
SOFTWARE BUGS 445

SOFTWARE BUGS

Prior to the 1960s, most programs were made by small teams,
usually consisting of a single person. Software was generally
undocumented and errors could only be corrected by the origi-
nal author. In those days, people concentrated mainly on the
computer hardware, which was the primary limiting factor in
computing. The main challenge in creating software was to
squeeze the programs into small amounts of memory. Gradu-
ally, the cost of memory and other computer hardware
dropped and at the same time size and complexity of software
increased substantially. In 1961, the released software for the
IBM 709 consisted of about 100 K words of program written
by a small group of highly qualified people (1).

During the 1960s, it gradually became evident that the re-
liability of a computer system is largely determined by the
reliability of its software components. The conventional belief
became that there were always bugs in programs. In fact, the
use of the term bugs to denote software faults is perhaps a
form of psychological self-defense; everybody knows that the
world is full of bugs and that little can be done about them.
The process of eliminating bugs, known as debugging, was
the next hurdle to overcome.

The following story describes the first program bug (2).
Early in the history of computers (in 1945), when the Whirl-
wind I at the Massachusetts Institute of Technology (MIT)
was first switched on, it failed to run. A frantic check of the
wiring and hardware failed to indicate anything wrong. Fi-
nally, in desperation, it was decided to check the program,
which was contained on a small strip of paper tape. The error
was discovered in the programmers’ Pandora’s box, and a va-
riety of bugs have been discovered by subsequent generations
of programmers.

With the development of high-level languages and compil-
ers, some people assumed that software bugs would disap-
pear. However, this assumption ignored the fact that logic er-
rors cannot be discovered by compilers because a compiler
does not know what the programmer wants to do. Programs
have continued to increase in size and complexity while keep-
ing about the same level of bugs.

Writing a program is like writing a report. It requires a
first draft (before debugging) and a final draft (after debug-
ging). An important measure of a programmer’s proficiency is
the ability to find and correct the program bugs in an efficient
manner. As programs, and interrelated sets of programs, be-
came increasingly large and complex, more and more of the
programmer’s time was spent not in program design and cod-
ing, but rather in debugging and testing. While beginners

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



446 SOFTWARE BUGS

may have a hard time locating and correcting their bugs, ex-
perienced programmers can do so more easily. Programmers
are often trained in programming, but seldom are they
trained in debugging. Debugging of a program usually takes
more time and is more complicated than writing the program
itself. It is therefore wise to spend more time in learning how
to debug programs.

The presence of bugs in programs can be regarded as a
fundamental phenomenon; the bug-free program is an ab-
stract theoretical concept like the absolute zero of thermody-
namics, which can be envisaged but never attained. Debug-
ging is also dependent on the environment, including the
machine, the language, the operating system, the problem,
and the individual program. Thus, the study of bugs and de-
bugging is an important undertaking.

Hardware
fault

Random
overstress

Process
Wearout

Design

Error Recovery
software

Undetected
failure

No
failure

System
failure

(departure
from

requirements)

Software
fault

Human
Data

corruption

Electrical
interference

Design

Specification

SOME DEFINITIONS
Figure 1. Concept of fault/error/failure. A fault (bug) may lead to an
error. An error may propagate to become a failure if the system doesComputer programming is used in the task of developing a
not contain some error recovery logic capable of dealing with and min-software. This programming is not difficult, but it must be
imizing the effect of the error. A failure, whether hardware- or soft-done with care and involves much more than just writing in-
ware-related, is the termination of the ability of an item to performstructions. To create software that allows us to use the com-
its specified function.puter effectively as a problem-solving tool, several steps must

be carried out. These steps include defining the problem,
planning a solution algorithm, coding the algorithm, checking
the program (debugging and testing the algorithm), and com- However, the presence of a software fault does not nec-
pleting the documentation. After a problem solution has been

essarily guarantee that an error or a failure will ensue.planned and coded accordingly, the programmer must make
A long time may elapse before that specific portion ofcertain that the program performs as intended. This task is
the code is used under the circumstances that lead to apart of the programmer’s responsibility for complete and com-
failure.prehensive program checking. A major concern in this respect

2. Errors occur when the software in the system reachesis the issue of isolating, identifying, and correcting bugs. This
an incorrect state. An error is caused by a fault in thestep requires special care in order to avoid creating new bugs
program or by an outside interference. An error maywhen correcting the existing ones. In general, as the size and
propagate to become a failure if the system does notthe complexity of a program increase, a higher portion of the
contain some kind of error recovery logic capable ofprogrammer’s time is spent in debugging and testing, as com-
dealing with the specific error. Error recovery softwarepared to the actual design and coding.
may prevent the propagation of an error.Software professionals emphasize that program checking

should begin in early stages of the software development. Cer- 3. Failure is the termination of the ability of an item to
tain types of errors can be detected and removed at the time perform its specified task. Software failures are, in fact,
of problem definition, while some others can be detected in errors that, due to the complexity of programs, do not
the process of formulating the solution algorithm and coding always become evident immediately. Unlike hardware
the corresponding program. Concise and accurate documenta- failures, there may not be any physical change associ-
tion is a vital task throughout the software development cycle ated with a software failure that causes a functioning
and must be carried out on a continuing basis. unit to cease its normal operation.

