
342 REDUCED INSTRUCTION SET COMPUTING

REDUCED INSTRUCTION SET COMPUTING

ARCHITECTURE

The term computer architecture was first defined in the article
by Amdahl, Blaauw, and Brooks of International Business
Machines (IBM) Corporation announcing the IBM System/

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

REDUCED INSTRUCTION SET COMPUTING 343

360 computer family on April 7, 1964 (1,2). On that day, IBM the term under which this architecture became widely known
and recognized today.Corporation introduced, in the words of an IBM spokesperson,

‘‘the most important product announcement that this corpora- Development of RISC architecture started as a rather
‘‘fresh look at existing ideas’’ (5,8,9) after revealing evidencetion has made in its history.’’

Computer architecture was defined as the attributes of a that surfaced as a result of examination of how the instruc-
tions are actually used in the real programs. This evidencecomputer seen by the machine language programmer as de-

scribed in the Principles of Operation. IBM referred to the came from the analysis of the trace tapes, a collection of mil-
lions of the instructions that were executed in the machinePrinciples of Operation as a definition of the machine that

enables the machine language programmer to write function- running a collection of representative programs (10). It
showed that for 90% of the time only about 10 instructionsally correct, time-independent programs that would run

across a number of implementations of that particular archi- from the instruction repertoire were actually used. Then the
obvious question was asked: ‘‘why not favor implementationtecture.

The architecture specification covers all functions of the of those selected instructions so that they execute in a short
cycle and emulate the rest of the instructions?’’ The followingmachine that are observable by the program (3). On the other

hand, Principles of Operation are used to define the functions reasoning was used: ‘‘If the presence of a more complex set
adds just one logic level to a 10 level basic machine cycle,that the implementation should provide. In order to be func-

tionally correct, it is necessary that the implementation con- the CPU has been slowed down by 10%. The frequency and
performance improvement of the complex functions must firstforms to the Principles of Operation.

The Principles of Operation document defines computer overcome this 10% degradation and then justify the addi-
tional cost’’ (5). Therefore, RISC architecture starts with aarchitecture, which includes:
small set of the most frequently used instructions which de-
termines the pipeline structure of the machine enabling fast• Instruction set
execution of those instructions in one cycle. If addition of a• Instruction format
new complex instruction increases the ‘‘critical path’’ (typi-

• Operation codes cally 12 to 18 gate levels) for one gate level, then the new
• Addressing modes instruction should contribute at least 6% to 8% to the overall
• All registers and memory locations that may be directly performance of the machine.

manipulated or tested by a machine language program One cycle per instruction is achieved by exploitation of
parallelism through the use of pipelining. It is parallelism• Formats for data representation
through pipelining that is the single most important charac-
teristic of RISC architecture from which all the remainingMachine Implementation was defined as the actual system or-
features of the RISC architecture are derived. Basically weganization and hardware structure encompassing the major
can characterize RISC as a performance-oriented architecturefunctional units, data paths, and control.
based on exploitation of parallelism through pipelining.Machine Realization includes issues such as logic technol-

RISC architecture has proven itself, and several main-ogy, packaging, and interconnections.
stream architectures today are of the RISC type. Those in-Separation of the machine architecture from implementa-
clude SPARC (used by Sun Microsystems workstations, antion enabled several embodiments of the same architecture to
outgrowth of Berkeley RISC), MIPS (an outgrowth of Stan-be built. Operational evidence proved that architecture and
ford MIPS project, used by Silicon Graphics), and a supersca-implementation could be separated and that one need not im-
lar implementation of RISC architecture, IBM RS/6000 (alsoply the other. This separation made it possible to transfer
known as PowerPC architecture).programs routinely from one model to another and expect

them to produce the same result which defined the notion of
architectural compatibility. Implementation of the whole line RISC Performance
of computers according to a common architecture requires un-

