
UNIX 39

edly the best single reference on the early days of UNIX is the
famous July-August 1978 issue of the Bell System Technical
Journal. This issue includes articles by Ritchie and Thompson
(4) on the design and implementation of UNIX as well as a
dozen others on the history of UNIX (5), the UNIX shell (6),
text processing (7), language development tools, and more.

Computers in the 1970s were big, expensive systems with
proprietary hardware and software. Vendors sought to lock
customers into a particular family of machines. Command in-
terfaces, system calls, etc. were complicated and uncorrelated
from vendor to vendor. UNIX 7th edition (then called ‘‘Ver-
sion 7’’) became available for DEC hardware (especially the
popular 11/70 family of minicomputers) from AT&T in the
late 1970s. The system came as a single tape, with all source,
and for the cost of copying and issuing a license at about
$300. The system came with no support, no user contacts, and
no promises.

In the beginning UNIX was licensed almost for free to uni-
versities, including the full source code. This led to its im-
mense popularity in academic environments. But with the re-
lease of Version 7, the licensing policy became more
restrictive and the source code could no longer be used for
teaching (1). One year later, in October 1980, BSD (Berkeley
Software Distribution) UNIX 4.0 was released, again freely
available to the public. It was based on the older free sources
of UNIX and further developed at the University of California
at Berkeley. It included many enhancements like paged vir-
tual memory and TCP/IP networking. Several commercial
versions were derived from this, including SunOS and
ULTRIX (produced by Sun and DEC, respectively).UNIX From the technical user’s point of view, and apart from
considerations of academic fashion, UNIX offered a number

UNIX is a general-purpose, interactive, time-sharing op- of very appealing features:
erating system originally invented in the 1970s at Bell Labs.
There are many varieties of UNIX in current use, both free

1. Every file is simply a stream of bytes. This sounds obvi-and commercial, but they all have well-integrated, standard,
ous in retrospect, but at the time, a typical operatingnetworking and graphics systems and provide a rich environ-
system (OS) had all kinds of extra file attributes, suchment for programming, document preparation, and scientific
as record type and length. That complexity made it dif-computing. UNIX has been ported to more different types of
ficult for user programs to deal flexibly with files, par-hardware than any operating system in history (1). Because
ticularly binary files of different types.these systems have to function uniformly over networks popu-

lated by a bewildering variety of hardware types and different 2. Devices are files. Each OS then had various utilities for
UNIX versions, the software is usually careful about provid- doing input/output (IO) to devices. Merging devices into
ing hardware-independent binary data. As trends in comput- the file system had a number of beneficial results:
ing hardware have changed from minicomputers, to vector su- • There were not as many system calls to remember,
percomputers, to distributed networks of workstations and although the ioctl() system call expanded to take up
PCs, UNIX has evolved to meet the challenges. some of the slack in that area.

• Programs gained additional functionality (the ability
to handle IO directly to/from devices) with little or noIN THE BEGINNING
additional programming effort.

• The number of specialized system utilities decreasedUNIX was originally invented in 1969 by Ken Thompson on
accordingly.a surplus DEC PDP-7 at AT&T’s Bell Labs. It was modeled

3. It has a process model that is easy to use. The possibil-after the Multics operating system, which introduced many
ity to link the input and output streams of programs vianew concepts such as symmetric multiprocessing, a hierarchi-
pipes (buffers allowing asynchronous communicationcal file system, access control, and virtual memory. The name
between processes under control of the kernel) had aUNIX is a pun on Multics (Multiplexed Information and Com-
great impact on how we write programs, even in techni-puting Service), replacing ‘‘Multiplexed’’ by ‘‘Uniplexed,’’ as it
cal work. It also led to quiet programs since unneces-was originally just a simple single user system. Dennis Rit-
sary output could prevent a program from being usedchie, who created the C programming language, joined
as a filter in a pipeline.Thompson and rewrote UNIX almost entirely in C during

UNIX reduced the command interpreter, the shell, to1972 to 1974 (2–3). As far as we know, this made UNIX the
first source-portable operating system in history. Undoubt- just another user program, a change that much simpli-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

40 UNIX

fied the formal structure of the OS and led to the pres- riety of hardware and has turned out to be one of the most
rapidly evolving operating systems ever.ent proliferation of shells (overall a good thing). It also

gave us convenient subprogram execution as a program- For the price of a paper-back book, you can get the com-
plete operating system, with all the bells and whistles (theming tool.
kernel and all utilities, the X11 windowing environment, text4. There was an inspired set of utilities. The core set was
processing software, compilers/debuggers, editors, file manag-a then-unusual group of single-purpose programs such
ers, and so on), along with all of the source code. This allowsas sed, uniq, and tr. These made it possible to write
anyone to take cheap, ubiquitous hardware and build robustthe first spelling checker as just a pipeline of existing
and reliable multiuser workstations that don’t suffer theutilities, to serve as excellent examples to utility writers
drawbacks of many commercial PC-based operating systems(which, in the end, much of UNIX programming is), and
(frequent reboots, poor scheduling under load, weak security,to give rise to the first entry of the trilogy of UNIX pro-
and a single-user mentality). This democratization of desktopgramming methods used to attack a problem—write a
computing may ultimately be the most enduring legacy of theshell script, write a program, write a language.
experiment begun at Bell Labs over 30 years ago.The distribution also included trof/eqn/tbl for type-

setting (in fact, the famous 1978 issue of the Bell Sys-
tem Technical Journal was typeset using troff), as well CONCEPTS
as lex, a lexical analyzer, and yacc, a parser generator.

