
TIME-SHARING SYSTEMS 245

TIME-SHARING SYSTEMS

A time-sharing system is a computer operating system that
permits multiple programs to appear to run simultaneously.
Time-sharing systems are also called multiprogrammed or
multitasking systems. The programs are often called tasks or
processes; a process is more formally defined as the active
execution state of a program. In what follows, we first step
through the fundamental requirements and workings of a
time-sharing system. These requirements reveal time-sharing
systems to be primarily resource-sharing systems, where re-
sources are the physical components of the machine: disk,
central processing unit (CPU), memory, and so on. We then
show how a time-sharing system manages, or schedules, the
resources to improve system throughput and efficiency. Sev-
eral state-of-the-art scheduling algorithms are described, and

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



246 TIME-SHARING SYSTEMS

we conclude with a review of a recently proposed scheduling cess. It is important to pick a good timeslice value: too short
a quantum will lead to many context switches, which involvealgorithm still in the research stage.

The first computer systems did not have time-sharing the overhead of saving and restoring process state; too long a
quantum will reduce the inefficiency due to context switchingcapabilities; in fact, they did not even have operating systems.

In these early systems, each program was loaded from punch but will make the system appear sluggish and slow to re-
spond.cards or disk and would run to completion. The next program

was then loaded and run, and so on. This one-at-a-time type Figure 1 illustrates how time-sharing can both reduce re-
sponse time and increase resource utilization. Figure 1(a)of scheduling is called a batch system. Early programs were

also difficult to code because each program was responsible shows the execution timeline of three tasks: process 1 is CPU
bound, which means it spends all its time computing; processfor doing its own input and output (I/O). I/O device program-

ming is tedious and error-prone, and the basic functionality 2 does some computing and some disk I/O; and process 3 is
I/O bound, since it spends most of its time waiting for net-is similar across many programs. The first operating system

was born when programmers decided to write a single set of work I/O to complete. Clearly, using batch or nonpreemptive
scheduling will not yield maximum CPU utilization for thisI/O handlers and place them in memory where all programs

could access them. workload mix, since processes 2 and 3 spend significant
amounts of time waiting for other resources to service theirEarly batch systems were soon found to be inefficient be-

cause of the significant time wasted between when one pro- requests. Figure 1(b) shows the execution timeline when the
three jobs are run on a time-sharing system. The timeline isgram finished and the next one could be started. The next

step in operating system development was to make it autono- structured so that it shows the utilization of the three differ-
ent resources (the CPU, disk, and network) over time. Whenmous, so that the system could automatically load the next
process 3 is started first, it computes for only a short timeprogram as the current one finished. This helped, and system
before it initiates a network request. At this point, the op-developers soon turned their attention to reducing response
erating system dispatches the operation to the network de-time, the time each user has to wait from when a job is sub-
vice, and then context switches to process 2. Now, both themitted until it completes. The first systems used simple first
CPU and network are busy, and work is accomplished on be-come first served policies, which are straight forward and fair,
half of both processes. When process 2 initiates the disk re-but it was seen that such policies as shortest job first could
quest, the operating system starts the operation and contextreduce the average response time, albeit at the expense of
switches to process 1. Figure 1(b) shows that at this time, allhigher variance in completion time (especially for long run-
three resources are busy, each on behalf of a different process.ning jobs).
Since process 1 is compute bound, it expires its quantum andThe breakthrough that formed the basis for today’s time-
returns control to the operating system. By this time, bothsharing systems was a technique called preemptive schedul-
the network and disk operations have completed, so both pro-ing. The problem with nonpreemptive scheduling is that once
cess 2 and process 3 are ready for execution.control is given to a program, it monopolizes the system until

The key point of the figure is that the CPU is always keptit is finished or voluntarily relinquishes control. A preemptive
busy, and that overall utilization is increased by keeping mul-scheduler divides time into equal sized timeslices, or quan-
tiple resources busy simultaneously. As a result, average re-tums. The scheduler gives control to a program (i.e., dis-
sponse time is reduced because the time to complete all threepatches the process) and sets a timer to interrupt the system
jobs is less than if nonpreemptive scheduling were used.after one quantum. When the quantum expires, the operating

system regains control as a result of the timer interrupt. The
system can now save the state of the interrupted program RESOURCE MANAGEMENT
and then reload and restart a different program. We say the
currently executing process is preempted by the quantum ex- We have seen that one of the primary goals of a time-sharing

system is to achieve low response times and high throughputpiry, and the system switches context to the next ready pro-

