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can also be embedded in the application program written in a
high-level language such as C, Pascal, or COBOL.

A transaction processing (TP) system is a computer system
that processes the transaction programs. A collection of such
transaction programs designed to perform the functions nec-
essary to automate given business activities is often called an
application program (application software). Figure 1 shows a
transaction processing system. The transaction programs are
submitted to clients, and the requests will be scheduled by
the transaction processing monitor and then processed by the
servers. A TP monitor is a piece of software that connects
multiple clients to multiple servers to access multiple data
resources (databases) in TP systems. One objective of the TP
monitor is to optimize the utilization of system and network
resources when clients and servers execute on different pro-
cessors.

Transaction processing is closely associated with database
systems. In fact, most earlier transaction processing systems
such as banking and airlines reservation systems are data-
base systems, where data resources are organized into data-
bases and transaction processing is supported by database
management systems (DBMS). In traditional database sys-
tems, transactions are usually simple and independent, and
are characterized as short duration in that they will be fin-
ished within minutes (probably seconds). Traditional transac-
tion systems have some limitations for many advanced appli-
cations such as cooperative work, where transactions need to
cooperate with each other. For example, in cooperative envi-
ronments, several designers might work on the same project.
Each designer starts up a cooperative transaction. Those co-
operative transactions jointly form a transaction group. Coop-
erative transactions in the same transaction group may read
or update each other’s uncommitted (unfinished) data. There-
fore, cooperative transactions may be interdependent. Cur-
rently, some research work on advanced transaction pro-
cessing has been conducted in several related areas such as
computer-supported cooperative work (CSCW) and group-
ware, workflow, and advanced transaction models (2–6). In
this paper, we will first discuss traditional transaction con-
cepts and then examine some advanced transaction models.

Because of recent developments in laptop or notebook com-
puters and low-cost wireless digital communication, mobile
computing began to emerge in many applications. As wireless
computing leads to situations where machines and data no
longer have fixed locations in the network, distributed trans-
actions will be difficult to coordinate, and data consistency
will be difficult to maintain. In this paper we will also briefly
discuss the problems and possible solutions in mobile transac-
tion processing.

This paper is organized as follows. First, we will introduce
traditional database transaction processing, including con-
currency control and recovery in centralized database trans-

TRANSACTION PROCESSING action processing. The next section covers the topics on dis-
tributed transaction processing. Then we discuss advanced

A business transaction is an interaction in the real world, transaction processing and define an advanced transaction
model and a correctness criterion. Mobile transaction pro-usually between an enterprise and a person, where some-
cessing is also presented. Finally future research directionsthing, such as money, products, or information, is exchanged
are included.(1). It is often called a computer-based transaction, or simply

a transaction, when some or the whole of the work is done by
computers. Similar to the traditional computer programs, a DATABASE TRANSACTION PROCESSING
transaction program includes functions of input and output
and routines for performing requested work. A transaction Because database systems are the earlier form of transaction
can be issued interactively by users through a Structured processing systems, we will start with database transaction

processing.Query Language (SQL) or some sort of forms. A transaction
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Figure 1. TP monitor between clients
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Databases Transactions ment relation, there will be a referential integrity constraint
from Employee’s Dnumber to Department’s Dnumber.

A database system refers to a database and the access facili-
A database is said to be ‘‘consistent’’ if it satisfies a set of

ties (database management system) to the database. One im-
integrity constraints. It is assumed that the initial state of

portant job of database management systems is to control and
the database is consistent. Because an empty database al-

coordinate the execution of concurrent database transactions.
ways satisfies all constraints, often it is assumed that the ini-

A database is a collection of related data items that satisfy
tial state is an empty database. It is obvious that a database

a set of integrity constraints. The database should reflect the
system is not responsible for possible discrepancies between

relevant state as a snapshot of the part of the real world it
a state of the real world and the corresponding state of the

models. It is natural to assume that the states of the database
database if the existing constraints were inadequately identi-

are constrained to represent the legal (permissible) states of
fied in the process of information analysis. The values of data

the world. The set of integrity constraints such as functional
items can be queried or modified by a set of application pro-

dependencies, referential integrity, inclusion, exclusion con-
grams or transactions. Because the states of the database cor-

straints, and some other user-defined constraints are identi-
responding to the states of the real world are consistent, a

fied in the process of information analysis of the application
transaction can be regarded as a transformation of a database

domain. These constraints represent real-world conditions or
from one consistent state to another consistent state. Users’

restrictions (7). For example, functional dependencies specify
access to a database is facilitated by the software system

some constraints between two sets of attributes in a relation
called a DBMS, which provides services for maintaining con-

schema while referential integrity constraints specify con-
sistency, integrity, and security of the database. Figure 2 il-

straints between two sets of attributes from different rela-
lustrates a simplified database system. The transaction

tions. For detailed definitions and discussions on various con-
scheduler provides functions for transaction concurrency con-

straints we refer readers to Refs. 7 and 8. Here we illustrate
trol, and the recovery manager is for transaction recovery in

only a few constraints with a simple example.
the presence of failures, which will be discussed in the next

Suppose that a relational database schema has following
section.

two table structures for Employee and Department with attri-
The fundamental purpose of the DBMS is to carry out que-

butes like Name and SSN:
ries and transactions. A query is an expression, in a suitable
language, that determines a portion of the data contained inEmployee (Name, SSN, Bdate, Address, Dnumber)

Department (Dname, Dnumber, Dlocation).

Name—employee name
SSN—social security number
Bdate—birth date
Address—living address
Dnumber—department number
Dname—department name
Dlocation—department location

Each employee has a unique social security number (SSN)
that can be used to identify the employee. For each SSN value
in the Employee table, there will be only one associated value
for Bdate, Address and Dnumber in the table, respectively. In
this case, there are functional dependencies from SSN to

Transaction manager

Transaction scheduler
recovery manager

Database

DBMS

TransactionsT1 T2 Tn-1 Tn…

…

Bdate, Address, Dnumber. If any Dnumber value in the Em-
ployee relation has the same Dnumber value in the Depart- Figure 2. Database system and DBMS.
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the database (9). A query is considered as a read-only transac- The final account balance is $500 instead of $1000. Obvi-
ously these two transactions have produced an inconsistenttion. The goal of query processing is extracting information

from a large amount of data to assist a decision making pro- state of the database because they were allowed to operate on
the same data item and neither of them was completed beforecess. A transaction is a piece of programming that manipu-

lates the database by a sequence of read and write operations. another. In other words, neither of these transactions was
treated as an atomic unit in the execution. Traditionally,

read(X) or R(X), which transfers the data item X from the transactions are expected to satisfy the following four condi-
database to a local buffer of the transaction tions, known as ACID properties (9–11):

write(X) or W(X), which transfers the data item X from the
local buffer of the transaction back to the database Atomicity is also referred to as the all-or-nothing property.