Since the beginning, the quest for higher performance hasusual attention to details and some new procedures which are
been present in the development of every computer model anddescribed in the Architecture Control Procedure. The design
architecture. This has been the driving force behind the intro-and control of system architecture is an ongoing process
duction of every new architecture or system organization.whose objective is to remove ambiguities in the definition of
There are several ways to achieve performance: technologythe architecture and, in some cases, adjust the functions pro-
advances, better machine organization, better architecture,vided (1,3,4).
and also the optimization and improvements in compiler tech-
nology. By technology, machine performance can be enhanced

RISC Architecture only in proportion to the amount of technology improvements;
this is, more or less, available to everyone. It is in the ma-A special place in computer architecture is given to RISC.
chine organization and the machine architecture where theRISC architecture has been developed as a result of the 801
skills and experience of computer design are shown. RISCproject which started in 1975 at the IBM Thomas J. Watson
deals with these two levels—more precisely their interactionResearch Center and was completed by the early 1980s (5).
and trade-offs.This project was not widely known to the world outside of

The work that each instruction of the RISC machine per-IBM, and two other projects with similar objectives started in
forms is simple and straightforward. Thus, the time requiredthe early 1980s at the University of California Berkeley and
to execute each instruction can be shortened and the numberStanford University (6,7). The term RISC (reduced instruc-

tion set computing), used for the Berkeley research project, is of cycles reduced. Typically the instruction execution time is

344 REDUCED INSTRUCTION SET COMPUTING

divided into five stages, namely, machine cycles; and as soon P � number of clock periods/cycle (usually P � 1)
T0 � clock period (ns)as processing of one stage is finished, the machine proceeds

with executing the second stage. However, when the stage be-
comes free it is used to execute the same operation that be- While CISC instruction will typically have less instructions
longs to the next instruction. The operation of the instruc- for the same task, the execution of its complex operations will
tions is performed in a pipeline fashion, similar to the require more cycles and more clock ticks within the cycle as
assembly line in the factory process. Typically, those five pipe- compared to RISC (11). On the other hand, RISC requires
line stages are as follows: more instructions for the same task. However, RISC executes

its instructions at the rate of one instruction per cycle, and
its machine cycle requires only one clock tick (typically). InIF: Instruction Fetch
addition, given the simplicity of the instruction set, as re-ID: Instruction Decode
flected in simpler machine implementation, the clock periodEX: Execute
T0 in RISC can be shorter, allowing the RISC machine to run

MA: Memory Access at the higher speed as compared to CISC. Typically, as of to-
WB: Write Back day, RISC machines have been running at the frequency

reaching 1 GHz, while CISC is hardly at the 500 MHz clock
By overlapping the execution of several instructions in a pipe- rate.
line fashion (as shown in Fig. 1), RISC achieves its inherent The trade-off between RISC and CISC can be summarized
execution parallelism which is responsible for the perfor- as follows:
mance advantage over the complex instruction set architec-
tures (CISC). 1. CISC achieves its performance advantage by denser

The goal of RISC is to achieve an execution rate of one program consisting of a fewer number of powerful in-
cycle per instruction (CPI � 1.0), which would be the case structions.
when no interruptions in the pipeline occurs. However, this 2. RISC achieves its performance advantage by having
is not the case. simpler instructions resulting in simpler and therefore

The instructions and the addressing modes in RISC archi- faster implementation allowing more parallelism and
tecture are carefully selected and tailored upon the most fre- running at higher speed.
quently used instructions, in a way that will result in a most
efficient execution of the RISC pipeline.

RISC MACHINE IMPLEMENTATIONThe simplicity of the RISC instruction set is traded for
more parallelism in execution. On average, a code written for

The main feature of RISC is the architectural support for theRISC will consist of more instructions than the one written
exploitation of parallelism on the instruction level. Thereforefor CISC. The typical trade-off that exists between RISC and
all distinguished features of RISC architecture should be con-CISC can be expressed in the total time required to execute a
sidered in light of their support for the RISC pipeline. In addi-certain task:
tion to that, RISC takes advantage of the principle of locality:
spatial and temporal. What that means is that the data thatTime (task) = I × C × P × T0

was used recently is more likely to be used again. This justi-
where fies the implementation of a relatively large general-purpose

register file found in RISC machines as opposed to CISC. Spa-
I � number of instructions/task tial locality means that the data most likely to be referenced

is in the neighborhood of a location that has been referenced.C � number of cycles/instruction

Figure 1. Typical five-stage RISC pipe-
line.

