Princeton architecture. The
a factor of n. Dependences between instructions reduce the

primary advantage of the Harvard architecture is that it pro-
actual speed to something less than this theoretical maxi-

vides two separate paths between the processor and the mem-
mum, although several ‘‘tricks’’ can be used to minimize the

ory. This separation allows both an instruction and a data
performance impact of dependences in pipelined processors

value to be transferred simultaneously from the memory to
(17,18). The possible depth of a pipeline is determined by the

the processor. The ability to access both instructions and data
amount of work to be performed in each microoperation in an

simultaneously is especially important to achieving high per-
instruction’s execution cycle and by the circuit technology

formance in pipelined CPUs because one instruction can be
used to implement the CPU.

fetching its operands from memory at the same time a new
instruction is being fetched from memory.

MEMORY-ACCESS BOTTLENECK
Memory Hierarchy

While the basic computer organization proposed by von Neu- While memory bandwidth can be increased simply by increas-
ing the size and number of buses between the memory andmann is widely used, the separation of the memory and the

CPU also has led to one of its fundamental performance limi- the CPU, reducing memory latency is much more difficult. La-
tency is ultimately limited by the propagation time of the sig-tations, specifically, the delay to access memory. Due to the

differences in technologies used to implement CPUs and nals connecting the processor and the memory, which is guar-
anteed to be less than the speed of light. Since this is amemory devices and to the improvements in CPU architec-
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fundamental physical limitation, computer designers have re- size of the cache, that is, sm � sc, the average cost per bit of
sorted to using a variety of techniques that take advantage of this memory system approaches the average cost per bit of
the characteristics of executing programs to tolerate or hide the main memory, cm/sm. Thus, this type of memory hierarchy
memory latency. The most common of these techniques is the approximates the computer designer’s goal of providing a
use of caches in a memory hierarchy (20). memory system whose average access time is close to that of

The ideal memory system would be one with zero latency the fastest memory components with a cost that approaches
and infinite storage capacity and bandwidth. Unfortunately, that of the least expensive components.
latency and cost are inversely related. Thus, fast (i.e., low- Of course, the caveat when using a cache is that the miss
latency) memory systems are expensive, while large-memory ratio must be sufficiently small or, conversely, the hit ratio
systems are relatively slow. Given this cost-performance ten- must be sufficiently large. Fortunately, application programs
sion, the goal of a computer designer is to construct a memory tend to exhibit locality in the memory addresses they refer-
system that appears to have the performance of the fastest ence. Spatial locality refers to the fact that programs tend to
memory components with the approximate cost per bit of the reference a small range of addresses in any given time period.
least-expensive memory components. This goal has been ap- Programs also tend to access repeatedly the same small set of
proached by designing a hierarchical memory system that memory locations within a short period of time, a characteris-
temporarily copies the contents of a memory location when it tic referred to as temporal locality. This program behavior
is first accessed from the large, slow memory into a small, allows a relatively small cache to capture most of a program’s
fast memory called a cache that is near the processor. working set of memory addresses at any given time so that

In this hierarchy of memory, the CPU sees the full latency hit ratios of 95 to 99% are not uncommon. While these high
of the main memory, plus the delay introduced by the cache, hit ratios may seem surprising, they are a direct consequence
the first time a memory location is accessed. However, subse- of the way programs are written to run on a von Neumann
quent references to that address will find the value already architecture. In particular, instructions are typically executed
in the cache. This situation is referred to as a cache hit. In sequentially, and vectors or arrays of data are often accessed
this case, the memory delay is reduced to the time required in sequential memory order, both of which lead to high spatial
to access the small, fast cache itself, which is considerably locality. Furthermore, most programs contain many loops
less than the time required to access the main memory. A that are executed a large number of times, which causes high
reference that does not find the desired address in the cache temporal locality.
is called a cache miss. A miss causes the desired address to
be copied into the cache for future references. Of course, since