A program failure is caused by an error, which itself is the
consequence of a fault (a slang expression for a software fault

The actual source of faults may be the requirement speci-is bug). Figure 1 illustrates the concepts of fault, error, and
fication, the design, or the implementation. There is evidencefailure, which are formally defined as follows:
that the majority of errors (over 60%) are committed during
the requirement and design phases. The remaining 40% occur1. Faults may occur in both hardware and software. Soft-
during coding. The more complex the system, the more faultsware faults will arise when a problematic part of the
are likely to initiate from ambiguities and omissions in thecode is executed (with a particular set of values for the
specification stage.relevant parameters resulting in the erroneous condi-

tion) or because of corruption due to some outside in-
fluences, such as memory corruption. Software faults

CATEGORIES OF BUGSare conditions that may lead to an error in the system.
These faults may be due to ambiguities, omission in the

Assuming that the input data is correct, we can broadly di-logic structure of the program, or hardware conditions,
vide computer bugs into three different categories. These arewhich can cause software corruption. A fault (bug) may

lead to an error and eventually to a system failure. bugs related to hardware, systems software, and the pro-



SOFTWARE BUGS 447

• Programs Written By an Outside Agency. Strictly speak-
ing, programs written by a software house for an instal-
lation (to its own specifications) should not be ‘‘black
boxes’’ to the installation’s maintenance programmers.
Maintenance programmers should be provided with ade-
quate technical documentation to make future debug-

Table 1. Percentage of Bugs’ Category

Category of Bugs Percentage

Hardware 1%
Systems software 9%
Programming 90%

ging possible.

gramming itself. A rough estimate of the relative incidence of Programming Bugs
these different types of bugs is given in Table 1.

By far the most frequent and complicated bugs are due to
mistakes in the program itself. These bugs range from speci-Hardware Bugs
fication to implementation. Table 2 summarizes these kinds

Hardware bugs are mercifully rare nowadays and are often of bugs.
easily detected. However, an intermittent hardware bug can
be extremely difficult to detect and may persist for a long time Errors in Problem Definition. It may happen that once the
before it can be pinned down. Usually, the software is blamed program is written, the user finds out that the results are not
first, and hardware is checked as the last resort. Therefore, as expected. This can be because the programmer and the
these types of bugs are inherently costly and time-wasting. user have not understood each other properly, or because the

user did not exactly know what he or she wanted. In this case,
Systems Software Bugs the incorrect program may help the user and the programmer

better understand the underlying problem, in which caseIn the following, we discuss the implication of system soft-
their efforts will not be completely wasted.ware bugs, which vary widely with the type of software. The

Sometimes only when incorrect results are generated cantypes of system software bugs we distinguish are as follows:
the original problem be carefully redefined. An improper
problem definition may result in a program that provides a• Operating Systems. Operating systems are immensely
correct solution for an incorrect problem. In such a case, apowerful and complex, so the chances of them being bug
new definition of the problem may need to be formulated,free are minimal. Operating systems are the most-used
which requires a great deal of fresh implementation effort.pieces of software, so producers take considerable care to

check them carefully; however, the presence of bugs in
Incorrect Algorithm. Once the problem is correctly defined,them is still certain.

the programmer searches for an algorithm or method to solve• Compilers. After operating systems, compilers are prob-
the problem. Unfortunately, the programmer may choose aably the second most-used software in an installation, so
poor or even an incorrect algorithm, in which case he or shemost manufacturers take a good deal of care to make
has to repeat the whole process at some later point.them as bug free as possible. The user is usually com-

pletely unaware of what actual machine-code instruc-
Errors in Coding. There is a large variety of errors that fittions are generated by a compiler. Therefore, if a failure

this category:is encountered at some point during execution, the pro-
grammer has to assume that the corresponding bug is

Syntax errors are due to improper use of the languagehis or her own fault. The task of debugging becomes
statements. These are often detected and flagged by themuch more complicated if the compiler has indeed gener-
compiler.ated an invalid object code from an originally valid

Logic errors are another type of error in coding. Most pro-source program. All compilers have some restrictions,
grammers introduce certain types of errors, which theywhich may not even be described in the manual. If check-
tend to repeat over and over. In such a case, it is advis-ing of these restrictions in conjunction with a particular
able to keep a list of such commonly encountered errors.bug is feasible, it should be tried so as to sidestep the
In other words, a programmer with long experience inbug.
debugging can think of and prepare a personal list of• Utility and Application Packages. Like compilers, various
his or her typical errors. This list can then be used as asystems and applications software packages supported
checklist during the debugging indicating what to lookby an installation may not be entirely bug free. However,
for once a new bug is encountered. Common examplesat the same time, when a bug is encountered while using
of these types of bugs include using illegal subscripts,these packages, the user should first assume that the bug

lies in his or her part of the code. This class of software
makes a large volume of the software available on any
installation and, for the lack of any better term, is
lumped into a single category called systems and applica-
tions software. Most installations also have a collection
of internal routines, macros, library procedures, and so
forth, the use of which is highly recommended. Great
care is usually taken before releasing such subroutines
for general use. However, like any other software, these
should not be considered bug free.

Table 2. Common Programming Bugs

1. Errors in problem definition Correctly solving the wrong
problem

2. Incorrect algorithm Selecting an algorithm that
solves the problem incorrectly
or poorly

3. Errors in coding Incorrect program for the
algorithm



448 SOFTWARE BUGS

writing conditional jumps to a wrong place, or counting PREVENTING BUGS
from one when counting should start from zero. These

Debugging is often the most costly part of software develop-types of errors are particularly common if one habitu-
ment. Thus effort should be made to prevent bugs. There areally programs in two or more languages. Note that logic
a few rules that, if followed by software developers, will helperrors are not syntax errors and will still be present
to eliminate some common bugs:after syntax checking is complete. The following is a

partial classification of logic errors according to their
• Avoid Questionable Coding. It is better to avoid usingtypes:

advanced features unless one has made certain that they• Loops (e.g., wrong number of loop cycles)
do perform as expected. One should not try to fool the• Data and input/output (e.g., failure to consider all
compiler or the operating system. Compilers and op-possible data values)
erating systems are very complicated, and it may be pos-• Variables and arithmetic operations (e.g., using an in-
sible to find a situation in which one can violate a lan-correct variable name, or a spelling error causing the
guage defined rule and still get correct results. However,use of a wrong variable)
such actions should be avoided. This type of bug can be• Arrays (e.g., transposing the subscript order, or index
very difficult to find, specifically if the program has beenout of range/bounds)
used for a while.

• Subroutines (e.g., use of incorrect parameter values in
• Avoid Dependence on Defaults. All programming lan-a subroutine call)

guages have some defaults, which the compiler assumes.• Character strings (e.g., declaring a character string
The use of these defaults saves work for the programmerwith the wrong size)
but can be dangerous because computer manufacturers• Logical operations (e.g., failure to provide a properly
occasionally change the defaults. Different machinesmatched ELSE clause in a nested IF . . . ELSE state-
have different defaults, and if it is desirable to maintainment)
portability of programs, it is best to avoid using too many
defaults.