It requires that either all or none of the transaction’s
In addition to read and write operations, a transaction starts operations are performed. Atomicity requires that if a
with a start (or begin) operation, and ends with a commit op- transaction fails to commit, its partial results cannot re-
eration when the transaction succeeds or an abort when the main in the database.
transaction fails to finish. The following example shows a Consistency requires a transaction to be correct. In other
transaction transferring funds between two bank accounts words, if a transaction is executed alone, it takes the
(start and end operations are omitted). database from one consistent state to another. When all

the members of a set of transactions are executed con-Example 1. Bank transfer transaction.
currently, the database management system must en-
sure the consistency of the database.

Isolation is the property that an incomplete transaction
cannot reveal its results to other transactions before its
commitment. This is the requirement for avoiding the
problem of cascading abort (i.e., the necessity to abort
all the transactions that have observed the partial re-
sults of a transaction that was later aborted).

read(X )

X ← X + 100

write(X )

read(Y )

Y ← Y − 100

write(Y )

Durability means that once a transaction has been com-
Here X and Y stand for the balances of savings and credit mitted, all the changes made by this transaction must
accounts of a customer, respectively. This transaction trans- not be lost even in the presence of system failures.
fers some money (100 dollars) from the savings account to the
credit account. It is an atomic unit of database work. That is, The ACID properties are also defined in RM-ODP (Reference
all these operations must be treated as a single unit. Model of Open Distributed Processing) (12). ODP is a stan-

dard in a joint effort of the International Standardization Or-
Many database systems support multiple user accesses or ganization (ISO) and International Telecommunication Union
transactions to the database. When multiple transactions exe- (ITU), which describes systems that support heterogeneous
cute concurrently, their operations are interleaved. Opera- distributed processing both within and between organizations
tions from one transaction may be executed between opera- through the use of a common interaction model.
tions of other transactions. This interleaving may cause Consistency and isolation properties are taken care of by
inconsistencies in a database, even though the individual the concurrency control mechanisms, whereas the mainte-
transactions satisfy the specified integrity constraints. One nance of atomicity and durability are covered by the recovery
such example is the lost update phenomenon. services provided in a transaction management. Therefore,

concurrency control and recovery are the most importantExample 2. For the lost update phenomenon, sssume that
tasks for transaction management in a database system.two transactions, crediting and debiting the same bank ac-

count, are executed at the same time without any control. The
Concurrency Control and Serializabilitydata item being modified is the account balance. The transac-

tions read the balance, calculate a new balance based on the The ACID properties can be trivially achieved by the sequen-
relevant customer operation, and write the new balance to tial execution of transactions. However, this is not a practical
the file. If the execution of the two transactions interleaves solution because it severely damages system performance.
in the following pattern (supposing the initial balance of the Usually, a database system is operating in a multiprogram-
account is 1500), the customer will suffer a loss: ming, multiuser environment, and the transactions are ex-

pected to be executed in the database system concurrently. In
Debit Transaction Credit Transaction this section, the concepts of transaction concurrency control,

the schedule of transactions, and the correctness criterionread balance ($1500)
read balance ($1500) used in concurrency control are discussed.

A database system must monitor and control the concur-withdraw ($1000)
deposit ($500) rent executions of transactions so that overall correctness and

database consistency are maintained. One of the primarybalance :� $1500 � $1000
balance :� $1500 � $500 tasks of the database management system is to allow several

users to interact with the database simultaneously, giving us-Write balance ($2000)
Write balance ($500) ers the illusion that the database is exclusively for their own
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use (13). This is done through a concurrency control mech- the same set of operations producing the same effects in the
anism. database (15).

Without a concurrency control mechanism, numerous
problems can occur: the lost update (illustrated earlier in an

Definition 1. Two schedules S1, S2 are view equivalent ifexample), the temporary update (or the uncommitted depen-
dency), and the incorrect summary problems (7,14). The un-
wanted results may vary from annoying to disastrous in the

1. for any transaction Ti, the data items read by Ti in bothcritical applications. Example 3 shows a problem of tempo-
schedules are the same,rary updates where a transaction TB updates a data item f 1

but fails before completion. The value of f 1 updated by TB has 2. for each data item x, the latest value of x is written by
been read by another transaction TA. the same transaction in both schedules S1 and S2

Example 3. Consider an airline reservation database system
Condition 1 ensures that each transaction reads the samefor customers booking flights. Suppose that a transaction A

values in both schedules, and Condition 2 ensures that bothattempts to book a ticket on flight F1 and on flight F2 and that
schedules result in the same final systems.a transaction B attempts to cancel a booking on flight F1 and

In conflict equivalence, only the order of conflict operationsto book a ticket on flight F3.
needs to be checked. If the conflict operations follow the sameLet f 1, f 2, and f 3 be the variables for the seat numbers that
order in two different schedules, the two schedules are con-have been booked on flights F1, F2, and F3, respectively. As-
flict equivalent.sume that transaction B has been aborted for some reason so

that the scenario of execution is as follows:

Definition 2. Two operations are in conflict if
Transaction A Transaction B

R[f 1]
1. they come from different transactionsf 1 � f 1 � 1

W[f 1] 2. they both operate on the same data item and at least
R[f 1] one of them is a write operation
f 1 � f 1 � 1
W[f 1]

R[f 3] Definition 3. Two schedules S1, S2 are conflict equivalent if
f 3 � f 3 � 1 for any pair of transactions Ti, Tj in both schedules and any
W[f 3] two conflicting operations oip � Ti and ojq � Tj, when the exe-

R[f 2] cution order oip precedes ojq in one schedule, say, S1, the same
f 2 � f 2 � 1 execution order must exist in the other schedule, S2.
W[f 2]