D

IF

EX

MA

EXDIF MA WBI1:

I2:

I3:

I4:

I5:

At any given time there are
five instructions in different stages of

execution.

REDUCED INSTRUCTION SET COMPUTING 345

φ1 φ0 φ0φ0 φ1 φ1 φ0 φ0φ1 φ1

Instruction Fetch Decode

Decode

Execute Cache access Write back

Instr.
cache

Register
file

Data
cache

Register
file

 WA

ALU

Operation Source 1 Source 2 Destn.

IRIAR

Instruction

Figure 2. Pipeline flow of a Register-to-Register operation.

It is not explicitly stated, but that implies the use of caches Carefully Selected Set of Instructions
in RISC. The principle of locality is applied throughout RISC. The fact

that only a small set of instructions is most frequently used,
Load/Store Architecture was used in determining the most efficient pipeline organiza-

tion with a goal of exploiting instruction level parallelism in
Often, RISC is referred to as Load/Store architecture. Alter- the most efficient way. The pipeline is ‘‘tailored’’ for the most
natively the operations in its instruction set are defined as frequently used instructions. Such derived pipelines must
Register-to-Register operations. The reason is that all the serve efficiently the three main instruction classes:
RISC machine operations are between the operands that re-
side in the General Purpose Register File (GPR). The result • Access to Cache: Load/Store
of the operation is also written back to GPR. When restricting

• Operation: Arithmetic/Logical
the locations of the operands to the GPR only, we allow for

• Branchdeterminism in the RISC operation. In the other words, a po-
tentially multicycle and unpredictable access to memory has Given the simplicity of the pipeline, the control part of RISC
been separated from the operation. Once the operands are is implemented in hardware—unlike its CISC counterpart,
available in the GPR, the operation can proceed in a deter- which relies heavily on the use of microcoding.
ministic fashion. It is almost certain that once commenced, However, this is the most misunderstood part of RISC ar-
the operation will be completed in the number of cycled deter- chitecture which has even resulted in the inappropriate
mined by the pipeline depth and the result will be written name: RISC. Reduced instruction set computing implies that
back into the GPR. Of course, there are possible conflicts for the number of instructions in RISC is small. This has created
the operands which can, nevertheless, be easily handled in a widespread misunderstanding that the main feature char-
hardware. The execution flow in the pipeline for a Register- acterizing RISC is a small instruction set. This is not true.
to-Register operation is shown in Fig. 2. The number of instructions in the instruction set of RISC can

Memory Access is accomplished through Load and Store be substantial. This number of RISC instructions can grow
instructions only; thus the term Load/Store Architecture is until the complexity of the control logic begins to impose an
often used when referring to RISC. The RISC pipeline is spec- increase in the clock period. In practice, this point is far be-
ified in a way in which it must accommodate both operation yond the number of instructions commonly used. Therefore
and memory access with equal efficiency. The various pipeline we have reached a possibly paradoxical situation, namely,
stages of the Load and Store operations in RISC are shown that several of representative RISC machines known today

have an instruction set larger than that of CISC.in Fig. 3.

346 REDUCED INSTRUCTION SET COMPUTING

IF DEC

Decode

E-address
calculation Cache access WB

WR RD

Cache
instr.

Register
file

Data
cache

Register
file

 WA

ALU

IRIAR

Base

Displacement E-Address = B + Displacement
Data from cache

D-S

Figure 3. The operation of Load/Store pipeline.