Cache Coherencethe cache is substantially smaller than the main memory, val-
ues that were previously copied into the cache may have to Most current computer systems use a combination of both
be evicted from the cache to make room for more recently ref- Harvard and Princeton architectures in their memory hierar-
erenced addresses. chies (19). A Harvard architecture is used on-chip for the

The average time required for the CPU to access memory cache portion of the hierarchy while the off-chip main mem-
with this two-level hierarchy can be determined by parti-

ory uses a Princeton architecture with a single connection to
tioning all memory accesses into either cache hits or cache

the separate caches in the CPU. While this approach allowsmisses. The time required to read an address on a hit is th. for the simultaneous access of instructions and data fromOn a miss, however, time th is required to determine that the
their respective caches, it also introduces a potential problemdesired address is not in the cache. An additional time of tm in which there can be inconsistent values for the same ad-(time to access the main memory) is then required to copy the
dress stored in the different caches and the main memory.value into the cache and to transfer it to the CPU. Further-
This potential inconsistency is referred to as the cache-coher-more, let h be the hit ratio, which is the fraction of all of the
ence problem. In a computer system with a single CPU, thememory references issued by a program that hit in the cache.
cache-coherence problem stems from the fact that all execut-Then the miss ratio is m � 1 � h, and the average memory
able programs start out as output data from a compiler oraccess time is
an assembler.

To understand this problem, consider a system that has
a writeback data cache and a separate instruction cache. A

tmem = hth + m(th + tm) = (1 − m)th + m(th + tm) = th + mtm

(1)
writeback cache is one in which a new value written to the
cache is not written back to the main memory until the cacheThis equation shows that when the miss ratio is small, the
is full. The word is then evicted from the cache to make roomaverage memory access time approaches the time required to
for a newly referenced word. At that point, the latest value inaccess the cache, th, rather than the relatively long time re-
the cache is written back to the main memory. Until thequired to access the main memory, tm.
writeback takes place, however, the value in the cache forThe average cost per bit of this hierarchical memory sys-
that specific address is different from the value stored in thetem is easily found to be
main memory. These two copies of the same address are said
to be incoherent or inconsistent. Under normal operation, this
inconsistency is not a problem since the CPU first looks in the

cmem = ccsc + cmsm

sc + sm
(2)

cache for a copy of the address it is reading. Since the copy in
the cache is the most current value that has been stored inwhere cc and cm are the respective costs per bit and sc and sm

that address, it does not matter to the CPU that the valueare the respective sizes in bits of the cache and memory. Note
that as the size of the memory is made much larger than the stored in memory is inconsistent.
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A problem can arise, however, when a program is compiled stance). The operations performed and the flow of the data
streams are often fixed, however, limiting the range of appli-and then executed. Since the output of any program is treated

as data, the output of the compiler, which is simply the exe- cations for which this type of system would be useful. MISD
processors often are referred to as systolic arrays and typicallycutable program, is stored in the data cache. If this newly

compiled program is then immediately executed, the CPU will are used to execute a fixed algorithm, such as a digital filter,
on a continuous stream of input data.begin fetching the instructions from the instruction cache.

Not finding the desired addresses in its instruction cache, it MIMD systems often are considered to be the ‘‘true’’ paral-
lel computer systems. Message-passing parallel computer sys-fetches the instructions from the main memory. However, the

instructions to be executed are actually still sitting in the tems are essentially independent SISD processors that can
communicate with each other by sending messages over adata cache. As a result, the CPU attempts to execute what-

ever happened to be stored in memory at the indicated ad- specialized communication network. Each processor main-
tains its own independent address space so any sharing ofdress, which is not the first instruction of the program just

compiled. While there are many solutions to this coherence data must be explicitly specified by the application pro-
grammer.problem, it is still a problem that has caused difficulties in

recent computer systems (Ref. 19, pp. 262–264) and that is In shared-memory parallel systems, on the other hand, a
single address space is common to all of the processors. Shar-critical to the correct execution of programs in parallel com-

puting systems (21,22). ing of data is then accomplished simply by having the pro-
cessors access the same address in memory. In the implemen-
tation of a shared-memory system, the memory may be