Abort transaction B
Commit transaction A Definition 4. A schedule is conflict serializable, if it is con-

flict equivalent to a serial schedule. A schedule is view serial-
izable if it is view equivalent to a serial schedule.It is obvious that both transactions are individually correct if

they are executed in a serial order (i.e., one commits before
another). However, the interleaving of the two transactions

A conflict serializable schedule is also view serializable butshown here causes a serious problem in that the seat on fight
not vice versa because definition of view serializability ac-F1 canceled by transaction B may be the last available one
cepts a schedule that may not necessarily be conflict serializa-and transaction A books it before transaction B aborts. This
ble. There is no efficient mechanism to test schedules for viewresults in one seat being booked by two clients.
serializability. It was proven that checking for view serializa-Therefore, a database system must control the interaction
bility is an NP-complete problem (17). In practice, the conflictamong the concurrent transactions to ensure the overall con-
serializability is easier to implement in the database systemssistency of the database. The execution sequence of opera-
because the serialization order of a set of transactions can betions from a set of transactions is called a schedule (15,16). A
determined by their conflicting operations in a serializableschedule indicates the interleaved order in which the opera-
schedule.tions of transactions were executed. If the operations of trans-

The conflict serializability can be verified through a conflictactions are not interleaved (i.e., the executions of transactions
graph. The conflict graph among transactions is constructedare ordered one after another) in a schedule, the schedule is
as follows: for each transaction Ti, there is a node in the graphsaid to be serial. As we mentioned earlier, the serial execution
(we also name the node Ti). For any pair of conflicting opera-of a set of correct transactions preserves the consistency of
tions (oi, oj), where oi from Ti and oj from Tj, respectively, andthe database. Because serial execution does not support con-
oi comes before oj, add an arc from Ti to Tj in the conflictcurrency, the equivalent schedule has been developed and ap-
graph.plied for comparisons of a schedule with a serial schedule,

Examples 4 and 5 present schedules and their conflictsuch as view equivalence and conflict equivalence of sched-
ules. In general, two schedules are equivalent if they have graphs.
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Example 4. A nonserializable schedule is shown here. Its
conflict graph is shown in Fig. 3.

T1 T3

T2

Figure 4. Conflict graph 2 (without cycle).

Theorem 1. A schedule is conflict serializable if and only if
its conflict graph is acyclic: (15).

Intuitively, if a conflict graph is acyclic, the transactions of the
corresponding schedule can be topologically sorted such that
conflict operations are consistent with this order, and therefore
equivalent to a serial execution in this order. A cyclic graph im-
plies that no such an order exists. The schedule in Example 4

Schedule T1 T2 T3

read(A) read(A)
read(B) read(B)
A � A � 1 A � A � 1
read(C) read(C)
B � B � 2 B � B � 2
write(B) write(B)
C � C � 3 C � C � 3
write(C) write(C)
write(A) write(A)
read(B) read(B)
read(A) read(A)
A � A � 4 A � A � 4
read(C) read(C)
write(A) write(A)
C � C � 5 C � C � 5
write(C) write(C)
B � 6 � B B � 6 � B
write(B) write(B)

is not serializable because there is cycle in the conflict graph;
however, the schedule in Example 5 is serializable. The serial-Example 5. A serializable schedule is shown here. Its con-
ization order of a set of transactions can be determined by theirflict graph is shown in Fig. 4.
conflicting operations in a serializable schedule.

In order to produce conflict serializable schedules, many
concurrency control algorithms have been developed such as
two-phase locking, timestamp ordering, and optimistic con-
currency control.

The Common Concurrency Control Approaches

Maintaining consistent states in a database requires such
techniques as semantic integrity control, transaction con-
currency control, and recovery. Semantic integrity control en-
sures database consistency by rejecting update programs that
violate the integrity constraints of the database. This is done
by specifying the constraints during the database design.
Then the DBMS checks the consistency during transaction
executions. Transaction concurrency control monitors the con-
current executions of programs so that the interleaved
changes to data items still preserve the database consistency.
Recovery of a database system ensures that the system can
cope with various failures in the system and recover the data-

Schedule T1 T2 T3

read(A) read(A)
A � A � 1 A � A � 1
read(C) read(C)
write(A) write(A)
C � C � 5 C � C � 5
read(B) read(B)
write(C) write(C)
read(A) read(A)
read(C) read(C)
B � B � 2 B � B � 2
write(B) write(B)
C � 3 � C C � 3 � C
read(B) read(B)
write(C) write(C)
A � A � 4 A � A � 4
write(A) write(A)
B � 6 � B B � 6 � B
write(B) write(B)

base to a consistent state.
A number of concurrency control algorithms have been pro-The following theorem shows how to check the serializabil-

posed for the database management systems. The most fun-ity of a schedule.
damental algorithms are two-phase locking (18,19), time-
stamp ordering (20,21), optimistic concurrency control (22),
and serialization graph testing (23,24).

Two-phase locking (2PL) is one of the most popular con-
currency control algorithms based on the locking technique.
The main idea of locking is that each data item must be
locked before a transaction accesses it (i.e., if conflicting oper-
ations exist, only one of them can access the data at a time,
and the other must wait until the previous operation has been
completed and the lock has been released). A transaction may
involve accesses to many data items. The rule of 2PL states
that all locks of the data items needed by a transaction should
be acquired before a lock is released. In other words, a trans-

T1 T3

T2

action should not release a lock until it is certain that it will
not request any more locks. Thus, each transaction has twoFigure 3. Conflict graph 1 (with a cycle).
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phases: an expanding phase during which new locks on data Optimistic approaches are generally used in conjunction
with timestamps. A timestamp is assigned to a transaction atitems can be acquired but none can be released; and a shrink-

ing phase in which the transaction releases locks and no new the end of its read phase or before the validation phase. The
serialization order of transactions is then validated usinglocks are required.