The aforementioned bugs are mostly detected in the early • Never Allow Input Data Dependency. One should not
phase of debugging. Beyond these, there exists a whole class allow a program to depend on whether the input data is
of more complicated bugs that belong to later stages of debug- in a specific form or is within a restricted range. Instead,
ging. We refer to this class of bugs as special bugs. These are input data should be checked within the program to
sophisticated errors that are difficult to locate. Here are some make sure that they are correct. If data are not checked
examples of such bugs: at input, the program may periodically be found to have

mysterious failures. Such bugs usually result in a repu-
tation of unreliability for the program and the program-• Semantic Bugs. These bugs are caused by the failure to
mer.understand exactly how a command works. An example

• Check for Completeness of Logic Decisions. For example,is to assume that arithmetic operations are automati-
if data are supposed to take a value of one or two, onecally rounded. Another example is to assume that a loop
should not just check for the value of one and then, ifwill be skipped if the ending value of the loop variable is
false, automatically assume a value of two. This willsmaller than the initial value.
overlook the pathological cases that may be present. In-

• Semaphore Bugs. This type of bug is exemplified by the
stead, the data should be examined for the value of one;situation when a process A is waiting for an event that
then, if not true, the data should be examined for the

can only be caused by a process B while the process B value of two. If it is neither one nor two, then one should
is waiting for an event that can only be caused by the provide code for the pathological case (that is, usually an
process A. This type of bug usually emerges when run- error message or halt).
ning large concurrent systems such as an operating sys-

• Employ a Debugging Compiler. The compiler in usetem.
greatly affects the amount of debugging needed. A debug-

• Timing Bugs. These bugs can develop when two opera- ging compiler checks for more complicated errors as com-
tions depend on each other in a temporal sense. For ex- pared to a regular compiler. A good debugging compiler
ample, suppose the operation A must be completed before can often reduce the debugging time. Syntax is more
another operation B can start. If operation B starts too carefully examined and the interaction of commands is
soon, a timing bug may appear. Timing bugs and sema- checked. More important, numerous checks are done dur-
phore bugs are also known as situational bugs. ing execution of the source program. Uninitialized vari-

ables, out-of range subscripts, and illegal transfers are• Evanescent Bugs. Another type of nasty bug that is in-
flagged during execution. Obviously, all this additionaltermittent is called an evanescent bug. This is a bug that
checking requires extra time, so execution time is usuallymay appear and then disappear for a period of time. This
much slower.includes bugs that will not reappear even when the pro-

gram is rerun with identical data on the same machine.
An example of this type of bug is a program switch that TESTING VERSUS DEBUGGING
has not been initialized but usually is correct due to the
tendency of the machine to have a zero in that particu- Many programmers confuse the debugging and testing stages

of the program development and treat these two activities aslar location.



SOFTWARE BUGS 449

equivalent. However, these are two distinct and different ac- ever, a second approach to debugging. In this approach, de-
bugging overlaps with the writing stage of programming.tivities (3). Testing is the dynamic execution of the software
Some programmers prefer to write a few lines of code andunder controlled conditions with a sample input. Testing is
then test them immediately to make sure that they workdone for two purposes: (1) to identify errors (during develop-
properly. Programmers who program this way are writing,ment), and (2) to give confidence that the system is working
debugging, and testing all at the same time.(during acceptance testing). If the testing stage provides an

evidence of any program failure, then the debugging stage
will follow. The process of locating and correcting errors in STAGES OF DEBUGGING
software is known as debugging, so called because one of the
earliest faults found in a computer was a suicidal moth (bug) As already mentioned, the debugging process begins with the
trapped in a relay, which caused incorrect operation of the execution of a test case for which the results are assessed and
software. Debugging always starts when some evidence of a lack of correspondence between expected and actual values
program failure is observed. is encountered. The debugging will always have one of the

Often, after tests have been run, the program will fall back following two outcomes: (1) The cause of the error will be
to the debugging stage. Testing determines that an error ex- found, corrected, and removed; or (2) the cause of error is not
ists; debugging first localizes and then removes the cause of found, in which case the person performing debugging may
the error. Thus, there is some overlap between these two suspect a cause, design a test case to help validate his or her
stages. Programming time should be allotted for both stages suspicion, and work toward error correction in an iterative
in order to emphasize that both of them are necessary. manner. This means that during debugging we encounter er-

rors that range from mildly annoying cases (e.g., an incorrect
output format) to catastrophic (e.g., a system failure). The fol-

THE DEBUGGING PROCESS lowing typical situations are possible during the stages of de-
bugging:

Debugging is the procedure of iteratively isolating the loca-
tion and the cause of a failure (not withstanding the fact that • Case 1: Program Outcome does not Match the Desirable
one might get lucky and find it on the first pass through the Specification. A failure is actually a behavior that does
debugging procedure). Debugging is performed after execut- not match the program specification. Thus, one should
ing a successful test case indicating a failure. In more con- first consult the specifications themselves to determine
crete terms, debugging is a two-part process; it begins with whether they are clear enough and to consider the possi-
some indication of the existence of an error (e.g, the results of bility that the error is in the specification rather than in
a failed test case), and it is the activity of (4) the implementation. This means that when our objective

is to prevent errors, we must direct our attention to the
1. Determining the exact nature and location of suspected start of the program development process rather than to

error within the program the end of it. In other words, a reasonable first step to
debugging is to verify the completeness and accuracy of2. Fixing or repairing the error
the problem definition.