ALTERNATIVES TO THE VON NEUMANN ARCHITECTURE
located in one central unit, or it may be physically distributed
among the processors. Logically, however, the hardware andBeyond the memory bottleneck, the performance of computer
the operating system software maintain a single, unified ad-systems based on the von Neumann architecture is limited
dress space that is equally accessible to all of the processors.by this architecture’s ‘‘one instruction at a time’’ execution
For performance reasons, each of the processors typically hasparadigm. Executing multiple instructions simultaneously
its own private data cache. However, these caches can lead tousing pipelining can improve performance by exploiting par-
a coherence problem similar to that discussed earlier, sinceallelism among instructions. However, performance is still
several processors could have a private copy of a memory loca-limited by the decode bottleneck (23) since only one instruc-
tion in their data caches when the address is written by an-tion can be decoded for execution in each cycle. To allow more
other processor. A variety of hardware and software solutionsparallelism to be exploited, multiple operations must be si-
have been proposed for solving this shared-memory coherencemultaneously decoded for execution.
problem (21,22).The sequence of instructions decoded and executed by the

While these parallel architectures have shown excellentCPU is referred to as an instruction stream. Similarly, a data
potential for improving the performance of computer systems,stream is the corresponding sequence of operands specified by
they are still limited by their requirement that only indepen-those instructions. Using these definitions, Flynn (23) pro-
dent instructions can be executed concurrently. For example,posed the following taxonomy for parallel computing systems:
if a programmer or a compiler is unable to verify that two
instructions or two tasks are never dependent upon one an-

• SISD: single instruction stream, single data stream
other, they must conservatively be assumed to be dependent.

• SIMD: single instruction stream, multiple data stream This assumption then forces the parallel computer system to
• MISD: multiple instruction stream, single data stream execute them sequentially.

However, several recently proposed speculative parallel ar-• MIMD: multiple instruction stream, multiple data
chitectures (24–28) would, in this case, aggressively assumestream
that the instructions or tasks are not dependent and would
begin executing them in parallel. Simultaneous with this exe-An SISD system is a traditional processor architecture that

executes one sequence of instructions. In an SIMD system, cution, the processors would check predetermined conditions
to ensure that the independence assumption was correcthowever, an instruction specifies a single operation that is

performed on several different data values simultaneously. when the tasks are actually executed. If the speculation was
wrong, the processors must roll back their processing to aFor example, the basic operand in an SIMD machine may be

an array. In this case, an element-by-element addition of one nonspeculative point in the instruction execution stream. The
tasks then must be reexecuted sequentially. A considerablearray to another would require a single addition instruction

whose operands are two complete arrays of the same size. If performance enhancement is possible, however, when the
speculation is determined to be correct. Obviously, there mustthe arrays consist of n rows and m columns, nm total addi-

tions would be performed simultaneously. Because of their be a careful trade-off between the cost of rolling back the com-
putation and the probability of being wrong.ability to operate efficiently on large arrays, SIMD processors

often are referred to as array processors and are frequently
used in image-processing types of applications.

In an MISD processor, each individual element in the data CURRENT APPLICATIONS OF VON NEUMANN COMPUTERS
stream passes through multiple instruction execution units.
These execution units may combine several data streams into This section gives a list of computer application areas and

describes the significance and limits of problem solving witha single stream (by adding them together, for instance), or an
execution unit may transform a single stream of data (per- the computer. The basic steps in creating an application also

are outlined. The main focus is on problem solving in scienceforming a square-root operation on each element, for in-
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and engineering, which is often referred to as the computa- Ecosystem modeling applications study the change of
tional science and engineering (CSE) area. This area provided land cover, such as vegetation and animal habitats, and
the first applications of early computers. Despite its rapid land use.
growth, computer applications in non-CSE fields today, are Geophysical modeling and seismic processing pro-
commercially even more important (see also MICROCOMPUTER grams investigate the earth’s interior for locating oil,
APPLICATIONS, OFFICE AUTOMATION, DATABASES, TRANSACTION gas, and water reservoirs and for studying the earth’s
PROCESSING, and HOBBY COMPUTING). global behavior.

