
SPREADSHEET PROGRAMS

BRIEF HISTORICAL OVERVIEW

At its most fundamental a spreadsheet is an electronic
grid consisting of rows and columns where each cell in
the grid contains either data or the relationship between
the contents of other cells. As new data are entered or ex-
isting data are amended the spreadsheet recalculates the
relationships between the cells to reflect the most recent
changes.

In its original incarnation the spreadsheet was pre-
sented as an electronic version of the accountant’s ledger
with automated basic operations, such as sum, count, aver-
age, maximum, and minimum. The first electronic spread-
sheet, Visicalc, was created by Dan Bricklin and Robert
Frankston for the Apple II in 1978. It sold for $150. Visi-
calc was followed in rapid succession by SuperCalc, Mul-
tiplan and eventually Lotus 123 in 1983. Lotus Corpora-
tion became the spreadsheet market leader and set the
spreadsheet standards for several years after Release 2 of
Lotus 123 in 1985. Standard features included an increas-
ingly large library of mathematical functions, easier graph-
ing and printing, elementary database manipulations and
the ability to customize and program via the macro lan-
guage. By the mid-to late-1980’s, spreadsheets permitted
reasonably complex and sophisticated models to be built
at the user’s desktop. Although accounting and financial
analysis software was not new (and available on mini and
mainframe computers of the time), spreadsheets were tar-
geted specifically for the rapidly evolving personal com-
puters. Their success can be attributed largely to provid-
ing end users with control of a powerful calculation and
decision-aiding tool at their desktop. Spreadsheets became
the “killer application” for microcomputers and gave rise
to a cottage industry of a myriad of add-in applications, in-
cluding more fonts, landscape printing, memory extenders
and managers, and display and publishing features.

In 1987, two new spreadsheet packages started to eat
into Lotus’s dominance of the spreadsheet market, namely
Microsoft Excel (Microsoft Corporation,Redmond,WA) and
Quattro Pro (Borland, Cupertino, CA). The latest release of
each package leapfrogged its competitors for a short time
with incremental improvements and new features: Spread-
sheets could be composed of multiple sheets, links could be
made to other files, easier and more sophisticated graph-
ing facilities could be used, and the graphical user inter-
face (GUI) could be applied with its shortcut buttons and
customization options. With time, the add-in packages be-
came more sophisticated and many were integrated into
the spreadsheet itself. For example, statistical analyses can
today be performed very simply from directly inside the
spreadsheet; Solver (Frontline Systems, Inc., Incline Vil-
lage, NV) is a full-functioned mathematical programming
package that will calculate optimal values for decision vari-
ables.

By the early 1990’s, Excel emerged as the market leader
and continues to be the dominant spreadsheet, so much
so that “Excel” has entered the lingua franca to mean

“spreadsheet.” With the arrival of the Internet, Excel pro-
vided hyperlinks and Web publishing features as part of
its continual evolution. While Excel maintained its market
dominance, other spreadsheets continued to exist mostly
within competing office suites to Microsoft Office, for ex-
ample, Quattro as part of Corel’s WordPerfect Office (Corel
Corporation, Ottawa, Ontario, Canada) and Sun Microsys-
tems’s open source Star Office (Sun Microsystems, Inc.,
Santa Clara, CA). More recently, in 2005,Web spreadsheets
sprung up, which allow users to upload, create, and edit
spreadsheets online and collaborate with others, in real
time, and track changes. Google, Inc. (Mountain View, CA)
entered this market in mid-2006 with its free offering of
Google Docs & Spreadsheets, which might signal the di-
rection for the future. A detailed history of the early devel-
opment of spreadsheets is provided by Power (1).

SPREADSHEET PACKAGES AND USERS

At one end of the spectrum a spreadsheet can be viewed as
a large and powerful calculator. However, modern spread-
sheets provide a sophisticated modeling environment with
an interface that can be productively used by an end-user
novice and an operations research/management scientist
(OR/MS) expert alike. Users of spreadsheets can broadly be
classified into two categories, those that use spreadsheets
in a “static” fashion typically for all kinds of business data
processing such as financial statements, inventory track-
ing, sales management,and budgeting applications to more
complex decision support applications, including optimiza-
tion, forecasting, simulation, and strategic planning. The
wide range of applications and base of end-users has made
spreadsheets a universal modeling platform. By develop-
ing an application in the spreadsheet environment, the
model can be circulated among a wide range of users with-
out having to worry about specialized software packages
and learning curves. Although the different spreadsheet
packages and versions are not identical, they are compati-
ble enough that they can support the basic function of each
other’s models and thereby not hurt the widespread use of
a developed model. The examples used throughout this ar-
ticle have all been modeled with Excel 2003.

SPREADSHEET FEATURES

A modern spreadsheet consists of a series of worksheets,
each of which contains a grid of rows and columns. Each
cell can contain data in various formats, typically num-
bers, text, dates, or formulas, which state the relationships
between the contents of other cells. Many standard math-
ematical, logical, statistical, engineering, and financial op-
erations are available as built-in functions, and these can
be combined to express complex relationships.

The spreadsheet interface is very user friendly with
many shortcut keyboard key combinations and special but-
tons and an undo and redo feature. Commands (such as
save, delete, insert, edit, graph, format, copy, move, and
sort) can be applied to individual cells, ranges of cells, or the
whole file so that the spreadsheet can be customized as re-
quired. The level of customization and sophistication of the

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Spreadsheet Programs

resulting spreadsheet model readily accommodates the re-
quirements of the novice and expert user alike: and therein
lies the secret of spreadsheet popularity and extensive user
base. For example, a novice user would simply enter data
on which calculations are performed, whereas a more ad-
vanced user would link to the original data, perhaps in
other files or, after sorting or extracting from a database. A
novice user would create formulas that referred to cells by
their row and column references (e.g., F23), whereas a more
advanced user would create range names for single cells or
blocks and use absolute and relative notation judicially so
that the spreadsheet formulas would not be compromised
by any future dimensional changes or reorganization. Also,
the advanced user may create formulas using meaning-
ful data headings (as opposed to cell addresses or range
names); e.g., =sum(Western) will sum the column called
“Western.” The advanced user may also create larger and
more complex models that require circular references (a
situation that is common, for example, with financial pro-
forma models) and need Excel’s Calculation Iteration menu
option to resolve the circularity.

Data in the spreadsheet can be graphed in a variety
of formats [e.g., line graphs, x—y scatter plots, pie, area,
and bubble charts, in two-dimensional (2-D) and three-
dimensional (3-D) representations]. The graphs can be
customized by logarithmic and scaled axes, mixed format
graphs (e.g., bar and line graphs) and displaying points,
lines, and backgrounds in different colors and textures.
Data in the spreadsheet can be treated as a flat 2-D
database, which can be queried and reports can be pro-
duced. Pivot tables allow the user to summarize data in a
variety of arrangements by providing cross-tabulations of
data and summary statistics.