Figure 1. (a) The execution timeline of
three processes: process 1 spends all its
time computing; process 2 computes for a
while, then calls the operating system to
do some disk I/O; process 3 spends most
of its time doing network I/O. (b) Re-
source utilization of the CPU (top), disk
(center), and network (bottom) over time.
The timeline assumes a time-sharing sys-
tem schedules the three processes of part
(a) in round-robin order.

� �� �CPU

Net I/O Net I/O Net I/O

Disk I/O Disk I/O

Time

(b)

(a)

Process 1-CPU bound

Process 2 Operating system

Process 3-I/O bound

Disk

Net

�� ���



TIME-SHARING SYSTEMS 247

when multiple programs are simultaneously active. This goal tive priority of a process is Peff � Pbase � Pcpu. Processes can
never have a higher priority than their base component, butis accomplished primarily through efficient management of

the physical resources of the computer. When multiple pro- their dynamic component is updated every timeslice to reflect
their CPU usage pattern.grams are active concurrently, they may all have simultane-

ous demands on the physical resource. This means that the Processes in a particular run queue are scheduled in
round-robin, first in, first out (FIFO) order, and processes inresources must be shared between the processes, which in

turn means that accesses to the resources must be managed a lower priority run queue are only dispatched for execution
if no higher priority processes are ready. Every time a processor scheduled in some way. In Fig. 1, we saw that the CPU

resource was shared between the processes using what ap- expires its quantum, it moves to the next lowest run queue
until it reaches the last, or lowest priority, run queue. Pro-peared to be a round-robin protocol. Of course, real schedulers

are much more complex, and there are other resources like cesses in this run queue are typically long running and heav-
ily CPU bound because of the nature of the multiple levelsmemory and disk that must be taken into account as well.

A scheduling algorithm has several objectives: it must be of queues.
The feedback part of the algorithm allows processes tofair; it should minimize response times; it should maximize

utilization; and it should have low overhead. Meeting all move back up the queue levels as the process dynamics
change. To see how the feedback works, we must look closerthese objectives simultaneously is a challenging task indeed.

In this section, we show typical resource management tech- at how the dynamic priority is set. In a multilevel feedback
queuing system, quantums are actually multiple timeslices.niques for three classes of resources: CPU, memory, and disk.

Few operating systems schedule resources at the physical Each time the clock ticks (usually about once every 10 ms),
all the dynamic priorities are adjusted. The dynamic prioritylevel directly. Instead, they abstract the properties of the re-

source into a data structure which is used for management of the actively running process is degraded to reflect that it
has consumed more CPU time, and the dynamic priority ofpurposes. In particular, processes are the logical abstraction

of a CPU; virtual memory is used to abstract physical mem- all the waiting processes is increased to reflect that they are
now more deserving of a chance to run. The dynamic priorityory, and files are the abstract representation of a disk. These

abstractions are important because they give the operating of these other processes is usually increased logarithmically
as Pcpu � Pcpu/2, so that the longer a process waits to run, thesystem independence from the details of the physical devices,

which makes the system more portable to different architec- closer it gets to its base priority. This property allows pro-
cesses to move back up the levels of run queues.tures and more flexible in the face of differing device parame-

ters. For our purposes, the job of the scheduler is to map ab- Multilevel feedback queues have the desirable tendency of
favoring I/O bound or interactive processes, while still pre-stractions back to their physical counterpart in a way that

meets the goals of the system. Thus, processes are mapped to venting CPU bound jobs from starving. Consider again the
three processes of Fig. 1(a). Process 1 is CPU bound and willexecution timeslices, virtual memory is mapped to real mem-

ory pages, and files are mapped to disk blocks. In what fol- quickly move to the lower queue levels as it continually ex-
pires its quantum. Process 3 is I/O bound, and as a result, itslows, we shall see how this mapping is achieved.
dynamic priority is degraded only slightly before it yields the
CPU to do I/O. As the process waits for the I/O to complete,Processor Scheduling
its dynamic priority is increased so that it will likely be sched-