For example: IBM PC-RT Instruction architecture contains Unit. In the best case, one cycle must be lost when Branch
instruction is encountered.118 instructions, while IBM RS/6000 (PowerPC) contains 184

instructions. This should be contrasted to the IBM System/
Simple Addressing Modes360 containing 143 instructions and to the IBM System/370

containing 208. The first two are representatives of RISC ar- Simple Addressing Modes are the requirements of the pipe-
chitecture, while the latter two are not. line. That is, in order to be able to perform the address calcu-

lation in the same predetermined number of pipeline cycles
Fixed Format Instructions in the pipeline, the address computation needs to conform to

the other modes of computation. It is a fortunate fact that inWhat really matters for RISC is that the instructions have a
real programs the requirements for the address computationsfixed and predetermined format which facilitates decoding in
favors three relatively simple addressing modes:one cycle and simplifies the control hardware. Usually the

size of RISC instructions is also fixed to the size of the word 1. Immediate
(32 bits); however, there are cases where RISC can contain

2. Base
 Displacementtwo sizes of instructions, namely, 32 bits and 16 bits. Next is
3. Base
 Indexthe case of the IBM ROMP processor used in the first com-

mercial RISC IBM PC/RT. The fixed format feature is very
Those three addressing modes take approximately over 80%important because RISC must decode its instruction in one
of all the addressing modes according to Ref. 3: (1) 30% tocycle. It is also very valuable for superscalar implementations
40%, (2) 40% to 50%, and (3) 10% to 20%. The process of cal-(12). Fixed size instructions allow the Instruction Fetch Unit
culating the operand address associated with Load and Storeto be efficiently pipelined (by being able to determine the next
instructions is shown in Fig. 3.instruction address without decoding the current one). This

guarantees only single I-TLB access per instruction.
Separate Instruction and Data CachesOne-cycle decode is especially important so that the out-

come of the Branch instruction can be determined in one cycle One of the often overlooked but essential characteristics of
in which the new target instruction address will be issued as RISC machines is the existence of cache memory. The second
well. The operation associated with detecting and processing most important characteristic of RISC (after pipelining) is its
a Branch instruction during the Decode cycle is illustrated in use of the locality principle. The locality principle is estab-
Fig. 4. In order to minimize the number of lost cycles, Branch lished on the observation that, on average, the program
instructions need to be resolved, as well, during the Decode spends 90% of the time in the 10% of the code. The instruction
stage. This requires a separate address adder as well as com- selection criteria in RISC is also based on that very same ob-

servation that 10% of the instructions are responsible for 90%parator, both of which are used in the Instruction Decode

REDUCED INSTRUCTION SET COMPUTING 347

Condition is
 satisfied?

Instr.
cache

+4

+

IAR + 4

It is branch
Offset

Yes

Register
file

Ra = Rb

IR

MUX

Instr. Fetch Decode

Instruction address register:
IAR

φ1 φ0 φ1 φ0 φ1

Decode

Branch Target Instruction
Address

Take branch target

Figure 4. Branch instruction.

of the code. Often the principle of the locality is referred to as cycle cache bandwidth the data and instruction access should
not collide. It is from there that the separation of instructiona 90–10 rule (13).
and data caches, the so-called Harvard architecture, is a mustIn case of the cache, this locality can be spatial and tempo-
feature for RISC.ral. Spatial locality means that the most likely location in

the memory to be referenced next will be the location in the
Branch and Execute Instructionneighborhood of the location that was just referenced pre-
Branch and Execute or Delayed Branch instruction is a newviously. On the other hand, temporal locality means that the
feature of the instruction architecture that was introducedmost likely location to be referenced next will be from the set
and fully exploited in RISC. When a Branch instruction isof memory locations that were referenced just recently. The
encountered in the pipeline, one cycle will be inevitably lost.cache operates on this principle.
This is illustrated in Fig. 5.The RISC machines are based on the exploitation of that

principle as well. The first level in the memory hierarchy is
the general-purpose register file GPR, where we expect to find
the operands most of the time. Otherwise the Register-to-Reg-
ister operation feature would not be very effective. However,
if the operands are not to be found in the GPR, the time to
fetch the operands should not be excessive. This requires the
existence of a fast memory next to the CPU—the Cache. The
cache access should also be fast so that the time allocated for
Memory Access in the pipeline is not exceeded. One-cycle
cache is a requirement for RISC machine, and the perfor-

Breq:

Inst + 1:

Target:

The earliest available target instruction
address.