All spreadsheets today include a powerful programming
language (e.g., Visual Basic for Applications, VBA, in Ex-
cel), which in effect provides an unlimited forum for user
customization. For novice users, no programming or even
knowledge of the existence of VBA is required to record and
store sequences of keystrokes and commands so that they
can be played back at a later time. In this way, repetitive
tasks can be automated. However, a user who can program
in VBA can build special-purpose applications with their
own look and feel (i.e., menus and commands) and that
involve decision points, branching, loops, and user interac-
tion. User-defined functions can also be created using VBA
to complement the existing library of available Excel func-
tions.

Other enhancements include features that help doc-
ument and control a model’s integrity such as cell an-
notation, graphical pointers to succeeding and preceding
cells (to help with debugging and understanding complex
spreadsheets), and scenario management where complex
“what-if” scenarios can be organized and tracked. These
features help users create more structured models rather
than the “quick and dirty” models that have been histori-
cally built with spreadsheets and that are becoming more
unacceptable as the spreadsheet medium becomes the uni-
versal base for more multi-user-oriented models.

LIMITATIONS OF SPREADSHEETS AND SPECIAL
CONSIDERATIONS

The availability and extensive use of spreadsheets in all
walks of life has spurred concern regarding the accuracy
and integrity of the results produced by a spreadsheet.
Large organizations have thousands of spreadsheets dis-
tributed across the enterprise that have been developed
by independent end-users in an uncontrolled environment.
Ironically, it is the same ease of use and availability of
spreadsheets, which makes them so popular, that also
makes them susceptible to errors. Many accounts of er-
rors in spreadsheets exist [see, for example, Panko (2) and
Cragg and King (3)], and empirical studies have found that
up to 90% of all spreadsheets in an organization contain er-
rors, often of a costly nature. Laboratory and field studies
have found that spreadsheet developers make errors in 2%
to 5% of all formulas, regardless of their experience. These
mistakes can range from mechanical errors (such as refer-
ring to a wrong cell or entering a wrong number) to logic
errors (such as entering a wrong formula). Both the error
rate and the impact of the inaccuracy increase with the
complexity of the model. Galletta et al. (4) describe how it
is difficult to detect errors once created, partly because of
the highly polished presentation of the results afforded by
the spreadsheet. H.M. Customs and Excise (5) states that
“detailed testing can be extremely laborious”even with spe-
cialized spreadsheet auditing software. Section 404 of the
Sarbanes-Oxley Act of 2002 targets this accuracy problem
by mandating that firms increase controls related to the
development and maintenance of spreadsheets. Sarbanes-
Oxley requires companies to be able to justify what has
happened to the data it presents in its corporate accounts
and how it got there. This legislation along with the high
risk of spreadsheet errors has generated a recent increased
focus on auditing tools and processes as well as on spread-
sheet management within organizations.

Spreadsheet programs lack the embedded logic and data
controls necessary to prevent errors, and organizations
must apply manual or automated control processes to help
mitigate these risks. For developed models, this requires
processes for controlling changes to a spreadsheet, main-
taining input data integrity,documenting functions and ob-
jectives, and controlling access to the most recent version of
the model. Martin (6) suggests that high-risk spreadsheets
be converted into server-based applications to provide au-
tomated control measures. Current research [e.g., Kruck
(7) and Freeman (8)] focuses on designing new techniques,
expanding testing and inspection procedures, and adapting
general programming techniques, such as the System De-
velopment Life Cycle, to improve the initial development
of accurate spreadsheets. The HM Customs and Excise re-
port (5) outlines procedures for assessing the risk that is
associated with each spreadsheet so that the organization
can concentrate upon auditing the spreadsheets that have
the largest implications for the business.

Some limited auditing tools do currently exist in Ex-
cel, but they merely display the dependencies of cells on
other cells; it is up to the user to determine whether these
are in error. More sophisticated add-in auditing tools, such
as Spreadsheet Advantage, Spreadsheet Professional, and

Spreadsheet Programs 3

XL Analyst, are now available that provide the ability to
identify differences between two versions of a spreadsheet
model, map out the structure of each worksheet and blocks
of cells that contain the same formulas in a model, iden-
tify circular references, and analyze the structure and com-
plexity of a spreadsheet. Auditing protocols still need to
be implemented to utilize these tools to find errors in the
most efficient, reliable, and effective way possible [e.g., But-
ler (9)]. Cragg and King (3) suggest that the first step is to
“communicate the fact that there are serious problems with
independent, uncoordinated and undisciplined approaches
to spreadsheet development which can lead to managers
making decisions based on dubious data.”

PROFILES OF TYPICAL USERS

The literature contains many discussions on the virtues
and benefits of the spreadsheet environment, e.g., Pirlot
(10), Roy et al. (11), Vazsonyi (12), Carraway and Clyman
(13), and Powell (14). Spreadsheets provide a natural inter-
face for model building; are easy to use in terms of inputs,
solutions, and report generation; and allow users to per-
form what–if analysis. Bodily (15) stated that these key
spreadsheet properties could provide a stepping stone for
end users to the operations research/management scien-
tist (OR/MS) discipline. The spreadsheet serves as a point
of convergence for the non specialist user, who through
spreadsheets has discovered modeling and its benefits, and
the OR/MS specialist, whose models previously lacked the
immediacy and impact necessary to respond to the end
users’ needs. Bodily (15) identified prospects for OR/MS
tools in the spreadsheet medium and predicted that the
convergence of the end user and the OR/MS specialist in
these areas would form a powerful union that would ulti-
mately result in greater rigor in model building and im-
proved productivity.

Today, spreadsheets are the de facto modeling medium
for OR/MS educators and researchers. Most, if not all, in-
troductory OR/MS texts are now spreadsheet based [e.g.,
Balakrishnan et al., (16), Moore and Weatherford (17), and
Ragsdale (18)]. The almost unanimous adoption of spread-
sheets in OR/MS education by about 2000 prompted Gass
et al. (19) to argue against the benefits of spreadsheets
in OR/MS courses, where they state that “striving to get
the spreadsheet right is taking precedence over learning
what is right in modeling.” Others [Seal and Przasnyski
(20) and Troxell and Aieta (21)] have commented that too
much class time is often spent on teaching tools or software,
which detracts from concentration on OR/MS concepts. An-
other concern is that the powerful tools now potentially at
the end users’ disposal may undervalue the simple tool for
the simple task [e.g., Berry (22)].

The final spreadsheet users are increasingly often the
model builders. Spreadsheet models provide a widely un-
derstood format and have a more natural interface than al-
gebraic models. The end users therefore have greater confi-
dence in the models and in model generation. Solution pro-
cedures are readily integrated, and they offer decision sup-
port system (DSS) facilities and automatic what–if analy-
sis. A survey of practitioners by Leon et al. (23) showed

that a variety of OR/MS tools are being used in spread-
sheet applications by end users across a wide spectrum of
functional areas; see Figs. 1 and 2.