The 2PL algorithm is a very secure way to ensure that the the timestamps.
In a serialization graph-based concurrency control protocol,order of any two transactions is compatible with the order of

their conflicting operations. More precisely, if oip � Ti pre- an on-line serialization graph (conflict graph) is explicitly
maintained. The serialization graph testing (SGT) schedulercedes ojq � Tj in the schedule and oip is in conflict with ojq,

then all other conflicting operations of Ti, Tj must have the maintains a serialization graph for the history that repre-
sents the execution it controls. When a SGT scheduler re-same order of precedence. The 2PL algorithms guarantee the

conflict serializability of a schedule for concurrent transac- ceives an operation oi of transaction Ti from the transaction
manager, it first adds a node for Ti in the serialization graphtions. However, 2PL algorithms may lead to deadlocks when

a set of transactions wait for each other in a circular way. For (SG). The scheduler then checks whether there exists a pre-
viously scheduled operation ok of transaction Tk conflictingexample, two transactions T1 and T2 both write data items a

and b. T1 holds a lock on a and waits for a lock on b, while with oi. If there is one, an arc from Tk to Ti is added to the
SG. The operations of transaction Ti can be executed as longT2 holds a lock on b and waits for a lock on a. In this case,

T1 and T2 will be waiting for each other, and a deadlock oc- as the graph is acyclic. Otherwise, the transaction, which
causes a cycle in the graph, is aborted. Because the acycliccurs. When a deadlock occurs, some transactions need to be

aborted to break the cycle. serialization graph guarantees the serializability of the execu-
tion, the SGT scheduler produces the correct schedules for theTimestamp ordering (TO) is used to manage the order of

the transactions by assigning timestamps to both transac- concurrent transactions. However, it is not necessarily recov-
erable and is much less cascadeless or strict (14) as definedtions and data items. Each transaction in the system is asso-

ciated with a unique timestamp, assigned at the start of the later.
A schedule S is said to be recoverable, if for every transac-transaction, which is used to determine the order of conflict-

ing operations between transactions. Each data item is associ- tion Ti that reads data items written by another transaction
ated with a read timestamp, which is the timestamp of the Tj in S, Ti can be committed only after Tj is committed. That
latest transaction which has read it, and a write timestamp, is, a recoverable schedule avoids the situation where a com-
which is the timestamp of the latest transaction which has mitted transaction reads the data items from an aborted
updated it. Conflicting operations must be executed in accor- transaction. A recoverable schedule may still cause cascading
dance with their corresponding transaction timestamps. A aborts, because it allows the transactions to read from uncom-
transaction will be aborted when it tries to read or write on a mitted transactions. For example, a transaction T2 reads a
data item whose timestamp is greater than that of the trans- data item x after x is updated by a transaction T1, which is
action. The serializable order of transactions is the order of still active in an execution. If T1 is aborted during the pro-
their timestamps. cessing, T2 must be aborted. Cascading aborts are unde-

Both 2PL and TO concurrency control algorithms are con- sirable.
sidered pessimistic approaches. The algorithms check every To avoid cascading abortion in a schedule S, every transac-
operation to determine whether the data item is available ac- tion should read only those values written by committed
cording to the locking or timestamp, even though the proba- transactions. Thus, a cascadeless schedule is also a recover-
bility of conflicts between transactions is very small. This able schedule.
check represents significant overhead during transaction exe- Because a cascadeless schedule allows transaction to write
cution, with the effect of slowing down the transaction pro- data from an uncommitted transaction, an undesirable situa-
cessing. tion may occur (14). For instance, consider the scenario of an

Optimistic concurrency control (OCC) (22) is another ap- execution
proach in which no check is done while the transaction is exe-
cuting. It has better performance if it is used in the environ- WT1

[x, 2]WT2
[x, 4],Abort(T1)Abort(T2)

ment where conflicts between transactions are rare. During
transaction execution, each transaction executes three phases

where two transactions T1 and T2 write the same data itemin its life time. The following three phases are used in the
x, with values 2 and 4, respectively, and both are abortedOCC protocol:
later. The value of the data item x is called a before image if
it will be replaced by a new value. The before image is saved

1. Read Phase. The values of the data items are read and
in the log. In this case, the before image of data item x for

stored in the local variables of the transaction. All modi-
transaction T2 is 2 written by an aborted transaction T1.fications on the database are performed on temporary

The term strict schedule was introduced in Ref. 14 to de-
local storage without updating the actual database.

scribe a very important property from a practical viewpoint.
2. Validation Phase. According to the mutually exclusivity A schedule of transactions is called strict, if the transactions

rules, a validation test is performed to determine read or write data items only from committed transactions.
whether the updates can be copied to the actual data- Strict schedules avoid cascading aborts and are recoverable.
base. They are conservative and offer less concurrency.

The concurrency control algorithms presented above such3. Write Phase. If the transaction succeeds in the valida-
tion phase, the actual updates are performed to the da- as 2PL, TO, and SGT do not necessarily produce strict sched-

ules by themselves.tabase; otherwise, the transaction is aborted.
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If a strict schedule using 2PL algorithm is required, the transactions. It is supposed that a log is accessible after the
failures occur. The log is stored in stable storage, which is thelocks being held by any transaction can be released only after

the transaction is committed. most resilient storage medium available in the system. Stable
storage is also called secondary storage. Typically, it is imple-A TO approach with a strict schedule will not allow a

transaction T to access the data items that have been updated mented by means of duplexed magnetic tapes or disks that
store duplicate copies of the data. The replicated stable stor-by a previous uncommitted transaction even if transaction T

holds a greater timestamp. age is always kept mutually consistent with the primary copy
of the disk or tape. The database is stored permanently onSerialization graph testing can produce a strict schedule in

such a way that each transaction cannot be committed until stable storage. The updates on a database by a transaction
are not directly written into the database immediately. Theit is a source node of the serialization graph. That is, a trans-

action T could not be involved in a cycle of the serializable operations of the transactions are implemented in the data-
base buffer located in main memory (also referred to as vola-testing graph if previous transactions which T reads or writes

from have all been committed. tile storage). It is only when the contents of the database
buffer have been flushed to stable storage that any update
operation can be regarded as durable.Recoverability of Transactions

It is essential that the log record all the updates on the
In addition to concurrency control, another important goal of database that have been carried out by the transactions in
transaction management is to provide a reliable and consis- the system before the contents of the database buffer have
tent database in the presence of various failures. Failures been written to database. This is the rule of write-ahead log.
may corrupt the consistency of the database because the exe- A log contains the information for each transaction as
cution of some transactions may be only partially completed follows:
in the database. In general, database systems are not failure-
free systems. A number of factors cause failures in a database

• transaction identifier;
system (9) such as:

• list of update operations performed by the transaction
(For each update operation, both the old value and new1. Transaction Abortions. The situation can be caused by
value of the data items are recorded.); andthe transaction itself, which is caused by some unsatis-

• status of the transaction: tentative, committed, orfactory conditions. Transaction abortion can also be
aborted.forced by the system. These kinds of failure do not dam-

age the information stored in memory, which is still
The log file records the required information for undoingavailable for recovery.

or redoing the transaction if a failure occurs. Because the up-2. System Crashes. The typical examples of this type of
dates were written to the log before flushing the databasefailure are system crashes or power failures. These fail-
buffer to the database, the recovery manager can surely pre-ures interrupt the execution of transactions, and the
serve the consistency of the database. If a failure occurs be-content of main memory is lost. In this case, the only
fore the commit point of a transaction is reached, the recoveryavailable accessible information is from a stable stor-
manager will abort the transaction by undoing the effect ofage, usually a disk.
any partial results that have been flushed into the database.