Every runnable thread of execution is represented by a pro- uled immediately once it is ready. The rationale here is that
cess in the operating system. Each process has a process de- it makes sense to favor I/O bound jobs because there is a high
scriptor that holds the state of the process, including (among probability that they will soon yield the processor to do more
other things) its priority, whether it is waiting for I/O or not, I/O. Process 2 is intermediate in its CPU usage relative to the
and its saved state (e.g., its register set) if it is inactive for other two jobs, and so will likely reside in the middle queue
some reason. Those processes that are ready to run are placed levels. Process 2 will be favored when Process 3 yields the
on a ready queue, which is a list of process descriptors usually CPU unless the CPU bound process has waited long enough
kept sorted in priority order. The currently active process, the for its dynamic priority to decay to a higher effective priority.
one actually using the CPU, is simply the process at the head Multilevel feedback queues do require some tuning in the
of the ready queue. The CPU is never running without some way that time-slices are chosen and in the way that dynamic
process attached to it—even an idle system is actively run- priorities are decayed. If the timeslice or decay factor is too
ning the idle process, which is typically the lowest priority slow, the system will not be responsive to changes in work-
task in the system. load; if the timeslice is too short, then context switch over-

The scheduler comes into play whenever a decision must head increases; and if the decay is too fast, then the differen-
be made about which process is to be run next. Scheduling tiation between CPU utilizations is lost. Still, the strengths
decisions must be made in several situations: the quantum of of this scheduling policy make it one of the most popular in
the currently active process expires, a process which was not modern time-sharing systems.
runnable because it was waiting for an external event be-
comes runnable, or a new process is created.

Memory Management
We will describe a process scheduling algorithm called

multilevel feedback queuing, which is by far the most com- To run, a program must have the code it is actively executing
and the data it is actively accessing resident in memory.mon algorithm in use today (1). The algorithm employs multi-

ple run-queues, where each queue holds processes that fall in When multiple programs are running simultaneously, mem-
ory quickly becomes a scarce resource that must be carefullya particular priority range. The process priorities are split

into two fields: a fixed base component (Pbase) and a dynami- managed. Early time-sharing systems used a technique called
swapping, which loads and unloads the entire memory imagecally changing component (Pcpu). Thus, at any time the effec-



248 TIME-SHARING SYSTEMS

of a program from disk on each context switch. Although each virtual address is referenced, the page tables are
searched to find the mapping; if none exists, a free page ofswapping may be appropriate for nonpreemptive batch sys-

tems, the relatively high latency of disk accesses has the ef- physical memory is allocated to hold the data, and the trans-
lation entry is entered into the page tables. This is called afect of making a context switch very expensive. Devoting all

of the physical memory to a single program is simple to imple- page miss and usually results in the data for the correspond-
ing virtual page being brought in, on demand, from disk. Oncement but has the disadvantage of being slow and of limiting

the size of the program to the size of real memory. the mapping is established, future references to the virtual
page can be translated to their physical counterpart. BecauseIn the 1980s, Denning (1) developed the philosophy of

working sets, which recognize that a running program only each reference to every virtual address must be translated,
most systems keep a fast Translation Lookaside Buffer thatactively accesses a subset of its total code and data space at

any given time. For example, a program loop that inverts a caches recently accessed translation entries.
With respect to resource management, the physical mem-matrix will spend a significant period of time accessing the

instructions that form the loop and the elements of the array. ory pages are usually managed as a cache of disk blocks. Be-
cause of the properties of spatial and temporal locality, a re-The loop and the matrix form the working set of the program

while the algorithm is executed. We say the fragment exhibits cently referenced page is likely to be referenced again in the
near future. Thus, if all the real memory pages are in use anda high degree of both spatial and temporal locality. Spatial