A literature analysis of the application of OR/MS tools
in spreadsheet models by Seal et al. (24), classified ap-
plications by the OR/MS tools used, the functional areas
involved, and the level of implementation performed. The
level of implementation was categorized into three types of
papers. In Type 1 papers, the spreadsheet model was im-
plemented and used by a distinct and well-defined client
and the papers included a description of the model and an
account of the improvements or effects of implementation.
In Type 2 papers, the spreadsheet model was implemented
to address a problem or issue raised or generated specif-
ically by the researchers. The resulting model was docu-
mented and reproducible, but it was not implemented to
solve a client’s specific problem. Type 3 papers described
or proposed a small or trivial spreadsheet model.

Table 1 shows the number of papers describing spread-
sheet implementations by functional areas and points to
the ubiquity of the spreadsheet. Although the bulk of Type
1 spreadsheet implementations was in manufacturing and
administration, several other functional areas are well rep-
resented. In the same paper, the authors observed a steady
increase over time of Type 1 papers using the most popular
OR/MS tools, namely decision support systems, mathemat-
ical programming, inventory, simulation, statistics, and
forecasting. The strength of the spreadsheet medium lies in
providing end users with a dynamic decision-making envi-
ronment and the aforementioned tools are quite well suited
for that purpose as evidenced by the fact that most appli-
cations were developed not to solve the traditional static
OR/MS problem but to support a client’s dynamic decision-
making process. The most significant motivations or bene-
fits identified for using spreadsheets in these studies were:
1) the dynamic sensitivity analysis or “what–if” capabili-
ties, 2) the user-friendly interface, 3) end-user familiarity
with the spreadsheet environment, 4) the integrative capa-
bilities, and 5) the ease of modeling that exists because of a
spreadsheet’s flexibility with its selection of modeling tools.
In most cases, the spreadsheet models resulted in greater
productivity, just as Bodily (15) anticipated. The flexibility,
user friendliness, and availability of the interface were per-
ceived very positively, and the resulting implementations
usually claimed significant improvements in productivity
and efficiency as measured by various yardsticks particu-
lar to that application.

However, despite the documented successes, the use of
OR/MS tools in spreadsheets may not be appropriate for all
cases, and the everyday use of hitherto specialized tools by
end users is not without some reservations. Spreadsheets
may be perceived as too limited or too slow for large or com-
plex applications, or such applications could require exces-
sive (VBA) programming. Indeed, it may simply be easier to
use an established specialized package rather than to build
and validate a complex spreadsheet model for certain types
of problems. Although many authors extol the virtues of
spreadsheets, some at the same time warn that “certain ap-
plications are predisposed for spreadsheet treatment and
others are not” [for example, Freeman (25)]. Several au-
thors stress that the strengths of these approaches are

4 Spreadsheet Programs

Figure 1. The OR tools arranged in decreasing order of the ratio of percentages between spreadsheet and non-spreadsheet models show
that OR tools are being used in the spreadsheet environment. The non-spreadsheet percentage is equal to the number of non-spreadsheet
models using the OR tool divided by the total number of non-spreadsheet models. The spreadsheet percentage is equal to the number of
spreadsheet models using the OR tool divided by the total number of spreadsheet models.

Figure 2. The percentage of total spreadsheet and non-spreadsheet implementations across 11 functional areas shows acceptance of
spreadsheets across all functional areas. The non-spreadsheet percentage is equal to the number of non-spreadsheet models in each
functional area divided by the total number of spreadsheet and non-spreadsheet models for all areas. The spreadsheet percentage is equal
to the number of spreadsheet models in each functional area divided by the total number of spreadsheet and non-spreadsheet models for
all areas.

Spreadsheet Programs 5

Table 1. Functional Areas Where Spreadsheets Were Used (Sorted by Number of Type 1 Papers)

Functional Area Number of Type 1 Papers Number of Type 2 and 3 Papers

Manufacturing 25 51
Administration 10 4
Finance 7 24
Other 6 6
Transportation 5 4
Accounting 5 10
Research and Development 5 2
Human Resources 4 5
Marketing 3 1
Information Systems 2 1
Quality Control 1 4
Education 0 3
International Business 1 0

Table 2. Options Available in Excel’s Solver

Option Description

Precision Specifies how near to each other two trial solutions must be before
an optimal solution is declared.

Estimates Additional solution methods are Tangent and Quadratic. Use
Quadratic if the worksheet involves complex formulas that are
highly nonlinear.

Derivatives Specifies the method of partial derivatives, using Forward or Cen-
tral differencing. Central differencing can take longer but may
result in a closer solution.

Search Specifies a quasi-Newton or Conjugate gradient method of search-
ing.

the decision aid as opposed to the decision-making aspects
[e.g., Pirlot (10) and Roy et al. (11)]. Some users expect
a “black box” solution and get frustrated by the required
interactions or questionable outputs. Concern exists that
providing such powerful tools to the novice without suffi-
cient training can result in misuse of a model or misin-
terpretation of the results, thereby producing erroneous or
low-quality decisions [e.g., Troxell (26)].

Starting in 2001, organizations such as the Spreadsheet
Productivity Research Interest Group (SPRIG) of The In-
stitute for Operations Research and the Management Sci-
ences (INFORMS) have been established to study the dis-
cussed issues and limitations associated with spreadsheet
productivity. The mission of the Spreadsheet Productivity
Research Interest Group (http://sprig.section.informs.org/)
is to “inspire, support, promote and disseminate innova-
tions in practice, research and teaching related to the use
of spreadsheets and other end-user software for modeling
and analysis. SPRIG will develop and maintain close rela-
tionships with non-academic spreadsheet leaders.”

DSS TOOLS AND APPLICATIONS

Mathematical Programming

Roy et al. (11) described spreadsheet optimization appli-
cations developed by end -users with little or no previous
optimization experience. They concluded that many peo-
ple who are unfamiliar with optimization methods and are

uncomfortable with algebraic models can formulate and
solve large, real-life problems in spreadsheets without an
OR/MS specialist. This observation has been substantiated
by other researchers [Pirlot (10), Powell (14), Carraway and
Clyman (27)]. The easiest type of problem to solve is a lin-
ear programming (LP) model based on the efficient Simplex
solution algorithm for this class of problems. This calcula-
tion is now an integral part of Excel as Solver, originally
developed by Frontline Systems. Many problems can be
modeled that meet the linearity assumptions required for
a LP problem [see any standard OR/MS text books, e.g.,
Taha (28), Anderson et al. (29), or Ragsdale (18)].

One of the main advantages of spreadsheet-based opti-
mization models is that the models are created in a format
that is natural to the end-user as opposed to algebraic ex-
pressions that may not be so familiar or understandable
for many end-users. The results are reported in this same
intuitive format familiar to the user as opposed to a typical
LP package output format, which must be interpreted and
reorganized into meaningful information for the user. As a
spreadsheet model is often initially built to answer what–if
questions, the model may be then optimized using Solver
as a follow-through or additional analysis.