IF D

D

IF

EX

IF

MA WB

EX MA WB
mance is seriously degraded if the cache access requires two
or more CPU cycles. In order to maintain the required one- Figure 5. Pipeline flow of the Branch instruction.

348 REDUCED INSTRUCTION SET COMPUTING

IF EX MA IF WB IF D EX MA WB

Total of cycles for two instructions

I1 I2

Figure 8. Instruction execution in the absence of pipelining.

The same principle of scheduling an independent instruc-
tion in the otherwise lost cycle, which was applied for in
Branch and Execute, can be applied to the Load instruction.
This is also known as delayed load.

An example of what the compiler can do to schedule in-
structions and utilize those otherwise lost cycles is shown in

Ld:

Data written to register

Data available from
 the register file

Data available from cache

Data needed

writeC-AccAddrsDIF

 Add: WBMAEXDIF

add r7, r5, r3

ld r5, r3, d

Dependency

Fig. 7 (13,14).
Figure 6. Lost cycle during the execution of the load instruction.

Optimizing Compiler

A close coupling of the compiler and the architecture is one of
RISC architecture solves the lost cycle problem by intro- the key and essential features in RISC that was used in order

ducing Branch and Execute instruction (5,9) (also known as to maximally exploit the parallelism introduced by pipelining.
Delayed Branch instruction), which consists of an instruction The original intent of the RISC architecture was to create a
pair: Branch and the Branch Subject instruction which is al- machine that is only visible through the compiler (5,9). All the
ways executed. It is the task of the compiler to find an in- programming was to be done in High-Level Language and
struction which can be placed in that otherwise wasted pipe- only a minimal portion in Assembler. The notion of the ‘‘Opti-
line cycle.

The subject instruction can be found in the instruction
stream preceding the Branch instruction, in the target in-
struction stream, or in the fall-through instruction stream. It
is the task of the compiler to find such an instruction and to
fill-in this execution cycle (14).

Given the frequency of the Branch instructions, which var-
ies from 1 out of 5 to 1 out of 15 (depending on the nature of
the code), the number of those otherwise lost cycles can be
substantial. Fortunately a good compiler can fill-in 70% of
those cycles which amounts to an up to 15% performance im-
provement (13). This is the single most performance contrib-
uting instruction from the RISC instruction architecture.

However, in the later generations of superscalar RISC ma-
chines (which execute more than one instruction in the pipe-
line cycle), the Branch and Execute instructions have been
abandoned in favor of Brand Prediction (12,15).

The Load instruction can also exhibit this lost pipeline cy-
cle as shown in Fig. 6.

1d r2, b
add r2, 1
st r2, a
1d r3, c
bne r3, 0, tg1
st 0, d

tg1:

1d r2, b
1d r3, c
add r2, 1
bne r3, 0, tgl
st r2, a
st 0, d

tg1:

Suboptimal: Optimal:

Load stall

Load stall

Lost cycles

Total = 9 cycles Total = 6 cycles

Program to calculate:
a = b + 1

if (c = 0) d = 0

r2 = b
r2 = b + 1
a = b + 1
r3 = c
skip
d = 0

r2 = b
r3 = c
r2 = b + 1
skip
a = b +1
d = 0

Figure 7. An example of instruction scheduling by compiler.

Table 1. Features of RISC Architecture

Feature Characteristic

Load/store architecture All operations are Register to
Register, so Operation is de-
coupled from access to memory

Carefully selected subset of in- Control implemented in hard-
structions ware (no microcoding in

RISC); set of instructions not
necessarily smalla

Simple addressing modes Only most frequently used ad-
dressing modes used; impor-
tant to fit into existing
pipeline

Fixed size and fixed field instruc- Necessary to decode instruction
tions and access operands in one cy-

cle (there are, however, archi-
tectures using two sizes for in-
struction format (IBM
PC-RT))