3. Media Failures. Failures of the secondary storage de- On the other hand, if a transaction has been committed but
vices that store the database are typical of media fail- the results have not been written into the database at the
ure. Because the content of stable storages has been time of failure, the recovery manager would have to redo the
lost, the system cannot be recovered by the system soft- transaction, using the information from the log, in order to
ware only. The common technique to prevent such unre- ensure transaction durability.
coverable failures is to replicate the information on sev-
eral disks.

DISTRIBUTED TRANSACTION PROCESSING
The first two types of failures are considered in the recov-

ery of transactions. Transactions represent the basic units of In many applications, both data and operations are often dis-
tributed. A database is considered distributed if a set of datarecovery in a database system. If the automicity and durabil-

ity of the execution of each transaction have been guaranteed that belongs logically to the same system is physically spread
over different sites interconnected by a computer network. Ain the presence of failures, the database is considered to be

consistent. site is a host computer and the network is a computer-to-com-
puter connection via the communication system. Even thoughTypically, the piece of software responsible for recovery of

transactions is called the recovery manager (RM). It is re- the software components which are typically necessary for
building a database management system are also the princi-quired to ensure that whenever a failure occurs, the database

is brought back to the consistent state it was in before the pal components for a distributed DBMS (DDBMS), some addi-
tional capacities must be provided for a distributed database,failure occurred. In other words, the recovery manager should

guarantee that updates of the database by the committed such as the mechanisms of distributed concurrency control
and recovery.transactions are permanent, in contrast to any partial effects

of uncompleted transactions that should be aborted. One of the major differences between a centralized and a
distributed database system lies in the transaction pro-The basic technique for implementing transactions in the

presence of failures is based on the use of logs. A log is a file cessing. In a distributed database system, a transaction
might involve data residing on multiple sites (called a globalthat records all operations on the database carried out by all
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transaction). A global transaction is executed on more than 1. Writers need to lock all n replicas; readers need to lock
one replica.one site. It consists of a set of subtransactions—each sub-

transaction involving data residing on one site. As in central- 2. Writers need to lock all m replicas (m � n/2); readers
ized databases, global transactions are required to preserve need to lock n � m � 1 replicas.
the ACID properties. These properties must be maintained 3. All updates are directed first to a primary copy replica
individually on each site and also globally. That is, the con- (one copy has been selected as the primary copy for up-
current global transactions must be serializable and recover- dates first and then the updates will be propagated to
able in the distributed database system. Consequently, each other copies).
subtransaction of a global transaction must be either per-
formed in its entirety or not performed at all. Any one of these rules will guarantee consistency among the

duplicates.
Serializability in a Distributed Database

Atomicity of Distributed Transactions
Global transactions perform operations at several sites in a

In a centralized system, transactions can either be processeddistributed database system (DDBS). It is well understood
successfully or aborted with no effects left on the database inthat the maintenance of the consistency of each single data-
the case of failures. In a distributed system, however, addi-base does not guarantee the consistency of the entire distrib-
tional types of failure may happen.uted database. It follows, for example, from the fact that seri-

For example, network failures or communication failuresalizability of executions of the subtransactions on each single
may cause network partition, and the messages sent from onesite is only a necessary (but not sufficient) condition for the
site may not reach the destination site. If there is a partialserializability of the global transactions. In order to ensure
execution of a global transaction at a partitioned site in athe serializability of distributed transactions, a condition
network, it would not be easy to implement the atomicity ofstronger than the serializability of single schedule for individ-
a distributed transaction. To achieve an atomic commitmentual sites is required.
of a global transaction, it must be ensured that all its sub-In the case of distributed databases, it is relatively easy
transactions at different sites are capable and available toto formulate a general requirement for correctness of global
commit. Thus an agreement protocol has to be used amongtransactions. The behavior of a DDBS is the same as a cen-
the distributed sites. The most popular atomic commitmenttralized system but with distributed resources. The execution
protocol is the two-phase commitment (2PC) protocol.of the distributed transactions is correct if their schedule is

In the basic 2PC, there is a coordinator at the originatingserializable in the whole system. The equivalent conditions
site of a global transaction. The participating sites that exe-

are: cute the subtransactions must commit or abort the transac-
tion unanimously. The coordinator is responsible for making

• Each local schedule is serializable; the final decision to terminate each subtransaction. The first
phase of 2PC is to request from all participants the informa-• The subtransactions of a global transaction must have a
tion on the execution state of subtransactions. The partici-compatible serializable order at all participating sites.
pants report to the coordinator, which collects the answers
and makes the decision. In the second phase, that decision is

The last condition means that for any two global transac- sent to all participants. In detail, the 2PC protocol proceeds
tions Gi and Gj, their subtransactions must be scheduled in as follows for a global transaction Ti (9):
the same order at all the sites on which these subtransactions
have conflicting operations. Precisely, if Gik and Gjk belongs Two-Phase Commit Protocol
to Gi and Gj, respectively, and the local serializable order is

Phase 1: Obtaining a Decision
Gik precedes Gjk at site k, then all the subtransactions of Gi

1. Coordinator asks all participants to prepare to com-must precede the subtransactions of Gj at all sites where they
mit transaction Ti:are in conflict.
a. Add [prepare Ti] record to the logVarious concurrency control algorithms such as 2PL and
b. Send [prepare Ti] message to each participantTO have been extended to distributed database systems. Be-