As an example, consider the classic multiperiod produc-
tion scheduling problem. A manufacturer has forecast the
demand for a product for the next six months along with
the monthly sales prices and manufacturing and holding
costs. The firm can produce as many units as it wants in
any given period with a one-month lead time (i.e., units pro-

6 Spreadsheet Programs

Figure 3. Six-month multi-period production model. The user varies the data in rows 8 and 9 by trial and error to determine the overall
profit.

duced in January are available for sale in February), but
its operation is limited by the size of its warehouse, which
can hold a maximum of 100 units. The company would like
to keep a safety stock of 10 units each month, except for
the last month where it would like to reduce inventory to
0. The problem is to determine how many units to produce
and sell each month so as to maximize the six-month total
profit. The basic spreadsheet model for this problem with-
out considering optimization is shown in Fig. 3. With this
basic model, the user can experiment with different num-
bers of units sold and produced by changing the cells in
row 8 and 9 and can watch the impact these decisions will
have on total profit in cell H16 as well as on monthly inven-
tory levels in row 10. While changing the production and
sales quantities, the user will want to make sure that the
inventory levels in row 10 do not drop below the minimum
in row 12 or above the capacity in row 11. The user will
also want to make sure that the units sold in any month
do not exceed the beginning inventory for that month as
the current month’s production units will not be available
until next month. After a certain amount of trial and error,
the user may arrive at a solution similar to the one found
in Fig. 3.

This basic spreadsheet model can be easily turned into
an optimization model by setting up the Solver dialog box
shown in Fig. 4, which communicates the nature of the
constraints that the user was manually trying to enforce.
Cell H16 is identified as the objective cell to maximize by
changing the decision variable cells (B8:G9) subject to the
cell constraints that follow. Using the Options button in
Fig. 4, the non-negativity assumption for the decision vari-
ables and the assumption of a linear model can be checked
off in the dialog box shown in Fig. 5. The solution that is
obtained in the spreadsheet model as a result of running
Solver is shown in Fig. 6. For advanced users, standard
LP sensitivity analysis output (i.e., shadow prices and re-
duced costs) can also be generated on new worksheets in
the workbook by selecting the appropriate options when
Solver displays the message that it has found a solution.

The natural reporting format of the spreadsheet makes
it easy for users to identify mistakes in the optimization
model logic and makes the necessary corrections. For ex-
ample, if the user had not originally entered the constraint
B8:G8<=B7:G7 (do not sell more than the on-hand amount
at the beginning of each month), the solution obtained
would be as shown in Fig. 7. The user should realize that
s/he cannot sell the number of units shown in February and
March as the units produced in those months will not be
available until the next month. The user would then need
to make an adjustment to handle this constraint. This type
of insight would not be possible with traditional algebraic
solver packages.

Some disadvantages exist to using spreadsheet opti-
mization models. The standard Solver package currently
built-in with Excel can currently handle up to 200 vari-
ables and 200 constraints on one worksheet. Upgrades
can be purchased from Frontline Systems, Inc., the devel-
oper of Solver (http://www.solver.com), which solve much
faster and accommodate models that are spread across
multiple worksheets with up to 8000 variables and 8000
constraints. With Frontline’s more powerful spreadsheet-
based platforms and assortment of specialized Solver
engines, spreadsheets can handle more large-scale sys-
tems, with some users reporting successful implementa-
tions of LP problems that included 2.4 million variables.
A shortcoming for large-scale problems, however, still is
the absence of indexing and dimensioning capabilities
with spreadsheets. Unlike optimization packages such as
GAMS, which allow a modeler to dimension variable in-
dices easily, the spreadsheet model must be manually cre-
ated and modified. Laying out a worksheet carefully can
help to a certain extent in that some dimension changes
can be easily done by inserting/deleting columns or rows
and copying formulas. However, this process is prone to er-
rors and not all modifications are a matter of simply copy-
ing existing formulas.

Other implementation problems exist with the simplic-
ity of the spreadsheet interface and optimization models
that many novice modelers may encounter. First, novice

Spreadsheet Programs 7

Figure 4. Solver dialog screen for the six-month multi period production model shows the objective to be maximized and the constraints.

Figure 5. The “options” screen in Solver can be used to choose and control the type of solution procedure.

Figure 6. The optimal solution to the six-month multi-period production model after being run through Solver.

8 Spreadsheet Programs

Figure 7. Solution to the six-month multi-period production model if the constraint “do not sell more than the on-hand amount at the
beginning of each month” was omitted.

users may not realize that alternative optimal solutions
exist as Solver does not automatically present this informa-
tion. Turner et al. (30) describes an efficient and straight-
forward procedure that can be used to locate the alterna-
tive optimal solutions with Solver. Second, a poorly scaled
model can create solution problems for Solver. Troxell (26)
defines a poorly scaled model as “one in which the val-
ues used among the objective function and constraint func-
tions, including the initial values for the algorithm, differ
by several orders of magnitude.” Severe build-up of round-
off errors can occur during the solution process, generat-
ing error messages or, on rare occasions, sub-optimal so-
lutions that are erroneously presented as optimal. Solver
does have an option to Use Automatic Scaling (see Fig. 5),
which will attempt to scale the values of the objective and
constraint functions internally in order to minimize the
effects of a poorly scaled model. Finally, it is easy to un-
intentionally create nonlinear spreadsheet models. Users
who are not OR/MS experts do not realize that IF, MIN,
MAX, and many financial spreadsheet functions are piece-
wise linear or nonlinear functions. Use of these functions in
the optimization model’s logic can make the problem non-
linear and identified solutions could include local optimal
points as well as the global optimal point. Many users will
not question the solution they get as they treat the model
as a type of black box that will always give them the best
answer. These are all examples of how powerful tools at
the disposal of non-experts can result in erroneous models
and interpretation of results.

In a nonlinear program (NLP), the objective function
and/or at least one constraint of the problem will be a non-
linear function of the decision variables. For example, an
IF function, which a modeler might use in a spreadsheet
to model price discounts as a function of volume sold, can
make the model nonlinear if these prices were used in
the objective to calculate revenue. Nonlinearity is required
for many engineering design applications, which often in-
volve high-order polynomials or calculus. When a problem
is nonlinear, the spreadsheet built-in optimizers must be
switched from the stable, efficient simplex solver engine

for LPs to a set of solver engines that will find the best
solution given the current starting solution presented in
the spreadsheet. Depending on the curve and the starting
solution point used in the NLP, the optimal solution found
may or may not be the global optimal solution [see any
standard text, e.g., Ravindran et al. (31) for descriptions of
nonlinear programming methodology].

As an example of a nonlinear programming spreadsheet
model, consider the following engineering design applica-
tion. A company wishes to build a steel tank to store 2500
cubic yards of gasoline. Steel costs $22.50 per square yard,
and the company needs enough steel to cover the top, bot-
tom, and side of a cylinder. What are the best dimensions
so as to minimize the cost of steel used and provide the
necessary volume? Obviously the amount of steel required
to build the cylinder is 2πR2 + 2πRH , which is a nonlinear
function of the radius R and the height H. The resulting
volume is πR2H , which is also a nonlinear function of R
and H.