• Case 2: Program Terminates Prematurely. The programUsually, determining the cause of a failure requires much
compiles properly, starts execution, provides some out-more effort as compared to setting up the corresponding test
put, and then terminates earlier than expected. In thiscase (revealing the failure). Debugging, then, should be of ma-
case, since some output is being produced, regular debug-jor importance to anyone concerned with improving program-
ging techniques can be applied.ming productivity. The correction usually consists of making

• Case 3: Incorrect Answers. The program runs but pro-a change to software and its associated documentation, but it
duces incorrect answers. Experienced programmers al-can also consist of changes to the test documentation, user
ways consider themselves lucky when this stage isdocumentation, or operational procedures.
reached. This probably indicates that the program is ba-Novice programmers often believe that a program needs to
sically sound and the logic is almost correct.be debugged only once. That is, when the program works

nicely in conjunction with a selected set of data, they assume • Case 4: An Infinite Loop. This error is usually not very
that it will work for all other data as well. They will be often difficult to find. If you cannot spot the loop immediately,
surprised when, after using and believing the results for sev- simply add print statements before and after suspected

loops. Do not put print statements in the loops; other-eral runs, they find out that the program is producing an obvi-
wise, thousands of lines of output will usually appear.ously incorrect output. This means that, in reality, a program
The print statements will provide output that will indi-may continue to require debugging throughout its life.
cate which loop is entered but never exited. Another com-There are two general approaches to debugging. In the
mon situation where a program may appear to be in anfirst approach, debugging is achieved once the program is
infinite loop may actually arise due to indefinite waitcomplete. In this case, either a great deal of programmer time
caused by the lack of expected input or some other eventis spent trying to avoid and detect bugs manually, or the ma-
(e.g., a message from some other process).chine’s help is sought in detecting bugs. The choice between

the two alternatives is governed by the amount of machine
time available. There is a natural tendency to push most of DEBUGGING ALGORITHM
the debugging work off on the machine. If machine time is
available, this is wise since the machine (equipped with an It is evident that a computer can neither construct nor debug

programs without being told, in one way or other, what prob-appropriate debugger) may be more effective. There is, how-



450 SOFTWARE BUGS

lem is supposed to be solved and some instructions on how (locating the error and then repairing it), the set actually con-
sists of two subsets (5):to solve it. No matter what language we use to convey this

information, we are bound to make mistakes. This is not be-
Error-Locating Principlescause we are sloppy and undisciplined, as advocates of some

program development methodologies may say, but because of • Think. We know that debugging is a problem-solving
a much more fundamental reason: We cannot know, at any process. The most effective method of debugging is a
given point in time, all the consequences of our current as- mental analysis of the information associated with the
sumptions. A program is indeed a collection of assumptions, error symptoms. An efficient debugger should be able to
which can be arbitrarily complex, and the resulting behavior pinpoint most errors prior to the execution of the pro-
is a consequence of these assumptions. As a result, we cannot, gram.
in general, anticipate all the possible behaviors of a given pro- • If You Reach an Impasse, Sleep on It. The human subcon-
gram. It follows from this argument that the problem of pro- sciousness is a potent problem solver. What we often re-
gram debugging is present in any programming or specifica- fer to as inspiration is simply the subconscious mind
tion language used to communicate with the computer and working on the problem while we might be consciously
hence should be solved at an abstract level. In particular, we doing something else, such as eating, walking, or watch-
attempt to formalize and develop algorithmic answers to the ing a movie. If you cannot locate an error in a reasonable
following two questions: amount of time, drop it and work on something else.

After ‘‘forgetting’’ about the problem for a while, either
1. How do we identify a bug in a program that behaves your subconscious mind will have solved the problem or

incorrectly? your conscious mind will be clear for a fresh reexamina-
2. How do we fix a bug, once it is identified? tion of the symptoms.

• If You Reach an Impasse, Describe the Problem to Someone
An algorithm that solves the first problem is called a diagno- Else. By doing so, you will probably discover something
sis algorithm, and an algorithm that solves the second is new. In fact, it is often the case that by simply describing
called a bug-correction algorithm. To debug an incorrect pro- the problem to a good listener, you will suddenly see the
gram, one needs to know the expected behavior of the target solution without any real assistance from the other
system. Therefore, we assume the existence of an agent, typi- party.
cally the programmer, who knows the target program and

• Avoid Experimentation, Use It Only as a Last Resort. The
may answer queries concerning its behavior. The program- most common mistake made by novice debuggers is at-
mer, in turn, may have gained this information from the spec- tempting to solve a problem by making experimental
ifications. changes to the program (e.g., ‘‘I don’t know what is

A diagnosis algorithm and bug-correction algorithm can be wrong, so I will change this statement and see what will
integrated into a debugging algorithm, following the scheme happen.’’). This totally haphazard approach cannot even
in Fig. 2. A debugging algorithm accepts as input a program be considered debugging; it represents an act of blind
to be debugged and a list of input/output samples that partly hope. Not only does it have a miniscule chance of success,
define the behavior of the target program. It executes the pro- but it often compounds the problem by adding new errors
gram on the input samples; whenever the program is found to the program.
to return an incorrect output, it identifies a bug in it using a
diagnosis algorithm, and fixes it using the correction algo- Error-Repairing Principles
rithm.

• Errors Tend to be Clustered. Where one bug exists, there
is likely to be another, so when one finds an error in a

DEBUGGING PRINCIPLES section of a program, the probability of the existence of
another error in that specific section is higher. When re-

A set of debugging principles, many of which are psychologi- pairing an error, examine its immediate vicinity for any-
cal in nature, is discussed in the following section. Many of thing else that looks suspicious. As the complexity in-
these principles are intuitively obvious, yet they are often for- creases, the defect (bug) density increases. In general
gotten or overlooked. Since debugging is a two-part process 80% of all bugs in a program are located in the 20% most

complex modules.
• Fix the Error, Not Just a Symptom of It. Another common

improper act is to repair the symptoms of the error, or
just one instance of the error, and not the error itself. If
the proposed correction strategy does not match all the
clues about the error, one may end up fixing only a part
of the error and not all of it.