2. When a participant receives [prepare Ti] message itcause the transaction management in a distributed database
determines if it can commit the transaction:system is implemented by a number of identical local transac-

tion managers, the local transaction managers cooperate with a. If Ti has failed locally, respond with [abort Ti]
each other for the synchronization of global transactions. If b. If Ti can be committed, send [ready Ti] message to
the timestamp ordering technique is used, a global timestamp the coordinator
is assigned to each subtransaction, and the order of time- 3. Coordinator collects responses:
stamps is used as the serialization order of global transac- a. All respond ‘‘ready’’; decision is commit
tions. If a two-phase locking algorithm is used in the distrib-

b. At least one response is ‘‘abort’’; decision is abortuted database system, the locks of a global transaction cannot
c. At least one fails to respond within time-out pe-be released at all local sites until all the required locks are

riod, decision is abortgranted. In distributed systems, the data item might be repli-
Phase 2: Recording the Decision in the Databasecated. The updates to replicas must be atomic (i.e., the repli-

cas must be consistent at different sites). The following rules 1. Coordinator adds a decision record ([abort Ti] or
[commit Ti]) in its logmay be used for locking with n replicas:
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2. Coordinator sends a message to each participant in- ADVANCED TRANSACTION PROCESSING
forming it of the decision (commit or abort)

In traditional database applications such as banking and air-3. Participant takes appropriate action locally and re-
line reservation systems, transactions are short and noncoop-plies ‘‘done’’ to the coordinator
erative and usually can be finished in minutes. The serializa-
bility is a well-accepted correctness criterion for these

The first phase is that the coordinator initiates the protocol applications. Transaction processing in advanced applications
by sending a ‘‘prepare-to-commit’’ request to all participating such as cooperative work will have different requirements,
sites. The ‘‘prepare’’ state is recorded in the log, and the coor- need different correctness criteria, and require different sys-
dinator is waiting for the answers. A participant will reply tems supports to coordinate the work of multiple designers/
with a ‘‘ready-to-commit’’ message and record the ‘‘ready’’ users and to maintain the consistency. Transactions are often
state at the local site if it has finished the operations of the called advanced transactions if they need nonserializable cor-
subtransaction successfully. Otherwise, an ‘‘abort’’ message rectness criteria. Many advanced transaction models have
will be sent to the coordinator, and the subtransaction will be been discussed in the literature (2–5). In this section, we will
rolled back accordingly. briefly examine some advanced transaction models and then

The second phase is that the coordinator decides whether present a general advanced transaction model and its correct-
to commit or abort the transaction based on the answers from ness criterion.
the participants. If all sites answered ‘‘ready-to-commit,’’ then
the global transaction is to be committed. The final ‘‘decision-

Advanced Transaction Modelto-commit’’ is issued to all participants. If any site replies
with an ‘‘abort’’ message to the coordinator, the global trans- In addition to advanced transactions, we can also see other
action must be aborted at all the sites. The final ‘‘decision-to- similar terms such as nontraditional transactions, long trans-
abort’’ is sent to all the participants who voted the ‘‘ready’’ actions, cooperative transactions, and interactive transac-
message. The global transaction information can be removed tions. We will briefly list some work on advanced transaction
from the log when the coordinator has received the ‘‘com- processing or cooperative transactions processing in advanced
pleted’’ message from all the participants. database transaction models (2,3), groupware (4,26,27), and

The basic idea of 2PC is to make an agreement among all workflow systems (5,28).
the participants with respect to committing or aborting all the
subtransactions. The atomic property of global transaction is

• Advanced Database Transaction Models (3)
then preserved in a distributed environment.

1. Saga (29). A transaction in Saga is a long-lived trans-The 2PC is subject to the blocking problem in the presence
action that consists of a set of relatively independentof site or communication failures. For example, suppose that
steps or subtransactions, T1, T2, . . ., Tn. Associateda failure occurs after a site has reported ‘‘ready to commit’’
with each subtransaction Ti is a compensating trans-for a transaction, and a global commitment message has not
action Ci, which will undo the effect of Ti. Saga isyet reached this site. This site would not be able to decide
based on the compensation concept. Saga relaxes thewhether the transaction should be committed or aborted after
property of isolation by allowing a Saga transaction tothe site is recovered from the failure. A three-phase commit-
reveal its partial results to other transactions beforement (3PC) protocol (14) has been introduced to avoid the
it completes. Because a Saga transaction can inter-blocking problem. But 3PC is expensive in both time and com-
leave its subtransactions with subtransactions ofmunication cost.
other sagas in any order, consistency or serializability
is compromised. Saga preserves atomicity and dura-

Transaction Processing in Heterogeneous Systems bility of traditional transaction by using forward and
backward recoveries.Traditional distributed database systems are often homoge-

2. Cooperative Transaction Hierarchy (30). This modelneous because local database systems are the same, using the
supports cooperative applications like computer aidedsame data models, the same languages, and the same trans-
design (CAD). It structures a cooperative applicationaction managements. However, in the real world, data are
as a rooted tree called a cooperative transaction hier-often partitioned across multiple database systems, file sys-
archy. The external nodes represent the transactionstems, and applications, all of which may run on different ma-
associated with the individual designers. An internalchines. Users may run transactions to access several of these
node is called a transaction group. The term coopera-systems as single global transactions. A special case of such
tive transaction refers to transactions with the samesystems are multidatabase systems or federated database
parent in the transaction tree. Cooperative transac-systems.
tions need not to be serializable. Isolation is not re-Because the 2PC protocol is essential to support the ato-
quired. Users will define correctness by a set of finitemicity of global transactions and, at the same time, the local
automata to specify the interaction rules between co-systems may not provide such support, layers of software are
operative transactions.needed to coordinate and the execution of global transactions

(25) for transactional properties of concurrency and recovery. 3. Cooperative SEE Transactions (31). This model sup-
A TP monitor is a piece of software that connects multiple ports cooperative work in software engineering envi-
clients to multiple servers to access multiple databases/data ronments (SEEs). It uses nested active transactions
resources as shown in Fig. 1. Further discussions on TP moni- with user defined correctness. ACID properties are

not supported.tors can be found in Ref. 1.
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4. DOM Transaction Model for distributed object man- value depending on the time and interaction with
other transactions.agement (32). This model uses open and closed nested

transactions and compensating transactions to undo 3. Similarly, for each y, there might be more than one
the committed transactions. It also use contingency write(y), written as write1(y), write2(y), . . ., each of
transactions to continue the required work. It does not which will produce an individual version of data item
support ACID properties. y.