A spreadsheet model can be easily set up to solve this
problem as a nonlinear program. In Fig. 8, the cylinder de-
sign is set up so that for any height or radius entered in
cells D5 or D6, the necessary amount of materials needed to
cover the different parts of the cylinder (cells D7 to D9) and
the resulting volume (cell D11) are calculated. The result-
ing costs are shown in cell D15. The user can experiment
with different radiuses and heights to find a good initial
starting point, such as the one shown in Fig. 8. This prob-
lem can then be converted in an NLP by running Solver
as shown in Fig. 9. The objective is to minimize the cost of
steel needed, in cell D15, subject to the constraint that the
resulting volume in cell D11 be greater than the required
capacity in cell C13. The Non-negativity Assumption op-
tion must also be selected, but the Assume Linear Model
option should be turned off. Solver will then use the se-
lected search options shown in the bottom of Fig. 5 along
with the starting point (such as the one in cells D5 and
D6 of Fig. 8) to determine the optimal solution shown in
Fig. 10. Table 2 provides a brief description of the options
shown in Fig. 5, which are available with the Solver en-

Spreadsheet Programs 9

Figure 8. Nonlinear programming model: engineering design of cylindrical gasoline tank.

Figure 9. Solver dialog screen for the engineering design of a cylindrical gasoline tank model shows the objective to be maximized and
the constraints.

Figure 10. The optimal solution to the engineering design of the cylindrical gasoline tank model after being run through Solver.

gines in Excel.
In this example, the local optimum identified is the

global optimum. This problem is a relatively simple NLP
on which the gradient search solvers can quickly converge

to the one optimum from a reasonable starting point. If the
starting point had included both a radius and a height of 0,
Solver would have difficulty converging and would result
in error messages. It is important, therefore, for the user to

10 Spreadsheet Programs

understand the significance of the starting solution shown
in the spreadsheet model before Solver is run. It will de-
termine whether a solution will be found and how many
iterations it will take for that solution to be found. In cases
where there are several local optima, the starting point will
also impact the chances of identifying the global optimum.

The spreadsheet has tools that can be useful for identify-
ing good starting points. By creating the NLP in a spread-
sheet environment, the user has a model on which what
–if analysis can be easily performed to see how possible
solutions will perform. The Data Table feature of spread-
sheets can be used to help automate this what –if process
and collect information on output results for specified in-
put values. For example, in the cylinder design illustration,
the two-way data table structure shown in Fig. 11 can be
set up with different test radii and height sizes listed in
the first row and column of the table. A Data Table menu
option systematically inputs the different combinations of
radii and heights specified in the first row and column of
the data table into cells D5 and D6 of the NLP model and
records the resulting volume as a table entry for the cor-
responding row and column. For example, cell D23 in Fig.
11 is the volume that will occur if a 14-yard high and 8-
yard radius cylinder is built. From the data table, the user
can see the range of design configurations that will gener-
ate sufficient capacity of 2500 cubic yards. A similar table
could be set up for different radii and heights to see possi-
ble impacts on the cost of steel. Based on these results, the
user could identify a good starting point for R and H.

For larger problems with more variables and con-
straints, the same initial prescreening can be done to
change more inputs simultaneously by using scenario man-
ager in Excel. This would allow the user to generate differ-
ent what–if scenarios for the decision variables, summa-
rize their possible results, and make comparisons to iden-
tify good starting points. Finally, Frontline’s upgrades for
Solver have a MultiStart Search option that will resolve
the starting point problem just described so that the user
does not have to use Data Tables or other tools to test dif-
ferent starting points. Upgraded versions of Solver also in-
clude an evolutionary solver engine, which uses genetic al-
gorithm methods such as mutation, cross over, selection,
and constraint repair to identify a solution that is bet-
ter in comparison with other known solutions. It does not
guarantee that the solution it finds is an optimal solution,
even though it often identifies the correct optimal solution.
Genetic algorithms work well for models that contain the
nonlinear spreadsheet functions that can derail linear and
nonlinear solvers as well as for the scientific applications
that involve calculus and high-order polynomials, such as
maximizing response rates or yields in a process.

One main disadvantage of using NLP models in the
spreadsheet environment is the amount of interaction re-
quired on the part of the user to determine the global opti-
mum. Most spreadsheet users are looking for a black box
solution similar to LP models. Users do not always under-
stand why it can take so long to get a solution and are often
frustrated by the strange solutions that the solver engines
can generate. They do not know how or do not want to
spend the required time to find a good starting point nor to
experiment with different solver engines. For many novice

users, the required interaction on their part overshadows
the benefit of using this technique. Some advanced model-
ers would prefer to use a specialized package with which
they are already familiar and where the search algorithms
can be customized to their application requirements so as
to give them more power and speed. Nevertheless, improve-
ments in technology and advances in Frontline’s solver en-
gines have made spreadsheets more appealing to advanced
modelers in recent years.

Integer programming is another mathematical pro-
gramming tool available in the spreadsheet environment.
Converting an LP into an integer program or mixed inte-
ger program involves adding a solver constraint that cer-
tain changing cells (decision variables) be integer or binary.
Once again the user is given a powerful tool, the branch-
and-bound search algorithm, in a black box that one must
be careful not to misuse. Every extra variable specified as
an integer may require a significant amount of additional
computation time necessary to solve the problem. Problems
that could be solved immediately without integer restric-
tions can end up taking significant amounts of time to solve
even on systems with fast processors and large amounts of
RAM or never deliver a final recommendation at all de-
pending on the number of integer variables selected. The
standard Solver is currently limited to 200 integer con-
straints where upgraded Solver versions can handle up to
2000 integer constraints. Adjusting Solver options, such as
the tolerance option in Excel’s solver, can help speed up
calculations at the expense of identifying a limit on the
suboptimal solution that is acceptable.

Some mathematical programming applications such as
capital budgeting, scheduling, fixed charge, uncapacitated
facility location, and cutting stock problems exist where in-
teger programming techniques are necessary to model key
relationships. Baker and Camm (32) have studied how in-
teger programming problems can be remodeled in spread-
sheets with nonlinear functions and then solved with the
evolutionary solver. They found that evolutionary solver
works better for some types of applications than others,
with better being defined as the percent of time that it finds
the optimal solution as well as the average suboptimality.
They even found one application type, the weighted tardi-
ness problem, where the spreadsheet model solves faster
and better with evolutionary solver than by integer pro-
gramming.

Simulation

Monte Carlo simulation is a tool that aids decision-makers
by understanding the uncertainty involved in a decision
better. It is a descriptive technique as opposed to optimiza-
tion, which is prescriptive. Given a possible course of ac-
tion, simulation can be used to describe the risk in the
strategy by considering many sources of uncertainty si-
multaneously. A spreadsheet with its natural format and
its what–if capabilities is an ideal medium for this tool for
many small-to medium-size applications. For larger and
more complex applications such as facility layout problems
or process strategy decisions, a specialized simulation lan-
guage such as Simula or SIMSCRIPT or a commercial, sim-
ulation program with animated graphical interfaces such

Spreadsheet Programs 11

Figure 11. Two-way data table for the engineering design of a cylindrical gasoline tank model evaluates the volume for various combi-
nations of the cylinder’s radius and height.

as SLAM II or Micro Saint would be more appropriate.
These alternatives are costly and involve a much steeper
learning curve, however. For smaller applications, there-
fore, the spreadsheet is a user-friendly option to consider
and many successful examples of spreadsheet simulations
are recorded in the literature, for example, Bookbinder (in-
ventory and distribution in the fine paper industry) (33),
Pope and Cross (load size and routing schedule for ocean
shippers) (34), Bobby (cost structure of an oil distributor)
(35), Schuster and Finch (production scheduling and in-
ventory management in a juice manufacturing company)
(36), and Poshyanonda et al. (scheduling for a feed mill
company) (37).