Kernel
The possibilities contained in the UNIX utility set took a The kernel is the heart of an operating system. It provides
while to comprehend (because they were so different in struc- the minimum functionality which defines it. Everything else
ture from the large multifunction utilities with other op- is an add-on provided by external programs. One can, there-
erating systems), but once seen, they were inspiring and em- fore, say that the kernel is the operating system.
powering. The kernel provides the lowest abstraction layer of the un-

The emergence of this powerful, and accessible bundle of derlying hardware. It is responsible for resource management
capabilities showed a future rich with possibilities we had and process scheduling. Traditionally, UNIX kernels included
never seen before: an end to the mind-numbing proliferation the device drivers for the hardware, all networking code, and
of operating systems and their utilities and the emergence of all filesystem code. A change of drivers usually required re-
a powerful, simple, user-oriented computing environment. All compiling the kernel and rebooting the system. Recent UNIX
of this came about because the times were ready, and Bell kernels are modular, so parts of them can be exchanged at
Labs had one of those clusters of brilliant people that occur runtime without rebooting.
from time to time in every field. It was also because the inter-
national UNIX community had created a large and growing Kernel Structure
pool of freely-available software that will typically run with

One distinguishes between monolithic kernels and kernelsonly minor changes on almost any UNIX system. This pool
with a message passing architecture. A monolithic kernel isincludes all of the components for software development
compiled into one large binary file in which all its parts are(mostly from the efforts of the Free Software Foundation,
accessible to all other parts, so that one kernel function canhttp://www.fsf.org/, which is an independent group promoting
easily call any other one. While this provides minimum over-the proliferation of free software with open source code) and
head, it can be unstructured and inflexible.some very powerful data management, manipulation, and dis-

In a kernel with a message passing architecture, the ker-play programs.
nel functions do not call each other directly, but send mes-The current operating system is many times larger than
sages to each other, asking for certain operations to be per-Version 7 (mostly, for good reason), but its basic design and
formed. The same applies to user mode programs calling thepower are intact. Today, much of what has been described as
kernel; the actual kernel call is performed by a library func-a UNIX system has been fixed in the POSIX (Portable Op-
tion which constructs the message required and passes it onerating System) standards, further improving portability.
to the kernel. This creates additional overhead and, therefore,These IEEE standards define a UNIX-like interface (8), the
is potentially slower than a monolithic kernel. Strictly speak-shell and utilities, and real-time extensions (9).
ing, a kernel with a message passing architecture could beIn 1992, another major branch came into existence: Linux.
monolithic as well, by being compiled into one binary, but stillIt started as the hobby project of Finnish student, Linus Tor-
using messages to communicate between its parts. However,valds. Torvalds created a UNIX-like kernel for the Intel
this makes relatively little sense, for it does not take full ad-80386 processor and released it to the public on the Internet.
vantage of the message passing architecture.Others subsequently extended this kernel, drawing on the

The main advantage of a message passing architecture isvast software resources from the UNIX world. By using the
that it can easily be split up and that operations can be dele-software which had been developed by the Free Software
gated to external programs, device drivers, or other modulesFoundation’s GNU project and adding on the X-Windows in-
loaded at runtime. This makes it possible to build distributedterface provided by the XFree86 project, Linux was turned
systems that cooperate across multiple networked computers.into a full featured major new UNIX system. The original

UNIX tapped a rich vein of discontent and bottled-up creativ-
Microkernelsity among technical users. Linux has done something similar

in addition to capitalizing on the work of the Free Software A common implementation of the message passing architec-
ture is the microkernel. A microkernel provides only the mini-Foundation. Today GNU/Linux has been ported to a wide va-

UNIX 41

mum functionality of task switching and memory manage- the stack pointer, the memory allocation map, working direc-
tory, user ID, group ID, priority, and parent process ID.ment. Everything else, including device IO and filesystems, is

handled by external processes, so-called servers, which run While processes are generally independent of each other,
there are mechanisms for them to communicate with eachoutside the kernel. This improves flexibility, as servers can be

changed or restarted at any time. It also improves security other. The simplest of these are to send each other signals or
to send data through pipes. Signals interrupt the normal flowbecause the servers do not necessarily run in kernel mode but

can run as normal user mode processes with fewer privileges. of a process and force it into a special signal-handling routing
to react to it, before continuing normal operation. Signals canAll communication with these servers is done through the

kernel’s message passing system which routes the messages be sent between any two processes belonging to the same
user. Pipes can only exist between processes sharing a com-to the appropriate server. Such a microkernel is extremely

small and easy to port to different hardware architectures. A mon parent or having a parent/child relationship. While sig-
nals just allow to tell the other process that the signal haspopular example of this is the MACH microkernel developed

at Carnegie-Mellon University (MACH homepage: http:// been sent (i.e., no additional information can be transmitted),
pipes allow full communication between the two processes,www.cs.cmu.edu /afs /cs.cmu.edu /project /mach /public /www/

mach.html). sending any kind of data through them. Another important
one is the possibility of sharing memory between differentAs most of the system’s functionality which defines its API