5. Others (3). Open nested transactions, ConTract, Flex,
The first part shows that an advanced transaction is aS, and multilevel transactions models use compensat-

cooperative transaction group. If the size of the group is one,ing transactions and contingency transactions. The
it will become a single transaction. The property 1 is the sameACID properties are compromised. The polytransac-
as that in traditional transactions. The second and third prop-tion model uses user defined correctness. Tool Kit also
erties indicate some cooperative features. The first read(x)uses user defined correctness, and contingency trans-
may read other transaction’s committed or uncommitted dataactions to achieve the consistency.
depending on the concurrency control employed. After the

• Groupware (2,26,33). Most groupware systems synchro- first read operation on x, the data item might be updated by
nize cooperative access to shared data in a more or less another transaction or another cooperative transaction; then
ad-hoc manner. Groupware systems involve multiple it can read the new value in the next read(x). Similarly, after
concurrent users or several team members at work on the first write operation on x, because of the cooperative fea-
the same task. The members, or users, are often in differ- ture, a transaction may read some new data from other trans-
ent locations (cities or even countries). Each team mem- actions and then issue another write(x) to incorporate this to
ber starts up a cooperative transaction, each cooperative the current processing. The later write(x) can undo the previ-
transaction should be able to see the intermediate result ous write or do a further update to show the new semantics.
of other cooperative transactions, and these cooperative To further justify the second and third properties of the
transactions jointly form a cooperative transaction group. definition, we discuss their compatibilities with interactive
When they read or update the uncommitted data from and noninteractive transactions in advanced transaction ap-
other cooperative transactions, nonserializable synchro- plications.
nization and concurrency mechanisms are required to
maintain consistency. A cooperative editing system is an • Interactive transactions. A cooperative transaction can
example. be formed with great flexibility because a user can dy-

namically issue an operation depending on the most cur-• Workflow applications (5). Workflow is used to analyze
rent information. If a data item has been updated re-and control complicated business processes. A large ap-
cently after the first read, the cooperative transactionplication often consists of a collection of tasks. Each task
may wish to read the data again because of the coopera-can be viewed as a cooperative transaction processed by
tive feature. In order to incorporate the recent changesone user or designer, and these tasks are partially or-
in to its own transaction, it can perform additional opera-dered by control and data flow dependencies. The work-
tions or compensate for the previous operations. That isflow supports the task coordination specified in advance
also the flexibility of interactive work.through the control flow. Serializability is not preserved

• Noninteractive transactions. In some database transac-either.
tion models, the transactions are not as interactive as
those on-line transactions from groupwares and transac-These applications have some common properties: (1) users
tion workflow applications (3). To maintain system con-are often distributed; (2) they conduct some cooperative work
sistency and meet the application requirements, all ofin an interactive fashion; and (3) this interactive cooperative
them use compensating transactions, contingency trans-work may take a long time. These applications have the fol-
actions, or triggers, where a compensating transaction islowing special consistency requirements:
a transaction undoing the effect of a previous transac-
tion; a contingency transaction is a transaction to con-

1. A transaction may read intermediate results produced tinue or extend a previous transaction; and the trigger is
by other transactions. a mechanism to invoke another transaction (if the trigger

2. The consistency between individual and group needs to condition is true) to restore the consistency. A compen-
be maintained. sating transaction, a contingency transaction, or a trig-

ger can be viewed as an extension of a transaction that
violates the consistency requirements during the execu-Based on this summary, we give the following definition.
tion, and the extended part will have the read and write
operations on some data items in common. They are an-Definition 5. An advanced transaction (cooperative transac-
other type of interaction. These interactions need to betion group) is defined as a set (group) of cooperative transac-
programmed in advance; therefore, they are not as flexi-tions T1, T2, . . ., Tn, with the following properties:
ble as interactive transactions. But the interactive fea-
tures are still required even for these noninteractive da-

1. Each cooperative transaction is a sequence (or partial tabase transaction applications.
order) of read(x) and write(y) operations.

2. For the same data item, there might be more than one Similar to distributed database transactions, the advanced
read(x), written as read1(x), read2(x), . . ., in a coopera- transaction definition could be extended to a distributed ad-

vanced transaction as follows:tive transaction, and each read(x) will get a different
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Definition 6. A distributed advanced transaction (distrib- Definition 8. A schedule is f-conflict serializable if and only
if its f-conflict graph is acyclic.uted cooperative transaction group) is defined as a set (group)

of cooperative transactions T1, T2, . . ., Tn, with the follow-
The f-conflict serialization order of a set of transactions caning properties:
be determined by their f-conflicting operations in an f-conflict
serializable schedule. From the definitions, we can see the re-1. Each transaction Ti consists of a set of subtransactions
lationship between conflict serializability and f-conflict serial-Tj

i at site j, j � [1..m], m is the number of sites in a
izability.distributed system. Some Tj

i might be empty if Ti has no
subtransaction at site j.

Theorem 2. If a schedule is conflict serializable, it is also f-
2. Each subtransaction is a sequence (or partial order) of conflict serializable; the reverse is not true.

read(x) and write(y) operations.
3. For the same data item x, there might be more than The conflict serializability is a special case of f-conflict seriali-

one read(x), denoted as read1(x), read2(x), . . ., in a coop- zability in traditional transaction processing.
erative transaction, each read(x) will get a different

Definition 9. A schedule of distributed advanced transac-value depending on the time and interaction with other
tions is f-conflict serializable if and only iftransactions.

4. Similarly, for each y, there might be more than one
1. the schedule of subtransactions at each site is f-conflictwrite(y), denoted as write1(y), write2(y), . . ., each of

serializable, andwhich will produce an individual version of data item
2. the f-conflict serialization order at all sites are they.

same.