• The Probability of the Fix Being Correct is Not 100%. A
new piece of code that is added to a program to fix an

read P, the program to be debugged.
repeat

read the next input/output sample.
while P is found to behave incorrectly on some input do

identify a bug in P using a diagnosis algorithm;
fix the bug using a correction algorithm.

output P.
until no samples left to read.

error can never be assumed to be perfectly correct. InFigure 2. A scheme for a debugging algorithm. It accepts as input a
general, corrections are much more error prone than theprogram to be debugged and a list of input/output samples. Whenever
original code itself. One implication is that correctionsthe program is found to return an incorrect output, the scheme re-
must be tested, perhaps more rigorously than the origi-quires identification of the bug using a diagnosis algorithm, and a fix

for the bug. nal program.



SOFTWARE BUGS 451

• The Probability of the Fix Being Correct Drops as the Size • Debugging via insertion of print statements in those
parts of the program where the bug is expected. Theseof the Program Increases. In other words, the ratio of er-

rors due to incorrect fixes versus original errors increases statements are generally used to print the values of
those variables that may be helpful in locating the er-in larger programs. Experience has shown that in a large

program, on the average, one of every six new errors dis- ror.
• Debugging via complete reliance on automated debug-covered is due to prior corrections to the program.

ging tools that may allow a programmer to execute• Beware of the Possibility That an Error Correction May
the program under the controlled conditions, stop theCreate a New Error. Not only does one have to worry
program at certain points, examine values of dataabout incorrect corrections, but one has to worry about
variables, and so on.seemingly valid corrections that may have an undesir-

The general shortcoming of these brute force methodsable side effect leading to a new error. One implication
is that they ignore the process of thinking. It is our con-is that not only does the error situation have to be tested
tention that most errors can be located by careful think-after the correction is made, but one must also perform
ing, in many cases without even further using the com-regression testing to make sure that a new error has not
puter. Some instances of such thought process arebeen introduced.
explained in the following list item.• The Process of Error Repair Should Put the Programmer

2. Debugging by Induction. In an induction process, oneBack Temporarily in the Design Phase. One should real-
proceeds from a particular point to the whole. That is,ize that error correction is a form of program design. In
by starting with the clues (symptoms of the error, possi-other words, whatever procedures, methodologies, and
bly gathered from the results of one or more test cases)formalism were used in the design process should also
and looking for relationships among them, one can oftenapply to the error-correction process.
locate the error. The induction process is illustrated in
Fig. 3. The steps are as follows:

DEBUGGING APPROACHES • Locate the pertinent data.
• Organize the data.

Regardless of the approach taken, debugging has one overrid- • Devise a hypothesis.
ing objective: to find and correct the cause of a software error. • Prove the hypothesis.
The objective is realized by a combination of systematic evalu-

3. Debugging by Deduction. The process of deduction, il-ation, intuition, and luck. In general, the following categories
lustrated in Fig. 4, is a process of proceeding from somefor debugging approaches are commonly used (6):
general theories or premises, using the process of elimi-
nation and refinement, to arrive at a conclusion (the lo-1. Debugging by Brute Force. The most common method of
cation of the error). The steps are as follows:program debugging is the rather inefficient brute force
• Enumerate the possible causes or the hypotheses.method. Perhaps the reason for its popularity is that it
• Use the data to eliminate possible causes.requires little thought. However, the brute force method
• Refine the remaining hypothesis.is usually the most inefficient and unsuccessful ap-
• Prove the remaining hypothesis.proach to debugging. This method can be partitioned

4. Debugging by Backtracking. An effective error-locatinginto at least three categories:
method for small programs is to backtrack the incorrect• Debugging with a storage dump, whereby the pro-
results through the logic of the program until one dis-grammer prints out the whole or a part of the memory
covers the point where the logic went astray.image of the program at a certain point during the

execution. The programmer then attempts to locate 5. Debugging by Testing. The last ‘‘thinking-type’’ debug-
ging method is the use of test cases. In general, one canthe error by analyzing the values of data or stack vari-

ables. consider two types of test cases: test cases for testing,

Figure 3. Most errors can be located by
careful thought. One such thought process
is induction. The first step is the enumer-
ation of what the program did correctly,
and what it did incorrectly. The second
step is the structuring of the pertinent
data to allow one to observe patterns. The
next two steps are to study the relation-
ships among the clues and devise, using
the patterns that might be visible in the
structure of the clues, one or more
hypotheses about the cause of the error. A
hypothesis is proved by comparing it with
the original clues or data, making sure
that the hypothesis completely explains
the existence of the clues, which is the

Locate
pertinent

data

Organize
the

data

Study
their

relationships

Devise
a

hypothesis

Prove
the

hypothesis

Fix
the

error

Cannot

Cannot

Can

Can

last step.



452 SOFTWARE BUGS

Figure 4. The process of deduction. The
first step is to develop a list of all conceiv-
able causes of the error. By a careful anal-
ysis of data, one attempts to eliminate all
but one of the possible causes. The avail-
able clues are used to refine the theory to
something more specific. The last vital
step is identical to the last step in the in-
duction method.

Enumerate
possible
causes

Use
process of
elimination

Collect
more
data

Refine
remaining
hypothesis

Prove
remaining
hypothesis

CannotNone left

Can Fix
the

error

in which the purpose is to expose a previously unde- variables, only a selected subset of them is monitored
and printed.tected error, and test cases for debugging, in which the

purpose is to provide information useful in locating a • Subroutine. The third type of tracing involves tracking
subroutine calls. This becomes very useful in a pro-suspected error.
gram that calls many subroutines. Every time a sub-6. Debugging by a Combined Approach. As a final remark,
routine is called, the name of the subroutine is printed;we note that the preceding approaches are not mutually
and when a return from the subroutine is executed, aexclusive, and most often programmers employ a proper
return message is printed.combination of them.