locality expresses the probability that memory near a particu- a page miss requires that a new one be allocated, many sys-
tems pick the least recently used (LRU) physical page as thelar datum will be accessed again in the near future. In this

example, the next instruction in the loop or the next element victim to be ejected. This is known as an approximate LRU
replacement policy (4). As with overlays, each active programof the array are likely to be accessed. Temporal locality ex-

presses the probability that the same datum will be accessed only requires the pages that form its working set to be resi-
dent in memory. In practice, a typical system can comfortablyagain in the near future. In the example, the instructions of

the loop are accessed repeatedly over time. Denning realized accommodate the working sets of several programs without
excessive paging. Unlike overlays, hardware support hasthat only the working set of a program needs to be resident

in memory for the program to run efficiently. Of course, a made virtual memory transparent to the programmer and
provides access protection, so that programs cannot modifyprogram’s working set will change over time, but at any par-

ticular instance, the size of the working set is likely to be real memory unless the translation entries explicitly permit
it. These features can be used to manage memory even moremuch smaller than the entire program.

Working sets were first exploited in a memory manage- efficiently. For example, shared libraries allow different vir-
tual address spaces to map to common physical pages, thusment technique called overlays. This technique divides mem-

ory into chunks that can hold either code or data, so that each reducing overall memory requirements.
overlay holds some subset of the program’s total storage. At
run time, only the overlays that form the working set need to Disk Scheduling
be resident in memory. Overlays allow a time-sharing system

Because disks (or CDs) have moving parts, the latency to ac-to have parts of multiple programs simultaneously resident,
cess data can be very high. To access a random block of datawhich reduces context switch overhead. The overlays can be
on one of the these devices, the arm must first be positionedswapped in and out as the working sets of the currently active
over the correct track. This is called a seek, and can be sev-programs change. Also, the total space requirement of a pro-
eral milliseconds. Once the arm is positioned, the disk con-gram can be larger than the size of physical memory, pro-
troller must wait until the block passes under the read/writevided the overlays that form its largest working set can still
head. This waiting time is called the rotational latency and isreside in memory. The difficulty with overlays is that they are
determined by how fast the disk is spinning. Finally, thetypically not transparent to the programmer, who may spend
block is transferred to/from memory, but this transfer rate ismany tedious hours explicitly placing subroutines and data
also limited by the speed at which the disk spins.onto different overlays so that the program runs efficiently.

Classically, two orthogonal approaches have been used toMost modern time-sharing systems use a technique called
reduce latency and improve throughput. The first approach isdemand paged virtual memory. Virtual memory allows each
to place or cluster blocks on the disk so that the transfer rateapplication to access memory as if it had its own private ad-
is maximized. This placement is achieved by taking the rota-dress space. The relationship between these virtual memory
tional latency into account when positioning logically adjacentaddresses and their physical counterparts are kept in a set of
blocks so that they appear under the read/write heads withtranslation tables maintained by the operating system. To
little or no delay. For files that span multiple tracks or cylin-keep the number of translation entries manageable, each en-
ders, the placement algorithm can choose adjacent tracks totry typically applies to a range of addresses called a page
minimize arm movement. Clearly, these placement tech-(usually a power of two between 256 bytes and 8 kbytes).
niques are applicable for single files and can do little to im-Thus, a virtual address space can be viewed as a contiguous
prove performance when multiple clients simultaneously re-array of pages, where each virtual page maps, through the
quest data from different files. Still, placement techniques aretranslation entry, to a particular page of physical memory.
effective enough that they are now directly incorporated intoNote that contiguous virtual pages do not have to map to con-
most disk controllers.tiguous physical pages. The translation entries are usually

Disk head scheduling is the second approach used to im-grouped into data structures called page tables, which are,
prove performance and is most effective when there are multi-themselves, stored in memory.
ple outstanding read or write requests. Although there areIn a demand paged system, the page tables are initially

empty, which means no virtual to physical mapping exists. As many variants, the general idea is to order the requests by



TIME-VARYING FILTERS 249

increasing track/cylinder number, so that the disk arm can to meet their scheduling constraints. Memory management
can also be accommodated through lottery scheduling. If somemove from lower to higher cylinder numbers in a continuous

sweep. The arm can then be repositioned back to track 1, or memory has to be cleared to make room for new data, a loser
lottery can be held to see whose data is evicted. A loser issimply reversed in its direction by servicing newly arrived re-

quests in decreasing cylinder order. The former is called the selected in inverse proportion to the number of tickets held,
so that the more tickets one holds, the less likely it is thatCSCAN algorithm and is very effective in reducing average

seek time. Patt (2) has showed that this algorithm is effective one will lose the lottery.
for modern SCSI drives that contain track caches and built-
in, look-ahead controllers.