CSE includes a wide range of applications that allow scien-
Electronic device simulation investigates properties oftists and engineers to perform experiments ‘‘in the computer.’’

the very building blocks that make processor chips. ItCSE applications typically find solutions to complex mathe-
plays a crucial role in advancing basic computer tech-matical formulas, which involves operations on large sets of
nology.numbers. This is called numerical computing or, colloquially,

Image processing applications are found in medical to-number crunching.
mography, filtering of camera, satellite, and sensor
data, surface rendering, and image interpretation. In

Numerical Application Areas general, digital signal processing (DSP) methods are
used for the analysis, filtering, and conversion of cam-The following list outlines several important CSE applica-
era, acoustic, and radar signals.tions and the problems they solve.

Non-Numerical and Hybrid ApplicationsComputational chemistry is an important computer
user area (see also CHEMISTRY COMPUTING). Chemical re- Classical scientific and engineering applications involve nu-
actions and properties of substances can be studied and merical methods while an increasing range of new applica-
simulated at the molecular and quantum levels (the lat- tions involve non-numerical algorithms or hybrid solutions.
ter accounts for the inner forces of atoms) allowing, for For example, image processing may involve both numerical
instance, the synthesis of drugs, the design of lubri- low-level filters and non-numerical methods for the identifi-
cants, and the study of reactions in a combustion en- cation of objects. Discrete event simulation involves non-nu-
gine. merical algorithms, but may be combined with numerical sim-

Computational biology is similar to computational ulations of individual events. Decentralized command control
is a term used in military applications but applies equally tochemistry, except that biochemical processes are mod-
industrial and scientific settings. It involves the gathering ofeled for purposes such as protein studies and syntheses,
information from diverse, geographically distributed sources,and genetic sequence analysis.
methods for reasoning about these data, decision-making sup-Quantum physics is being modeled computationally for
port, and tools to steer the distributed processes as needed.the study of superconductivity, particle collisions, cos-

The decentralized command control area makes obviousmology, and astrophysics (see also PHYSICS COMPUTING).
the trend in CSE applications toward increasingly complex

Structural mechanics is an important area for the syn- solutions. As compute power increases, computer methods for
thesis, analysis, and testing of mechanical components analysis, simulation, and synthesis are developed in all con-
and structures. Mechanical properties of engines or air- ceivable fields. Simulators of different application areas can
plane hulls can be determined, and forces and deforma- be combined to create an even more powerful application. In
tions in a car crash can be studied. doing so, resources and input/output devices may be used

Materials science aims at the understanding of material worldwide and reactions to global changes can be computed.
and its properties at the molecular and atomic level. In- Another example of such multidisciplinary methods is found
sights into the behavior of superconductors and semi- in robotics. This field involves the processing of sensory data,
conductors, as well as the microscopic properties of cast the simulation and prediction of the behavior of diverse kinds

of visible objects, decision-making methods for proper re-metal, can be obtained.
sponses, and the coordination of commands to put these re-Computational electromagnetics is used for studying
sponses into action. A third example of an interdisciplinaryfields and currents in antennas, radars, microwave ov-
and increasingly complex application is the simulation of nu-ens, and many other electrical devices.
clear reactor systems. While chemical processes must be sim-

Computational fluid dynamics (CFD) simulates the flow ulated to capture the behavior inside a reactor, the reactor
of gases and fluids for studying an ever-growing range system as a whole involves diverse thermodynamic processes
of topics, such as the aerodynamics of airplanes, cars, that require CFD methods.
boats and building; the characteristics of turbines; the
properties of combustion processes; atmospheric effects;

Significance and Limits of Computational Problem Solvingand the processes in rocket motors and guns.