To introduce uncertainty into an existing spreadsheet
model, the user must quantify risk distributions for the in-
put cells, which are uncertain. Spreadsheets have built-in
random number generators to help do this. To simulate a
random number between 0 and 1, a user must simply en-
ter the RAND() spreadsheet function into a cell. Alterna-
tively, the RANDBETWEEN function will generate a ran-
dom integer between any specified lower and upper limit.
Random numbers can be used with other spreadsheet func-
tions, such as NORMINV, to simulate values from specified
distributions. If the user’s probability background is strong
enough, the user can also define formulas to describe other
distribution functions, with the discrete, triangular, or be-
tapert distributions being examples of some of the easier
distributions to create. By pressing the F9 recalculate key,
the user will simulate possible scenarios of inputs and be
able to view the resulting outputs directly in the model
layout, one iteration at a time.

To collect data about the possible outcomes and summa-
rize the data into meaningful risk analysis information, the
data table option can be used. Each row of the defined data
table can be used to represent an iteration, with the column
headings representing the key outputs that the user would
like to understand better. The data collected in the table
can then be summarized with the spreadsheet’s descrip-
tive statistics menu options to communicate the potential
risks of the strategy being considered.

If the user is serious about using simulation in a spread-
sheet environment, there are worthwhile add-in packages
such as Decisioneering Inc.’s Crystal Ball and Palisade Cor-
poration’s @Risk that can be used to help automate the
simulation calculations. These packages provide numerous
programmed input distributions, a user-friendly interface
for setting simulation options, and detailed statistical out-
put and graphs, thus removing most of the calculation bur-
den from the user.

A risk analysis can be performed on the production
scheduling problem of Fig. 6 as an example of the decision
aid provided by Crystal Ball. Using, for example, the opti-
mal production solution found earlier by LP and Solver, the
model is modified to incorporate uncertainties regarding
the target sales values shown in row 2 of Fig. 6. Assuming
that the target sales are normally distributed each month
with mean and standard deviation as shown in rows 2 and
3 of Fig. 12, the Crystal Ball formula =CB.Normal(B2,B3)
entered in cell B4 and then copied through to G4 will ran-
domly generate target sales for each month from the as-
sumed distributions. [Without Crystal Ball, the formula
=NORMINV(rand(),mean target sales, standard deviation
of target sales) each month could be used instead.] Alter-

12 Spreadsheet Programs

Figure 12. Six-month multiperiod production scheduling model where target sales are distributed normally.

Figure 13. Crystal Ball input definition window showing how the normally distributed target sales for January are entered.

natively, Crystal Ball can provide more visual assistance
by entering cell values for the distribution parameters
through interactive input windows as shown in Fig. 13.
The number of units sold in row 10 of Fig. 12 now has a
formula entered that will modify the solution to changes
in target sales in order to keep the solution realistic and
feasible. For example, if demand is lower than expected,
the number of units sold will have to be lowered to that
amount. Figure 12 shows the results of one possible itera-
tion with these modifications.

The user can then select the total profit in cell H18 and
the ending inventories in cells B12:G12 as the outputs to
be studied and run the simulation (default is 1000 itera-
tions but can be extended to any number) and view the
numerous descriptive statistics that will be collected for
these variables. All resulting statistics (as well as the raw
data from each iteration) are tabulated in spreadsheet cells
for additional analysis or manipulation, if required. In ad-
dition, Figs. 14 and 15 show two types of graphical out-

puts that Crystal Ball will produce showing the possible
ranges of profit and ending inventory levels that could oc-
cur if the user follows the production strategy prescribed
by the LP solution strictly. Figure 14 shows the distribu-
tion of total profit and associated summary statistics based
on 1000 trials. In Fig. 15, the user can see that a signifi-
cant risk exists that the ending inventory in April will ex-
ceed the maximum capacity of 100 and that some sort of
adjustment will need to be made. The exact probabilities
and inventory levels can be found by viewing the detailed
descriptive statistics provided by Crystal Ball and inter-
acting with the results windows; e.g., the display in Fig.
14 shows that approximately a 46% chance exists that the
total profit will be between $11,500 and $12,500.

In addition, an optimizing simulation can be run us-
ing the OptQuest module, which is a component of Crystal
Ball Pro. Here, the user specifies permissible ranges for
some decision variables (and whether the variable should
be considered as continuous or discrete) and an objective

Spreadsheet Programs 13

Figure 14. Crystal Ball output window showing the distribution of total profit for the simulation when target sales are normally dis-
tributed, in the six-month multiperiod production model.

Figure 15. Crystal Ball Trend chart showing the trend of the ending inventory for the simulation when target sales are normally
distributed, in the six-month multiperiod production model.

to be optimized (where a choice from a variety of statistical
measures such as mean, median, mode, standard devia-
tion, kurtosis, standard error, among others, can be made).
OptQuest runs an entire simulation for combinations of
values of the decision variables and chooses the best, until
no improvement can be found or the search is terminated
by the user.

An illustration of such an approach can be explained
by an extension of the production planning simulation de-
scribed above and presented in Fig. 12. Previously, we sim-
ulated the effect of uncertainty in the target sales on just
one production strategy, whereas now we can define the
number of units produced each month as decision variables
and run OptQuest to maximize, for example, the median of
the Total Profit. Running two OptQuest optimizing simu-
lations may not yield exactly identical results because the
underlying process is stochastic, so OptQuest ranks the
near-optimal solutions it obtained according to the opti-

mizing criterion to provide the user with insights into the
underlying variability. One solution proposed by OptQuest
is summarized in Fig. 16. Note that the optimal value for
total profit is very close to that obtained in the original de-
terministic version of this problem obtained by Solver, as
shown in Fig. 6. Although this production planning prob-
lem was simple enough to lend itself to both mathematical
programming and simulation approaches, OptQuest pro-
vides a relatively straightforward approach to stochastic
optimization and is a meaningful option for problems too
complex to address by formal mathematical programming
methods.

An alternative simulation approach has been integrated
into the spreadsheet itself recently by Frontline Systems,
the developers of Solver, which is currently in public beta
testing. As with the Crystal Ball approach, the user spec-
ifies uncertain input cells based on well-known distribu-
tions or customized as required. The difference is that

14 Spreadsheet Programs

Figure 16. Results after OptQuest optimization for the six-month multiperiod production planning model when target sales are normally
distributed.

their Polymorphic Spreadsheet Interpreter (PSI) technol-
ogy, which is also incorporated in the most recent version
of Crystal Ball and the more advanced industrial strength
Solver platforms, permits extremely fast spreadsheet up-
dating, so that in Risk Solver a 1000 (or user specified)
trial simulation is performed every time the spreadsheet
is refreshed. The consequences for all the cells depending
on the uncertain inputs are almost instantaneously sum-
marized. Essentially a stochastic simulation is performed
on each spreadsheet refresh, which allows the user to do
almost instantaneous what–if analysis for uncertain data,
as has hitherto been possible for deterministic data. We
suspect that Risk Solver will become entirely integrated in
future versions of Excel, just as Solver was before it, which
will expand the modeling possibilities within Excel.