Delayed branch instruction Most important performance im-
(known also as Branch and Ex- provement through instruc-
ecute) tion architecture (no longer

true in new designs)
One instruction per cycle execu- Possible only through use of

tion rate (CPI � 1.0) pipelining
Optimizing compiler Close coupling between architec-

ture and compiler (compiler
knows about pipeline)

Harvard architecture Separation of Instruction and
Data Cache resulting in in-
creased memory bandwidth

a IBM PC-RT Instruction architecture contains 118 instructions, while IBM RS/
6000 (PowerPC) contains 184 instructions. This should be contrasted to the
IBM System/360 containing 143 instructions and IBM System/370 contain-
ing 208. The first two are representatives of RISC architecture; the latter two
are not.

REDUCED INSTRUCTION SET COMPUTING 349

scheduled, and finally the effect of finite size caches, the num-
ber of ‘‘lost’’ cycles adds up, bringing the CPI further away
from 1. In the real implementations the CPI varies and a
CPI � 1.3 is considered quite good, while CPI between 1.4 to
1.5 is more common in single-instruction issue implementa-
tions of the RISC architecture.

However, once the CPI was brought close to 1, the next
goal in implementing RISC machines was to bring CPI below
1 in order for the architecture to deliver more performance.
This goal requires an implementation that can execute more
than one instruction in the pipeline cycle, a so called su-
perscalar implementation (12,16). A substantial effort has
been made on the part of the leading RISC machine designers
to build such machines. However, machines that execute up
to four instructions in one cycle are common today, and a ma-
chine that executes up to six instructions in one cycle was

Historical Machines
IBM Stretch -7030, - 7090, etc.

CISC IBM S/3090

IBM 370/ESA Cray - IVAX - 11

IBM 370/XAPDP - 11 Cyber

IBM S/360 CDC 6600PDP - 8

CISC

Circa 1964

introduced in 1997.
Figure 9. Main branches in development of computer architecture.

Pipelining

Finally, the single most important feature of RISC is pipelin-
mizing Compiler’’ was introduced in RISC (5,9,14). This com-

ing. The degree of parallelism in the RISC machine is deter-
piler was capable of producing a code that was as good as the

mined by the depth of the pipeline. It could be stated that all
code written in assembler (the hand-code). Though there was

the features of RISC (that were listed in this article) could
strict attention given to the architecture principle (1,3), ad-

easily be derived from the requirements for pipelining and
hering to the absence of the implementation details from the

maintaining an efficient execution model. The sole purpose of
principle of the operation, this is perhaps the only place

many of those features is to support an efficient execution of
where this principle was violated. Namely, the optimizing

RISC pipeline. It is clear that without pipelining, the goal of
compiler needs to ‘‘know’’ the details of the implementation,

CPI � 1 is not possible. An example of the instruction execu-
the pipeline in particular, in order to be able to efficiently

tion in the absence of pipelining is shown in Fig. 8.
schedule the instructions. The work of the optimizing com-

We may be led to think that by increasing the number of
piler is illustrated in Fig. 7.

pipeline stages (the pipeline depth), thus introducing more
parallelism, we may increase the RISC machine performance

One Instruction per Cycle
further. However, this idea does not lead to a simple and
straightforward realization. The increase in the number ofThe objective of one instruction per cycle (CPI � 1) execution

was the ultimate goal of RISC machines. This goal can be pipeline stages introduces not only an overhead in hardware
(needed to implement the additional pipeline registers), buttheoretically achieved in the presence of infinite size caches

and thus no pipeline conflicts, which is not attainable in prac- also the overhead in time due to the delay of the latches used
to implement the pipeline stages as well as the cycle time losttice. Given the frequent branches in the program and their

interruption to the pipeline, Loads and Stores that cannot be due to the clock skews and clock jitter. This could very soon

IBM RS/6000: 1990

PowerPC: 1993

DEC - Alpha:
1992

SPARC v.9: 1994 MIPS - 4: 1994

MIPS - 3: 1992

MIPS - 2: 1989

MIPS - 1: 1986 HP - PA:
1986

IBM PC/RT:
1986

MIPS
Stanford 1982

SPARC v.8: 1987

RISC - 1
Berkely 1981

IBM 801: 1975

IBM ASC: 1970

Cray - I: 1976

Cyber

CDC 6600: 1963

Figure 10. History of RISC development.