Traces will often provide all the information needed to
locate a bug in a program. But their weakness is that

USE OF DEBUGGING AIDS they can easily provide too much information (that is,
thousands of lines of output). The second disadvantage is

Debugging aids are the tools that a programmer uses to de- that, because of the great amount of information moni-
bug a program. As with tools of any kind, they must be used tored and provided, traces are usually quite costly in ma-
in the proper place and in the correct way to give acceptable chine time. A full trace can easily increase execution
results. A good debugging tool should be flexible and easy to time by a factor of 10 to 40. Thus, in order to overcome
use. these difficulties, flow traces are usually designed so they

A repertoire of debugging aids is a useful source of help can be turned on and off. That is, they can be turned on
during debugging. But such tools seldom relieve the program- just for the section of the program that needs to be traced
mer from constructing his or her own debugging aids. The and turned off for the other sections.
often effective debugging aids seem to be those that are writ-

• Subscript check monitors the validity of all subscriptsten into the program while writing the original program (7).
used with the named array by comparing the subscriptCommon examples of debugging aids employed by program-
combination with the declared bounds of the array. If themers include the following:
subscript falls outside the declared range, an error mes-
sage is printed. It is usually possible to monitor all, or• Dump is a record of information at a given time of the
just a subset, of the arrays.status of the program. This is usually provided in ma-

• Display allows the user to select the exact place in thechine language and is of limited use for several reasons.
program when the variable value is to be printed. ThisThe main reason is because it is difficult to relate the
allows a much more selective printing than the variabledump to your program. It requires the programmer to
trace. In addition, the display command usually printsunderstand machine language and be able to relate ma-
the variable name along with the variable value. Thischine language to the high-level programming language
provides labeled output automatically.in use. In addition, if the compiler optimizes high-level

code, it becomes even more difficult to use the dump even
if machine language is known. A highly optimizing com- BASICS OF DEBUGGERS
piler can entirely rearrange the operations in a program,
thus making a dump almost useless. Since the informa- A debugger is a tool to help track down, isolate, and remove
tion provided in a dump is not in a form that can be used, bugs from software programs (8). Debuggers are tools to illu-
there has been a trend to provide debugging aids, which minate the dynamic nature of a program. They are used to
provide debugging information in a form more suitable understand a program, as well as to find and fix its defects.
for use. Debuggers are like a magnifying glass, the microscope, the

• Trace is a record of the path of execution of the program. logic analyzer, the profiler, and the browser with which a pro-
It can be used to see if the program is being executed in gram can be examined. Debuggers are quite complex pieces
the same sequence as the programmer intended and if of software that also require an exceptionally close coopera-
the variables have the desired values stored in them. tion with and intimate knowledge of the operating system.
There are usually three types of traces: Here are some basic facts about debuggers:
• Flow. The first type traces the flow of control of the

program. That is, it usually prints statement labels as • What Are They? Debuggers are software tools that help
determine why a program does not behave correctly.they are passed during execution.

• Variable. This type of trace prints variable names and They help a programmer in understanding a program
and then in finding the cause of its defect. The program-values. Every time a variable changes its value, the

variable label and its new value are printed. These mer can then repair the defect and so allow the program
to work according to its original intent. A debugger is atraces are designed so that, instead of printing out all



SOFTWARE BUGS 453

tool that controls the application being debugged so as Program design and the concept of ‘‘building’’ a program
are terms that have now almost completely taken over theto allow the programmer to follow the flow of program

execution and, at any desired point, stop the program plain ‘‘writing’’ a program. The use of the terms design and
build illustrates that engineering ideas and disciplines haveand inspect the state of the program to verify its correct-

ness. now entered the programming world. Broadly speaking, this
approach says that a software system or program should be• Who Uses Them? Typically, the original developer uses a
treated like a piece of machinery. Therefore, for it to rundebugger, but later a maintainer, a tester, or an adapter
smoothly, parts of it should be easily exchangeable, it shouldmay also use it. A debugger can also serve as a useful
be easy to test, and so on. Thus, these features put a lot ofway for someone unfamiliar with a piece of software to
emphasis on modularity, robustness, and testability.get up to speed on that code in a preparation for mainte-

All programmers nowadays adopt a modular approach to anance or expansion of the code.
large degree. No one admits to writing large, monolithic pro-• How Are They Used? Debuggers are used by rerunning
grams. When a program is broken down into small modulesthe application, sometimes after a special compilation
and each is specified separately, then clearly more thoughtthat prepares them for debugging, in conjunction with
will go into the detailed design work. In addition, smallerthe debugger tool itself. The debugger carefully controls
units mean less complexity and so should be easier to test.the application using special facilities provided by the
Also, having modular programs helps control coupling andunderlying operating system to give the user fine control
the management of the interfaces. In the following, we firstover the program under test. The user controls execution
describe the spectrum of possibilities and give our definitionusing commonly found debugger features such as
of modular programming:breakpoints and single-step executions. The state of the

program is examined until the cause of the defect is de-
• Monolithic. The program is written in one large block oftected; then the programmer can attempt a fix and begin

coding and may only be compiled and tested as one en-to search for any other defects.
tity; only one programmer can write it.

• Why Are They Used? Debuggers are a necessary part of
• Monolithic But of Modular Construction. The program isthe engineering process, particularly when dealing with

written as a number of defined subroutines (perhapseven moderately complex software systems. All interac-
written by several people) with a short ‘‘control pro-tions cannot be predicted, specifications usually are not
gram,’’ which binds together the sections. The programwritten to the level of programming details, and imple-
may only be compiled as a whole but, by careful use ofmentations is an inherently difficult and error-prone pro-
test aids, could be tested routine by routine.cess. As software gets more complex, debuggers become

• Modular. The program is written as a number of inde-more and more important in tracking down problems.
pendent modules that are coded, compiled, and tested in-• When Are They Used? First, debuggers are used at pro-
dividually and then are brought together to form thegram inception time, when only part of the implementa-
whole program.tion of a design is complete. Second, when an identifiable

module or subsystem is completed and ready for use, a
The best approach to program development involves look-debugger can help to make sure this component is ready

ing first at the overall function to be accomplished by a pro-for integration with the other components. Third, as test-
gram and then dividing that function into some lower levels,ing process progresses on a complete program and uncov-
or subfunctions, each of which can be designed, coded, anders new defects, the debugger becomes increasingly im-
tested with ease. The goal of this approach is its simplicity. Itportant because the program’s bugs tend to get more
is based on certain interrelated improved programming tech-difficult to detect and isolate over time. Fourth, debug-
nologies: top-down development, modularization, and struc-gers are used as changes and adaptations are made to
tured programming. Programmers who follow the top-downexisting programs that introduce new complexities and
approach to program development should not find themselvestherefore destabilize a previously working code.
confronted with long, complex sections of unverified code. Al-
though there are no absolute size limitations, individual mod-