Forecasting

Forecasting the future values of associative or time series
data is frequently required in business and other applica-
tions in order to predict the future behavior of a system. For
example,a tile manufacturing company used a spreadsheet
for forecasting the annual sales volume for different prod-
uct families [Miller and Liberatore (38)]. Special-purpose
forecasting packages (such as Forecast Pro) will import
spreadsheet data, automatically select the best forecast-
ing method for that data, and compute the results. Any
changes in the original data in the spreadsheet will require
rerunning of the forecasting package. This kind of black
box approach is appealing to certain types of users with no
knowledge of forecasting methodology, who simply want
an answer to a specific problem. However, for users who
have some knowledge of forecasting methods, the spread-
sheet medium provides an opportunity to gain additional
insights and understanding of their data by providing an
environment where the model sensitivity can be visually
inspected by using the spreadsheet’s graphing features. All
types of times series analyses can be easily set up: e.g., all
variants of moving averages and exponential smoothing,
with identification of trend and seasonality with just an
elementary familiarity of the method. The TREND func-
tion is useful if a linear or quadratic forecasting method is
desired. The sophistication of the sensitivity analyses and

consequently the quality of the resulting forecasts made is
proportional to the user’s appreciation of forecasting the-
ory and methods [see any forecasting text, e.g., Makridakis
et al., (39) for discussion of forecasting methods and appli-
cations].

A nice compromise between the black-box and build-it-
from-the ground-up-in-Excel approaches is provided by CB
Predictor,a module of Crystal Ball Pro.This module has the
same kind of functionality as an external black-box fore-
casting package directly in the spreadsheet with a suite
of time series methods for stationary, trend, and seasonal
data (see Fig. 17 for the user screen displaying methods
available). The user can let CB Predictor choose the best
method for a particular data set–all that is required is for
the user to specify which error measure, RMSE (root mean
square), MAD (mean absolute deviation), or MAPE (mean
absolute percentage error), to minimize. Alternatively, a
more hands-on user can choose both the method and the
method parameters (such as smoothing constants) to in-
vestigate or compare the forecasts based on insights other
than minimizing historical errors.

As all spreadsheet packages contain a regression mod-
ule that uses the least-squares approach, associative fore-
casting reduces to a simple procedure of highlighting the
independent (x) and dependent (y) variable ranges. For
example, a vendor is attempting to forecast the sales of
ice cream (y) by using that day’s temperature (x) as the
explanatory (and easy to measure) variable. These data
are displayed as a scatter plot in Fig. 18. Using the least-
squares regression approach provides the output shown
in Fig. 19 and the resulting best straight line y = 32.335 +
1.765x is plotted in Fig. 20. This can be used to carry out the
forecast. Multiple regression forecasting models based on
more than one independent variable can similarly be set up
by highlighting all independent variable ranges. Depend-
ing on the sophistication of the user, the regression output
(see Fig. 19) contains information that could be used to pro-
vide error estimates, test the significance of the regression
coefficients, and determine the confidence intervals for the
forecasts.

Excel also provides a graphical curve fitting module
(called Add Trendline) that can be used to determine the

Spreadsheet Programs 15

Figure 17. The forecasting methods available in CB Predictor.

Figure 18. Scatter plot of sales of ice cream versus temperature data.

best fit equation, which can then be extrapolated to make
the forecast. Curves that can be fitted include up to sixth-
order polynomials, moving averages, logarithmic, and ex-
ponential.

Strategic Planning

Decision support systems should allow a user to interact
with the model in order to gain better insight into the rela-
tionships, issues, and key assumptions that exist for a prob-
lem. This is exactly the type of aid that strategic planners

16 Spreadsheet Programs

Figure 19. Regression output for forecasting ice cream sales.

Figure 20. Scatter plot of sales of ice cream versus temperature data with best least-squares straight line superimposed.

require with their complex, uncertain applications. Most
strategic planners are familiar with spreadsheets and feel
at ease interacting with models created in this environ-
ment. The natural what–if facility allows them to inves-
tigate scenarios that they are considering; the Operations
Research tools presented provide powerful support for an-
swering more complex what–if and how–to questions.

Some sophisticated strategic planning models have
been developed in the spreadsheet environment. Carraway
et al. (40) developed a spreadsheet decision support for
identifying the optimal mixture of satellite and cable tech-
nology in an international telecommunications network.
This strategic model helped the telecommunications com-
pany understand the relationship between satellite and
cable efficiency, network configurations, and demand fore-
casts. Eppen et al. (41) developed a spreadsheet-based

model for General Motors to aid in making strategic de-
cisions about capacity for four of their auto lines. The tools
incorporated in the model allowed the planners to under-
stand the tradeoffs between risk and profit in their multi-
product, multi-plant, multi-period capacity planning prob-
lem. The information obtained from the model confirmed
the planner’s intuition that GM had more capacity than it
should for a specific product line. It also provided insight
into product mix issues that the planner would not have
otherwise identified for additional study.

FUTURE DEVELOPMENTS

It would be presumptuous and reckless to make definitive
or specific statements regarding the future of spreadsheets,

Spreadsheet Programs 17

because this is an area where advances in technology oc-
cur on an accelerating basis. However, it is safe to say
that spreadsheets are an established and popular model-
ing medium that we expect to continue to mature, given the
constant improvements in hardware relating to computa-
tion speed and available memory.Two recent advances may
point to possible future trends: First, Web-based spread-
sheets make spreadsheet sharing easy and accessible for
multiple users, and second, Risk Solver, which performs
stochastic simulation directly in a spreadsheet, opens up
new modeling opportunities. In any case, more complex
and advanced decision support will become a reality for the
end user. We therefore strongly suggest caution and careful
evaluation of their appropriate use as well as implementa-
tion of spreadsheet management control processes within
an organization.

BIBLIOGRAPHY

1. Power, D. J. A brief history of spreadsheets, DSS-
Resources.COM, World Wide Web, version 3.6.
http://dssresources.com/history/sshistory.html (accessed
August 30, 2004).

2. Panko, R. Facing the Problem of Spreadsheet Errors. Decision
Line 2006, 37, pp 8–10.

3. Cragg, P. B.; King, M. Spreadsheet Modelling Abuse: An Op-
portunity for OR? J. Oper. Res. Soc. 1993, 44, pp 743–752.

4. Galletta, D. F.; Hartzel, K. S.; Johnson, S. E.; Joseph, J. l.;
Rustagi, S. Spreadsheet Presentation and Error Detection: An
Experimental Study. J. Manage. Inform. Syst. 1996/ 1997, 13,
pp 45–64.