350 REDUCED INSTRUCTION SET COMPUTING

Table 2. Some features of RISC Processors

Digital MIPS PowerPC Sun
Feature 21164 10000 620 HP 8000 UltraSparc

Frequency (MHz) 500 200 200 180 250
Pipeline stages 7 5–7 5 7–9 6–9
Issue rate 4 4 4 4 4
Out-of-order execution 6 Loads 32 16 56 None
Register renaming (int/FP) None/8 32/32 8/8 56 None
Transistors/logic transistors 9.3 M/1.8 M 5.9 M/2.3 M 6.9 M/2.2 M 3.9 Ma/3.9 M 3.8 M/2.0 M
SPEC95 (Intg/FlPt) 12.6/18.3 8.9/17.2 9/9 10.8/18.3 8.5/15
Performance/log-trn (Intg/FP) 7.0/10.2 3.9/7.5 4.1/4.1 2.77a/4.69 4.25/7.5

a No cache.

bring us to the point of diminishing returns where further mour Cray, who is by many given the credit for the invention
of RISC.increase in the pipeline depth would result in less perfor-

mance. An additional side effect of deeply pipelined systems
History of RISCis hardware complexity necessary to resolve all the possible

conflicts that can occur between the increased number of in- The RISC project started in 1975 at the IBM Thomas J. Wat-
structions residing in the pipeline at one time. The number of son Research Center under the name of the 801. 801 is the
the pipeline stages is mainly determined by the type of the number used to designate the building in which the project
instruction core (the most frequent instructions) and the oper- started (similar to the 360 building). The original intent of
ations required by those instructions. The pipeline depth de- the 801 project was to develop an emulator for System/360
pends, as well, on the technology used. If the machine is im- code (5). The IBM 801 was built in ECL technology and was
plemented in a very high speed technology characterized by completed by the early 1980s (5,8). This project was not
the very small number of gate levels (such as GaAs or ECL), known to the world outside of IBM until the early 1980s, and
and a very good control of the clock skews, it makes sense to the results of that work are mainly unpublished. The idea of
pipeline the machine deeper. The RISC machines that a simpler computer, especially the one that can be imple-
achieve performance through the use of many pipeline stages mented on the single chip in the university environment, was
are known as superpipelined machines. appealing; two other projects with similar objectives started

Today the most common number of pipeline stages encoun- in the early 1980s at the University of California Berkeley
tered is five (as in the examples given in this text). However, and Stanford University (6,7). These two academic projects
12 or more pipeline stages are encountered in some machine had much more influence on the industry than the IBM 801
implementations. project. Sun Microsystems developed its own architecture cur-

The features of RISC architecture that support pipelining rently known as SPARC as a result of the University of Cali-
are listed in Table 1. fornia Berkeley work. Similarly, the Stanford University

work was directly transferred to MIPS (17).
The chronology illustrating RISC development is illus-HISTORICAL PERSPECTIVE

trated in Fig. 10.
The features of some contemporary RISC processors areThe architecture of RISC did not come about as a planed or a

shown in Table 2.sudden development. It was rather a long and evolutionary
process in the history of computer development in which we
learned how to build better and more efficient computer sys- BIBLIOGRAPHY
tems. From the first definition of the architecture in 1964 (1),
there are the three main branches of the computer architec- 1. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Architecture of
ture that evolved during the years. They are shown in Fig. 9. the IBM System/360, IBM J. Res. Develop., 8: 87–101, 1964.