SOFTWARE ENGINEERING PERSPECTIVE ON DEBUGGING ules are kept small in size, and unnecessary complexity is
avoided by separating identifiable functions in independent

Structured programming can be used to model a large system parts. These parts are checked out as they are completed,
as an evolving tree structure of nested program modules, with over time, until a fully integrated program or system of pro-
no control branching between modules except for module calls grams is produced.
defined in the tree structure. By limiting the size and com- In summary, if a program is split into modules, which are
plexity of modules, unit testing and debugging can be done written and tested separately and are only brought together
by systematic reading and by executing modules directly in a when they have all been tested individually, then that is mod-
evolving system in a bottom-up testing process. We are inter- ular programming.
ested in writing programs that are highly readable, whose
major structural characteristics are given in a hierarchical
form and are tied in closely to functional specifications and DEBUGGING VERSUS PROVING PROGRAM CORRECTNESS
documentation. In fact, we are interested in writing programs
that can be read sequentially in small segments such that It has been suggested that one way to eliminate the need for

testing and debugging is to provide a correctness proof of theeach segment can be literally read from top to bottom with
complete assurance that all control paths are visible in the program. Given the current state of the art, techniques for

proving the correctness of a program depend heavily on asser-segment under consideration.



454 SOFTWARE BUGS

tions, axioms, and theorems. This relates to the idea that, sequential program can be characterized simply by the value
of the program counter and the memory image of the programsince a program is simply an algorithm by which symbols are

manipulated, it should be possible to verify the correctness of data. The state history is the record of the program states
expressed in terms of the values assumed by the program-the algorithm by a mathematical proof. As Naur and Randell

say (9): ‘‘[When] you have given the proof of correctness, . . . defined entities. The flow history is the record of the program
state expressed in terms of the path followed by the program[you] can dispense with testing altogether.’’

Investigation has shown that the difficulty of proving the control flow. From this viewpoint, debugging techniques can
be classified into two categories (10):correctness of a program is closely related to its complexity

and to the number of interactions between its component
parts. One of Dijkstra’s hopes in developing structured-pro- • Tracing techniques are based on the gathering and re-
gramming concepts was that automated proofs might be eas- cording of portions of given behavioral aspects of the tar-
ier to develop for programs expressed in structured form. Al- get program at specific execution steps. State and flow
though some progress has been achieved toward automating traces can be collected, which contain information on the
the proof process, it is still not possible to apply those tech- program state history and the program flow history, re-
niques to software systems of a realistic size and complexity. spectively.
In conjunction with the preceding quotation of Naur and Ran- • In controlled-execution techniques, the user monitors the
dell, Goodenough and Gerhart (9) recall a simple text for- behavior of the program interactively, by means of break
matter program described and informally proven correct by traps (also called breakpoints). When the process gener-
Naur, and they find seven bugs in it. Three of those bugs ated by the execution of the program enters the break
could be detected immediately by running the program on a state, the user examines and possibly alters the state of
single example. So they comment, ‘‘The practice of attempting the program as well as the layout of the debugging exper-
formal or informal proofs of program correctness is useful for iment, dynamically.
improving reliability, but suffers from the same types of er-
rors as programming and testing, namely, failure to find and These debugging techniques can be applied to any specific de-
validate all special cases relevant to its specification, design, bugging approaches, such as deductive or inductive or a com-
the program and its proof. Neither testing nor program prov- bination of approaches, described earlier. For example, once
ing can in practice provide complete assurance of program the existence of a bug has been revealed, the programmer
correctness.’’ forms one or more hypotheses about its cause. The program

Gerhart and Yelowitz (9) discuss the fallibility of some of is executed with additional test data in order to collect more
the methodologies that claim to eliminate or reduce the need information concerning the error. The various hypotheses can
for debugging. They consider three types of errors—errors in be derived either by induction (which entails the differences
specifications, errors in systematic program construction, and between the unsuccessful and successful test cases) or by de-
errors in program proving—and provide instances of each of duction (by using a list of possible theoretical causes for the
these errors selected from published articles. Concerning er- suspected error). In either case, the program should be tested
rors in specification, they conclude, ‘‘These examples clearly on the simplest input pattern that might prove or disprove
show that specifications must be tested in much the same way each hypothesis. When the bug is located, appropriate correc-
that a program is tested, by selecting data with the goal of tions are determined and verified by repeating the tests. The
revealing any errors that might exist.’’ process is iterated until a valid solution is found. To locate

A program can be proven correct formally only with respect the program error, it may be necessary to exclude systemati-
to another formal description of its intended behavior. This cally parts of the program that have been demonstrated not
observation suggests that even if the effort in program verifi- to contain the bug, thus narrowing the code portion to be
cation succeeds, it does not solve the problem of program de- tested. This can be done by examining intermediate results
bugging, but simply reduces it to the problem of debugging using tracing or controlled-execution techniques.
specifications. If the problem of debugging specifications has
not yet revealed itself as a serious one, it may be because

DEBUGGING OF CONCURRENT PROGRAMSthere has been no intensive use of formal specifications in
full-scale programming tasks. From an abstract point of view,

A concurrent program consists of a set of sequential processeshowever, a specification language that has a partial decision
whose execution can overlap in time (i.e., a process can beginprocedure is just another programming language, and for any
its execution before a previously started process has termi-programming language there is a complex programming task
nated). The processes may be multiprogrammed on the samefor which there is no simple, self-evidently correct program.
processor, or they may be executed in parallel on differentAs soon as complex specifications are used, there will be a
processors. They can be either independent or interacting,need to debug them.
and interactions may take place for

• competition, to obtain exclusive access to shared re-STATE-BASED APPROACH TO DEBUGGING
sources