Climate and environmental modeling applications sim- Virtually Unlimited Experiments ‘‘in the Computer’’. Many
ulate the global climate and the behavior of oceans; pro- areas of science and all areas of engineering need experimen-
vide short-term weather forecasts; find answers to early tation. Computational methods allow the scientist and engi-
events in the ice age; and study the distribution of at- neer to perform experiments in virtual instead of in physical
mospheric pollutants (see also ENVIRONMENTAL SCIENCE space. This allows one to overcome many limits that are asso-

ciated with our reality.COMPUTING).



398 VON NEUMANN COMPUTERS

The following are examples of such limits. ment effort increases drastically and offsets the progress
made in software technology. Developing flexible applications

• Laws set many important limits to experiments. One ex- so that they can be adapted to new problems is even more
ample is experimentation with hazardous material. costly. However, such flexible applications are very important
While strict limits are set that, for example, control the because not being able to adapt an existing application to a
release of lethal substances into the atmosphere, the new problem may lead to prohibitive development costs.
computational engineer can explore chemical reactions in Most software is written in standard programming lan-
all conceivable settings. As a result, hazards may be guages, such as Fortran, C, or C��. The number of lines
characterized more quantitatively, and accident scenar- written per day by a programmer is in the single digits if one
ios may be explored. includes all costs from the problem specification to the soft-

ware maintenance phase. Thus, the investment in a program• Certain experiments may be permitted by law, but ethi-
that is 100,000 lines long, which is a relatively small size forcal rules prevent the scientist from doing excessive explo-
an ‘‘interesting’’ application, may reach several million dol-ration. Experiments with animals fall into this category.
lars. There are hopes to lower these costs with problem-solv-The computational scientist can overcome these limits
ing environments (PSE). PSEs attempt to provide user-ori-and, for example, design drugs that are more reliably
ented program development facilities that allow thetested.
specification of a problem at a much higher level than current• Physical limits set the most obvious constraints to exper-
programming languages. For example, the physicist wouldiments in real space. The computational engineer, how-
enter physics equations and the chemist a chemical formula.ever, can easily ‘‘switch off gravity’’ or construct a device
However, the current state of technology is still far from thisthat is larger than our entire planet.
goal (see also SPECIFICATION LANGUAGES). Future progress will• Financial limits prohibit many experiments. Crashing
depend critically on how well these software issues can beone or several new cars for safety tests is very expensive.
solved.Accurate crash test simulation tools therefore are among

A third major limitation in computational problem solvingthe important investments of car manufacturers.
is the accuracy of computational models with which reality is

• Exploring processes that take extremely long or short
described, approximated, and coded in a computer program.

time spans is difficult. Just as one cannot wait 1000
There are several reasons that accuracy can be limited. First,

years to observe a material’s aging process, an engineer’s
even if the physical phenomena can be described precisely

instruments may not be fast enough to record events in
with exact mathematics (e.g., applying fundamental laws of

the picosecond range. Simulations can easily stretch and
physics), computers will solve these equations in a discretized

compress time scales.
space rather than in a continuum. The accuracy of the solu-

• Other experiments may not be feasible because of human tion depends on how fine-grained this discretization is made.
limitations. A human observer may not record events The smaller the grain size, the better the accuracy, but also
with sufficient accuracy, situations may be too complex the more compute-intensive the problem becomes. This trade-
to grasp, and real experiments may require inappropri- off limits the accuracy for a given problem size and available
ate human interfaces. Computer tools can provide reme- compute power. Second, one typically cannot rely only on fun-
dies in all of these areas. damental laws of physics, but instead must use less complex

models that describe the behavior at a more abstract level.
Limits on Pushing the Limits