The CISC development was characterized by (1) the PDP- 2. D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures:
11 and VAX-11 machine architecture that was developed by Principles and Examples, Advanced Computer Science Series,
Digital Equipment Corporation (DEC) and (2) all the other New York: McGraw-Hill, 1982.
architectures that were derived from that development. The 3. G. A. Blaauw and F. P. Brooks, The structure of System/360,
middle branch is the IBM 360/370 line of computers, which is IBM Syst. J., 3: 119–135, 1964.
characterized by a balanced mix of CISC and RISC features. 4. R. P. Case and A. Padegs, Architecture of the IBM System/370,
The RISC line evolved from the development line character- Commun. ACM, 21: 73–96, 1978.
ized by Control Data Corporation CDC 6600, Cyber, and ulti- 5. G. Radin, The 801 Minicomputer, IBM Thomas J. Watson Re-
mately the CRAY-I supercomputer. All of the computers be- search Center, Rep. RC 9125, 1981; also in SIGARCH Comput.
longing to this branch were originally designated as Archit. News, 10 (2): 39–47, 1982.
supercomputers at the time of their introduction. The ulti- 6. D. A. Patterson and C. H. Sequin, A VLSI RISC, IEEE Comput.
mate quest for performance and excellent engineering was a Mag., 15 (9): 8–21, 1982.
characteristic of that branch. Almost all of the computers in 7. J. L. Hennessy, VLSI processor architecture, IEEE Trans. Com-

put., C-33: 1221–1246, 1984.the line preceding RISC carry the signature of one man: Sey-

REFLECTOMETERS, TIME-DOMAIN 351

8. J. Cocke and V. Markstein, The evolution of RISC technology at
IBM, IBM J. Res. Develop., 34: 4–11, 1990.

9. M. E. Hopkins, A perspective on the 801/reduced instruction set
computer, IBM Syst. J., 26: 107–121, 1987.

10. L. J. Shustek, Analysis and performance of computer instruction
sets, PhD thesis, Stanford Univ., 1978.

11. D. Bhandarkar and D. W. Clark, Performance from architecture:
Comparing a RISC and a CISC with similar hardware organiza-
tion, Proc. 4th Int. Conf. ASPLOS, Santa Clara, CA, 1991.

12. G. F. Grohosky, Machine organization of the IBM RISC System/
6000 processor, IBM J. Res. Develop., 34: 37, 1990.

13. J. Hennessy and D. Patterson, Computer Architecture: A Quanti-
tative Approach, San Mateo, CA: Morgan Kaufman.

14. H. S. Warren, Jr., Instruction scheduling for the IBM RISC
System/6000 processor, IBM J. Res. Develop., 34: 37, 1990.

15. J. K. F. Lee and A. J. Smith, Branch prediction strategies and
branch target buffer design, Comput., 17 (1): 1984, 6–22.

16. J. Cocke, G. Grohosky, and V. Oklobdzija, Instruction control
mechanism for a computing system with register renaming, MAP
table and queues indicating available registers, U.S. Patent No.
4,992,938, 1991.

17. G. Kane, MIPS RISC Architecture, Englewood Cliffs, NJ: Pren-
tice-Hall, 1988.

Reading List

D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, The IBM 360
Model 91: Machine philosophy and instruction handling, IBM J.
Res. Develop., 11: 8–24, 1967.

Digital RISC Architecture Technical Handbook, Digital Equipment
Corporation, 1991.

V. G. Oklobdzija, Issues in CPU—coprocessor communication and
synchronization, EUROMICRO ’88, 14th Symp. Microprocessing
Microprogramming, Zurich, Switzerland, 1988, p. 695.

R. M. Tomasulo, An efficient algorithm for exploring multiple arith-
metic units, IBM J. Res. Develop., 11: 25–33, 1967.

VOJIN G. OKLOBDZIJA

Integration Corporation

REDUNDANT SYSTEMS ANALYSIS. See RELIABILITY

OF REDUNDANT AND FAULT-TOLERANT SYSTEMS.
RE-ENGINEERING. See BUSINESS PROCESS RE-ENGI-

NEERING; SOFTWARE MAINTENANCE, REVERSE-ENGINEERING

AND RE-ENGINEERING; SYSTEMS RE-ENGINEERING.
REFLECTANCE. See GONIOMETERS.
REFLECTION MEASUREMENT. See STANDING WAVE ME-

TERS AND NETWORK ANALYZERS.