• cooperation, to exchange information and achieve a com-There is an alternate and significant view of program debug-
mon goalging called, the state-based approach. In this approach, the

dynamics of the program under development (the target pro-
gram) are observed from the viewpoint of program states (i.e., Competition imposes mutual exclusion on access to shared re-

sources. For instance, one process must not be allowed to al-the values of the program-defined entities, and the point
reached by the program control flow). Thus, the state of a ter the value of a shared variable while another process is



SOFTWARE BUGS 455

examining this variable. Cooperation places precedence con- computed by a program. However, there may be nonfunc-
tional requirements associated with a program. For example,straints on the sequences of operations performed by the con-

current processes. For example, if a process has to use some a program may be computing correct results, but its perfor-
mance may be unacceptable according to its specification. Ap-data produced by another process, the former must wait for

the latter to produce those data. Interprocess communications plications implemented using multiprocessors often encounter
such problems. Therefore, one may need to fix the perfor-may occur via shared variables or message passing. In a

shared variable environment, processes access some common mance bug in this case. As another example, a real-time sys-
tem may produce correct results but may not have acceptablememory. In a pure message-passing environment, however,

processes do not share memory. Instead, interprocess commu- response time. Similarly, a GUI (graphical user interface)
may be found satisfactory from the viewpoints of its look andnication and process synchronization are achieved through

the sending and receiving of messages. feel, ease of use, and so on.
Debugging techniques for sequential programs rely heavily

on the reproducible nature of such programs. If we repeatedly
CONCLUSIONexecute a given sequential program with the same given set

of input data, we always obtain the same data and flow his-
Debugging is an unavoidable activity in software develop-tories. However, this reproducible behavior cannot be guaran-
ment, but it is often viewed as undesirable. Proper planningteed for concurrent programs, neither in a multiprocessor
can ensure that debugging is not unnecessarily expensive orenvironment, where the processes execute on different pro-
time-consuming. The use of appropriate tools and error classi-cessors at different speeds, nor in a single-processor environ-
fication schemes as aids to bug location can make debuggingment, where the processor is switched among the processes,
a relatively systematic process. In the limit, however, debug-as a consequence of scheduling delays, the nondeterministic
ging is an intellectual exercise and one that software engi-nature of process interactions, and lack of synchronization be-
neers must practice in order to gain skill and expertise.tween the activities of the processes.

Simple straightforward coding is a great help when debug-A possible approach to concurrent-program debugging is to
ging. It is easier to avoid and detect errors if the program isconsider each individual process in isolation and use sequen-
written in an orderly and logical manner. In the early stagestial-program debugging techniques (e.g., controlled-execution
of writing a complicated program, one should not hesitate totechniques and tracing techniques) to discover errors within
rewrite sections if doing so will simplify the program. Pro-that process. However, the multiprocess composition of con-
gramming tricks should be avoided. The more tricks usedcurrent programs is, in itself, a potential source of a new
when programming, the more difficult it is to debug one’s ownclasses of errors and, in particular, interprocess communica-
program. Tricky programs are nearly impossible to debug bytion and synchronization errors.
someone who did not write the original program. This alsoLet us first consider controlled-execution techniques. In
touches on the subsequent maintenance and support of soft-the debugging of a concurrent program, an essential feature
ware. Recent estimates claim that the cost of maintenanceof the trap-generating mechanism is the ability to generate a
amounts to 70% of the life cycle cost of a software product.break trap (or breakpoint) on the occurrence of any interpro-

cess interaction. Moreover, we must be allowed to restrict the
trap to any subset of the set of processes that compose the

BIBLIOGRAPHYprogram. However, even this capability is often not very use-
ful because the act of inserting breakpoints may alter the

1. M. Morcatty, Software Implementation, New York, Toronto: Pren-overall behavior of a concurrent program. This is called the
tice-Hall, 1991.probe effect.

2. D. V. Tassel, Program Style, Design, Efficiency, Debugging, andAs far as the use of tracing techniques with concurrent
Testing, Englewood Cliffs, NJ: Prentice-Hall, 1974.programs is concerned, the problems connected with the

3. G. J. Myers, The Art of Software Testing, New York: Wiley, 1979.memory space needed to keep the trace and the execution
time required to gather the trace are compounded by the fact 4. A. R. Brown and W. A. Sampson, Program Debugging: The Pre-

vention and Cure of Program Errors, Amsterdam, The Nether-that we must record the activity of several processes. Keeping
lands: Elsevier, 1973.a copy of the whole program state and/or flow history may be

impractical and is usually unnecessary; therefore, the use of 5. Courant Computer Science Symposium, Debugging Techniques in
Large Systems, Englewood Cliffs, NJ: Prentice-Hall, 1970.some form of selective tracing is almost always mandatory. A

possible approach considers the process as the unit of selec- 6. R. S. Pressman, Software Engineering: A Practitioner’s Approach,
New York: McGraw-Hill, 1988.tive tracing, and records the activity of only a subset of the

processes that constitute the concurrent program. In a differ- 7. M. Bohl, A Guide for Programmers, Englewood Cliffs, NJ: Pren-
ent approach, one might collect information relevant to only tice-Hall, 1978.
a few aspects of the program activity (e.g., interprocess syn- 8. J. B. Rosenburg, How Debuggers Work: Algorithms, Data Struc-
chronization). When various processes of a concurrent pro- tures, and Architecture, New York: Wiley, 1996.
gram execute on different processors, it may not be entirely 9. E Y. Shapiro, Algorithmic Program Debugging, Cambridge, MA:
possible to figure out the exact order in which different events MIT Press, 1983.
have taken place. 10. B. Lazzerini and L. Lopriore, Program Debugging Environments:

Design and Utilization, New York: Ellis Harwood, 1992.
NONFUNCTIONAL DEBUGGING

LADAN TAHVILDARI

Often the term debugging is used to denote the process of AJIT SINGH

University of Waterlooremoval of bugs that may be affecting the functions or results



456 SOFTWARE COST ESTIMATION

SOFTWARE, COMPUTER COMMUNICATIONS.
See COMPUTER COMMUNICATIONS SOFTWARE.