Just as the serializability theory plays an important role in
Advanced transactions or cooperative transactions maythe traditional transaction model in developing concurrency

have different application-dependent requirements and re-control and recovery algorithms, a general correctness theory
quire different system supports to coordinate the work of mul-for advanced transactions is also required to guide transac-
tiple users and to maintain the consistency. As a result, dif-tion management for advanced applications. In the next sub-
ferent synchronization, coordination, and control mechanismssection, we will present such a correctness criterion.
within a cooperative transaction group are developed. The f-
conflict serializability in conjunction with application-depen-

f-Conflict Serializability dent semantics could be used for designing and testing ad-
vanced transaction processing approaches. The application-As in the traditional transactions, we can assume that for
dependent requirements can be reflected in the detailedwrite operations on x, there must be a read operation before
transaction structures. For example, when there are severalthe first write in a cooperative transaction. It is natural to
write operations on the same x, the later write might be toread the data first before the update, [i.e., one’s update may
undo and then redo the operation (or perform a different oper-depend on the read value or one may use a read operation to
ation). The undo operations might be reversing operations orcopy the data into the local memory, then update the data
compensating operations, and the redo operations could beand write it back (when the transaction commits)].
contingency operations or new operations that may need toIn advanced transaction applications, cooperative transac-
keep the intention (user intention) of the original write (6,27),tions could read and write a data item more than once, which
or to incorporate the new semantics.is different from traditional transactions. The reason for read-

In a recent work, we have verified a cooperative editinging a data item more than once is to know the recent result
system, REDUCE, according to this theory, and have shownand therefore make the current transaction more accurate.
that the schedules from this system is f-conflict serializableHowever, this will violate the serializability, because a coop-
(34).erative transaction may read a data item before another

transaction starts and also read the data updated by the same
Mobile Transaction Processingtransaction. If so, the schedule between these two transac-

tions will not be serializable. However, from the semantic In both centralized and distributed database systems, data
point of view, the most important read or write on the same and machines have fixed locations. Because of the popularity
data item will be the last read or write. If we give high prior- of laptop or notebook computers and the development of rela-
ity to the last read or write conflicts in developing the correct- tively low-cost wireless digital communication based on the
ness criteria, we could have an f-conflict (final conflict) graph, wireless local network, mobile computing began to emerge in
and based on this we will present an f-conflict serializability many applications. The mobile computing environment con-
theorem as a general correctness criterion for advanced trans- sists of mobile computers, referred as mobile hosts, and a
action processing. wired network of computers, some of which are mobile sup-

port stations through which mobile hosts can communicate
with the wired network. Each mobile support station man-Definition 7. The f-conflict graph among transactions is con-

structed as follows. For each transaction Ti, there is a node in ages those mobile hosts within its cell—the geographical area
it covers. Figure 5 shows a wired and wireless connected net-the graph (we also name the node Ti). For any pair of final

conflicting operations (oi, oj), where oi from Ti and oj from Tj, working environment.
Because mobile hosts may move between cells, the hand-respectively, and oi comes earlier than oj, add an arc from Ti

to Tj in the conflict graph. off of control from one cell to another is necessary. Wireless
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Figure 5. Wired and wireless net-
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computing creates a situation where machines and data no sists of a set of subtransactions that are executed concur-
rently at multiple sites and there is one coordinator tolonger have fixed locations and network addresses. A conse-

quence is that the route between a pair of hosts may change coordinate the execution and commitment of the subtransac-
tions. A mobile transaction is another kind of distributedover time if one of the two hosts is a mobile computer.

Because the wireless communication may be charged for transaction where some parts of the computation are exe-
cuted on the mobile host and others on fixed hosts. The entireon the basis of connection time, and the battery is the limited

power resource for mobile computers, most mobile computers transaction can be submitted in a single request from the mo-
bile unit, or the operations of a transaction are submitted inwill be disconnected for substantial periods. During the dis-

connection, mobile hosts may remain in operation. The users multiple requests, possibly to different support stations in dif-
ferent cells. The former submission involves a single coordina-of the mobile host may issue query or update transactions on

the data that reside locally. This may cause some problems tor for all the operations of the transaction, whereas the latter
may involve multiple coordinators. For example, after submit-related to recoverability and consistency. In wireless distrib-

uted systems, partitioning via disconnection is a normal mode ting some operations (and getting partial results back), the
mobile host might need to submit the remaining operationsof operation, whereas in wired distributed systems, the parti-

tioning is considered a failure. Because the partitioning is to another cell because it has moved to a new cell. The execu-
tion of the mobile transaction is not fully coordinated by anormal, it is necessary to allow data access to proceed, despite

partitioning. But this will cause system inconsistency when single coordinator because it depends on the movement of the
mobile unit, to some extent. In this case, the interactive exe-there are concurrent updates on replicas of the same data

from different computers (mobile and nonmobile). cution of transactions must be supported. Similar to other ad-
vanced transactions, a mobile transaction tends to be longMobile computing systems can be viewed as an extension

of distributed systems (i.e., a dynamic type of distributed sys- lived because of the high latency of wireless communication
and long disconnection time. A mobile transaction tends to betem where links in the network change dynamically). These

intermittent links represent the connection between mobile error-prone because mobile hosts are more prone to accidents
than fixed hosts. Mobile transactions may access a distributedunits and the base stations (35). Many problems in distrib-

uted transaction processing are inherited by mobile transac- and heterogeneous system because of the mobility of the
transaction (36).tion systems. Mobile transactions also introduce some new

problems, such as location awareness and frequent discon- Because mobile units are often disconnected from the rest
of the network while still in operation, it will be difficult tonection from servers. In wired distributed database systems,

location transparency is an important feature of transaction maintain consistency under disconnection. For example, a
data item is cached in the mobile unit and has been updatedsystems. However, mobile applications may be location de-

pendent (i.e., the same query may have different results when only by a mobile host, the update result can be propogated
to other sites to achieve consistency when the mobile hostssubmitted from different places). Failures occur much more

frequently in mobile computing because of the frequent reconnects. Whereas in some other cases, inconsistency may
arise:switching off and on of mobile units and the frequent handoff

when mobile units move across the boundary of cells. This
• If the data item is cached in a mobile computer as a readmakes it difficult to preserve atomicity of mobile transactions.

only copy and it is updated by the other computer whileFailure handling and recovery is a new challenge in mobile
the mobile computer is disconnected, the cached data willsystems.
become inconsistent or out of date.The transaction execution and commitment model in the

mobile environment is also different from traditional distrib- • If updates can occur at the mobile computer and else-
where, inconsistencies might occur.uted transactions. A traditional distributed transaction con-
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To simplify the processing of read-only transactions, one research topics on this area as well as a comprehensive list of
references on advanced transaction processing.could use a version vector, storing several versions of the

data, and then read the consistent version. But this still does
not solve the most difficult concurrent update problems. ACKNOWLEDGMENT
These problems generated in mobile computing are very simi-
lar to the problems in advanced transaction processing/coop- We thank Anne Fuller for her comments and review on an
erative transaction processing discussed earlier. earlier version of this paper.
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