These abstractions are less detailed and hence less accurate
than the underlying phenomena. Third, coding the models asWhile there are virtually unbounded opportunities for compu-

tational problem solving, there are several factors that set computer programs introduces additional inaccuracy since
one may need to derive linear equations from nonlinear mod-limits. These include computer speeds, application develop-

ment costs, and the accuracy of simulation models. els, or the programmer may choose approximate algorithms
that are faster, have already been developed, or have provenThe fastest computer speeds reported today are in the or-

der of one trillion operations per second (or 1 tera-OPS). This more reliable than the exact ones.
is more than a 1000-fold performance improvement over the
average PC. In a recent initiative to replace nuclear explosion Steps from the Original Problem to Its
experiments by computer simulations, the necessary compu- Computation by a von Neumann Machine
tational power for this task was estimated to be approxi-

A typical scenario for developing a scientific or engineeringmately 1 quadrillion operations per second (or 1 peta-OPS).
computer application is as follows. First, a model is developedSimulating a complete nuclear explosion would be the most
to describe in precise terms the phenomenon to be computed.advanced computational problem ever solved. The fact that it
For example, to investigate the temperature distribution in awould take compute resources that are a thousand times
car engine block, the engineer will describe mathematicallyhigher than the current cutting-edge technology gives an indi-
the temperature flow in the material, given certain initialcation of the complexity of computations that are tractable
temperatures and the shape of the engine parts. To containtoday and what may become possible in the future.
the complexity within reasonable limits, the engineer willThe effort and cost for developing a new computer applica-
make simplifying assumptions. Such assumptions could betion program represent a second major hurdle in the compu-
that the material is homogeneous, the geometry is simple,tational race. Whereas the design of hardware was the major
and the initial temperatures are well known. An importantproblem during the IAS computer’s era, software costs have
class of model equations are partial differential equations (orsince exceeded hardware costs by several factors. As applica-

tions evolve and become increasingly complex, the develop- PDE). The PDE at hand may describe that, in any time inter-
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val, the temperature flow between two adjacent points in the the performance of applications on today’s von Neumann com-
puters can vary greatly.car engine is some coefficient times the temperature differ-

ence since the beginning of the time interval. In actuality, the
PDE describes this situation for only one point in space and

CONCLUSIONStime. The mathematical solution of the PDE needs to be de-
veloped such that the temperature behavior of the entire body

The fundamental ideas embodied in the traditional von Neu-over the desired time period can be determined. To do this
mann architecture have proven to be amazingly robust. En-precisely is mathematically complex and intractable for non-
hancements and extensions to these ideas have led to tremen-trivial geometries and surface temperatures.
dous improvements in the performance of computer systemsThe idea behind the computer solution is to split the en-
over the past 50 years. Today, however, many computer re-gine block into a finite number of intervals (called a grid or
searchers feel that future improvements in computer systemmesh) and divide the time period into small steps. The compu-
performance will require the extensive use of new, innovativetation then steps through time, updating the temperature at
techniques, such as parallel (29) and speculative execution.each grid point from its neighbor points (called the stencil) as
In addition, complementing software technology needs to bedescribed by the PDE. The fact that this is done on a finite
developed that can lower the development costs of an ever-interval instead of on the point described by the PDE makes
increasing range of potential applications. At present, theit an approximation. The finer the grid space the more accu-
competitiveness of alternative architectures is hard to assess,rate the approximation becomes, so that building grids with
owing to the ongoing explosion of microprocessor-based per-the right spacing is an important and difficult issue. Ideally,
sonal workstations (which use the von Neumann architec-grids are dense where the values being computed are ex-
ture) and the attendant economies of scale. Even if alterna-pected to change significantly (e.g., in corners of the engine
tive architectures eventually gain a large share of certainblock) and sparse in ‘‘uninteresting’’ areas.
applications (e.g., vision, hydrodynamics), nonetheless theThis computation is typically represented as operations on
von Neumann architecture is likely to remain the most suit-large matrices. Computer algorithms that manipulate such
able for the role of general-purpose extension of a human’s

matrices and the corresponding large systems of equations personal intellectual capabilities.
are important. Of particular importance are linear algebra
methods because they are well understood and there exist
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