(Application Program Interface) is provided by processes run- processes. For this, they register a common area of physical
memory to be shared. To control access to shared resources,ning outside the microkernel, such a system can provide dif-

ferent operating system personalities. This is different from UNIX supports a control mechanism invented by Dijkstra
known as semaphores.emulation, where one system gets simulated by another one.

A microkernel can truly run multiple operating systems on A concept similar to a process is a thread. Every process
consists of at least one thread which can be thought of as thethe same hardware at the same time.
currently executed code of the process together with its stack.
A process can create additional threads which can execute inHardware Abstraction
parallel, each of them having their own stack but sharing the

Normal programs run in user mode and have no direct access
same address space and resources. Programs using multiple

to the hardware. It is only through the kernel, which runs
threads provide concurrent execution of functions, without

with special privileges, that they can access the hardware. To
the large overhead of creating multiple processes, but have

do so, they call the kernel to perform the required operation.
to be written carefully to avoid problems caused by multiple

The changes between user mode and kernel mode are called
threads accessing the same memory.

context switches and are generally quite expensive in terms
of computation time. Every context switch involves saving all
the processor registers, passing the parameters to the kernel, INFLUENCE ON OTHER OPERATING SYSTEMS
and calling the kernel function. To avoid unnecessary context
switches, programs frequently use buffered IO as provided by UNIX has pioneered many concepts now commonly found in
user level libraries. other operating systems. Its history is closely linked to the

C programming language, and it has been the predominant
Processes operating system that introduced networking and on which

the Internet has been built. Many of these concepts haveA process is an executing program, including its program
made their way into other systems. Today, the TCP/IP net-counter, CPU registers, and variables. On a UNIX system,
working protocol has become the de facto standard acrosseach process has its own virtual CPU and address space. The
platforms. The BSD UNIX socket interface to network pro-kernel is responsible for switching the existing CPU(s) be-
gramming has been adopted by other systems, with the Win-tween the waiting processes. As UNIX provides preemptive
dows Winsock interface being a prominent example. Other op-multitasking (as opposed to cooperative multitasking), the
erting systems like Windows NT are becoming more and moreprocesses do not need to explicitly release the CPU but get
UNIX-like and widely conforming to the POSIX standards.scheduled by the kernel. Processes carry different priorities

which allow the scheduler to assign them more or less CPU
time.

BIBLIOGRAPHYAll processes are related by a parent-child relationship.
The only way to create a new process is by using the fork()

1. A. S. Tanenbaum, Operating Systems Design and Implementation,system call which makes an identical copy of the current pro-
Englewood Cliffs, NJ: Prentice-Hall, 1987.cess. To start a second program, a process needs to call fork(),

2. S. C. Johnson and D. M. Ritchie, Portability of C programs andand then, one of the two copies needs to replace itself with the
the UNIX system, Bell Syst. Tech. J., 57 (6): 2021–2048, 1978.new program by means of the exec() call. As a consequence of

3. D. M. Ritchie et al., The C programming language, Bell Syst. Tech.this, each process has a parent process and the relationship
J., 57 (6): 1991–2020, 1978.between processes is a tree-like structure with the init pro-

4. D. M. Ritchie and K. Thompson, The UNIX time-sharing system,cess at its root. The init process gets started by the kernel
Bell Syst. Tech. J., 57 (6): 1905–1930, 1978.at boot time and is responsible for system initialization and

boot-up. 5. M. D. McIlroy, E. N. Pinson, and B. A. Tague, Forward, Bell Syst.
Tech. J., 57 (6): 1899–1904, 1978.The kernel maintains a process table with information on

all processes, including the list of open files, the state (run- 6. S. R. Bourne, The UNIX shell, Bell Syst. Tech. J., 57 (6): 1971–
1990, 1978.ning, waiting, stopped, sleeping, etc.), the program counter,

42 USER INTERFACE MANAGEMENT SYSTEMS

7. B. W. Kernighan, M. E. Lesk, and J. F. Ossana, Jr., Document
preparation, Bell Syst. Tech. J., 57 (6): 2115–2136, 1978.

8. D. Lewine, POSIX Programmer’s Guide, O’Reilly & Associates,
1991.

9. B. Gallmeister, POSIX.4, Programming for the Real World,
O’Reilly & Associates, 1995.

KARSTEN BALLÜDER

Heriot-Watt University

JOHN A. SCALES

Colorado School of Mines

MARTIN L. SMITH

New England Research

UNSTABLE OPERATING POINT. See CIRCUIT STABIL-

ITY OF DC OPERATING POINTS.
URL. See UNIVERSAL RESOURCE LOCATOR.