SUMMARY

Multiprogramming is an increasingly important part of to-LOTTERY SCHEDULING
day’s computing systems. Time-sharing enables interactive
and compute intensive programs to progress simultaneously,Lottery scheduling (3) is a novel scheduling approach for
giving fast response times while still maintaining hightime-sharing systems. It was only recently proposed and as
throughput overall. Good resource management is at thesuch, is an example of current research in operating system
heart of an effective time-sharing system and must be applieddesign. Lottery scheduling uses randomized resource alloca-
to all shared components to achieve balanced utilization andtion to apportion resource rights in a way that is probabilis-
avoid bottlenecks that could degrade performance.tically fair across multiple competing clients.

Conceptually, each resource is abstracted as a pool of lot-
tery tickets, and clients that want to access the resource are BIBLIOGRAPHY
granted a set of tickets out of the pool. Each resource alloca-
tion is determined by holding a lottery: a random ticket num- 1. P. J. Denning, Working Sets Past and Present, IEEE Trans. Softw.
ber is selected, and the client holding the ticket is granted the Eng., SE-6: 64–84, 1980.
resource. Starvation is prevented because any client that 2. B. L. Worthington, G. R. Ganger, and Y. N. Patt, Scheduling
holds tickets has a chance of winning the lottery. As well, the Algorithms for Modern Disk Drives, Sigmetrics 94, 1994, pp.
probability of winning the lottery increases with the number 241–251.
of tickets held. This can be used to implement fair share 3. C. A. Waldspurger and W. E. Weihl, Lottery Scheduling: Flexible
scheduling, where each client pays to get some guaranteed Proportional-Share Resource Management, 1st Symp. Oper. Syst.
percentage of the resource. For example, if a client has paid Des. Implementation, 1994, pp. 1–12.
to get 25% of the CPU time on a system, that client would 4. S. J. Leffler et al., The Design and Implementation of the 4.3BSD
receive one quarter of the CPU scheduling tickets and should UNIX Operating System, Reading, MA: Addison-Wesley, 1989.
win one quarter of the lotteries, on average. Fair share sched-
uling is often used in large time-sharing installations, where RONALD C. UNRAU

corporate clients are charged in accordance with their re- University of Alberta
source consumption.

The basic ideas in lottery scheduling can be enhanced in
several ways. For example, clients requiring service from, say,

TIME SWITCHING. See ISDN.a database server can transfer their tickets to the server to
give it a better chance of running on their behalf. The desir-
able property of favoring I/O bound processes can be achieved
through compensation tickets. If a process has t tickets but
uses only a fraction 1/f of its CPU quantum, it receives f � t
tickets in compensation until its next quantum is awarded.
To see how this works, consider two processes: A is compute-
bound and has 100 tickets; B is I/O bound and also has 100
tickets. Suppose that B only uses a quarter of its quantum
before yielding the processor to do I/O. Without compensation
tickets, process B would be awarded the CPU as often as pro-
cess A but would only get one quarter of the CPU utiliza-
tion—which is in violation of the 1 : 1 ticket allotment ratio.
Using compensation tickets, process B is given 400 tickets to
compensate for using one quarter of its quantum. Thus, pro-
cess B is four times as likely to win the lottery as process A,
but since it uses one fourth of its winnings, both processes get
one half of the CPU.

Because lottery tickets are abstract representations, they
can be used for any resource. For example, network channel
bandwidth can be represented by lottery tickets, and accesses
to the channel can be granted by holding lotteries. This is
useful for multimedia applications that have stringent band-
width requirements since they can obtain the tickets required