5. H. M. Customs and Excise Computer Audit Service,
Methodology for the Audit of Spreadsheet Models,
2001. http://customs.hmrc.gov.uk/channelsPortalWebApp/
downloadFile?contentID=HMCE PROD 009443.

6. Martin, A. F. Get Spreadsheets under Control. Internal Audi-
tor 2005, 62, pp 31–34.

7. Kruck, S. E. Testing Spreadsheet Accuracy Theory. Inform.
Softw. Technol. 2006, 48, pp 204–213.

8. Freeman, D. How to Make Spreadsheets Error-Proof. J. Ac-
countancy 1996, 181, pp 75–77.

9. Butler, R. J. Is this Spreadsheet a Tax Evader? How H.M. Cus-
toms and Excise Test Spreadsheet Applications; Proc. of the
Thirty-Third Hawaii International Conference on System Sci-
ences; 2000.

10. Pirlot, M. A Case Study in Transportation Network Opti-
mization Using a Microcomputer. Eur. J. Oper. Res. 1990, 45,
251–259.

11. Roy, A.; Lasdon, L.; Plane, D. End-User Optimization with
Spreadsheet Models. Eur. J. Oper. Res. 1989, 39, 131–137.

12. Vazsonyi, A. Where We Ought to Be Going: The Potential of
Spreadsheets. Interfaces 1993, 23, 26–39.

13. Carraway, L. D.; Clyman, R. D. Integrating Spreadsheets into
a Case-Based MBA Quantitative Methods Course: Real Man-
agers Make Real Decisions. Inform. Trans. Educ. 1997, 1.
http://ite.informs.org/Vol1No1/Carraway/index.php.

14. Powell, S. G. The Teachers’ Forum: From Intelligent Consumer
to Active Modeler, Two MBA Success Stories. Interfaces 1997,
25, pp 88–98.

15. Bodily, S. Spreadsheet Modeling as a Stepping Stone. Inter-
faces 1986, 16, pp 34–52.

16. Balakrishnan, N.; Render, B.; Stair, R. M. Managerial Deci-
sion Modeling with Spreadsheets, 2nd ed.; Prentice Hall: En-
glewood Cliffs, NJ, 2007.

17. Moore, J.; Weatherford, L. Decision Modeling with Microsoft
Excel, 6th ed.; Prentice Hall: Englewood Cliffs, NJ, 2001.

18. Ragsdale, C. Spreadsheet Modeling and Decision Analysis: A
Practical Introduction to Management Science, 5th ed.; South-
Western, Mason, OH, 2006.

19. Gass, S.; Hirshfeld, D.; Wasil, E. Model World: The Spread-
sheeting of OR/MS. Interfaces 2000, 30, pp 72–81.

20. Seal, K. C.; Przasnyski, Z. H. Using Technology to Support
Pedagogy in an OR/MS Course. Interfaces 2003, 33, pp 27–
40.

21. Troxell, D. S.; Aieta, J. Teach Yourself Solver. Proc. of the
NEDSI; Atlantic City, NJ, 2000.

22. Berry, T. The Trouble with Spreadsheets. Personal Comput.
1989, 13, pp 61–63.

23. Leon, L.; Przasnyski, Z. H.; Seal, K. C. Spreadsheets and
MS/OR Models: An End-User Perspective. Interfaces 1996, 26,
pp 92–104.

24. Seal, K. C.; Przasnyski, Z. H.; Leon, L. A Literature Survey of
Spreadsheet Based MS/OR Applications: 1985-1999. OR In-
sight 2000, 13, pp 21–31.

25. Freeman, J. Spreadsheet Gaming and Management Skills De-
velopment. OR Insight 1993, 6, pp 9–13.

26. Troxell, D. S. Optimization Software Pitfalls: Raising Aware-
ness in the Classroom. Inform. Trans. Educ., 2002, 2.
http://ite.informs.org/Vol2No2/Troxell/index.php.

27. Carraway, L. D.; Clyman, R. D. Managerial Relevance: The
Key to Survival for OR/MS. Interfaces 1997, 27, pp 115–130.

28. Taha, H. A. Operations Research: An Introduction, 8th ed.;
Prentice Hall, Upper Saddle River, NJ, 2007.

29. Anderson, D. R.; Sweeney, D. J.; Williams, T. A. An Introduc-
tion to Management Science-Quantitative Approaches to Deci-
sion Making, 11th ed. Thomson South-Western, Mason, OH,
2005.

30. Turner, S.; Aieta, J.; Saber, J. Determining the Set of Alter-
native Optimal Solutions using Excel Solver. Math. Comput.
Educ. 2000, 34, pp 129–147.

31. Ravindran, A.; Phillips, D. T.; Solberg, J. J. Operations Re-
search: Principles and Practice, 2nd ed.; John Wiley and Sons:
New York, 1987.

32. Baker, K. R.; Camm, J. D. On the Use of Integer
Programming versus Evolutionary Solver in Spread-
sheet Optimization. Inform. Trans. Educ. 2005, 5.
http://ite.pubs.informs.org/Vol5No3/BakerCamm/.

33. Bookbinder, J. H.; McAuley, P. T.; Schulte, J. Inventory and
Transportation Planning in the Distribution of Fine Papers.
J. Oper. Res. Soc. 1989, 40, pp 155–166.

34. Pope, J. A.; Cross, E. M. The optimal load size for ocean ship-
pers. Logist. Transport. Rev. 1988, 24, pp 299–315.

35. Bobby, G. Modelling the Cost Structure of UK Oil Distributors.
Int. J. Phys. Distribution Mater. Manage. 1989, 19, pp 24–29.

36. Schuster, E. W.; Finch, B. J. A Deterministic Spreadsheet Sim-
ulation Model for Production Scheduling in a Lumpy Demand
Environment. Prod. Invent. Manage. 1990, 31, pp 39–43.

37. Poshyanonda, T.; Dagli, C. H.; Omurtag, Y. Smart Shop Floor
Scheduling Using Knowledge Based Simulation. Comput. In-
dustr. Eng. 1989, 17, pp 107–112.

38. Miller, T. C.; Liberatore, M. J. Production and Distribution
Planning in a Process Firm. Prod. Invent. Manage. 1989, 30,
pp 44–48.

18 Spreadsheet Programs

39. Makridakis, S.; Wheelwright, S. C.; Hyndman, R. J. Forecast-
ing Methods and Applications, 3rd ed.; John Wiley and Sons:
New York, 1998.

40. Carraway, R. L.; Cummins, J. M.; Freeland, J. R. Solving
Spreadsheet-Based Integer Programming Models: An Ex-
ample from International Telecommunications. Decision Sci.
1990, 21, pp 808–824.

41. Eppen, G. D.; Martin, R. K.; Schrage, L. A Scenario Approach
to Capacity Planning. Oper. Res. 1989; 37, pp 517–527.

LINDA A. LEON

ZBIGNIEW H. PRZASNYSKI

Loyola Marymount University,
Los Angeles, CA

