
612 COMPUTABILITY

COMPUTABILITY

Computability (see Refs. 1 to 5) is the field of theoretical com-
puter science that deals with properties of computational
problems—that is, what problems can and cannot be solved
by a computer, and for those that can be solved, whether they
can be solved efficiently. Whereas many problems can be
solved by a computer, there are some interesting and impor-
tant problems that are simply not computable. That is, it is
impossible to design algorithms and, hence, computer pro-
grams that will solve such problems. For example, it is impos-
sible to write a computer program that will decide if another
program will always halt. There are other problems that are
indeed computable, but the known algorithms take so much
time or space that they may as well not be computable. The
classic traveling salesman problem—the problem of finding
the shortest route through a set of cities, visiting each city
only once, is an example of such a problem.

In this article we characterize, as precisely as possible,
those problems that can and cannot be solved by a computer.
We are not concerned here with the efficiency or practicality
of the solutions; we are merely interested in any computer
solution to the problem, even one that is unrealistically slow,
that operates on an imaginary computer, or even one that
exploits unbounded time and memory space. The equally im-
portant problem of characterizing the problems that can and
cannot be computed efficiently is addressed elsewhere in this
encyclopedia. (See COMPUTATIONAL COMPLEXITY THEORY.)

In order to characterize what problems can and cannot be
solved by a computer, we must first define what we mean by
a computer and what it means for a problem to be comput-
able. To this end, we introduce an abstract model of computa-
tion called a Turing machine. We show that computer pro-
grams can be viewed as computing functions on these Turing
machines and that the set of all computer programs that can
be written can be characterized in terms of the set of comput-
able functions. We further show that these computable func-
tions can be precisely characterized in terms of the class of

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



COMPUTABILITY 613

so-called recursive functions, which are a well-defined set of
functions on the natural numbers.

With the notion of computable functions in hand, we go on
to examine the equally interesting problem of characterizing
what problems cannot be solved by computers. To simplify

1 0 0

Tape head

Infinite tape in both directions

1 1

this task, we show that determining what problems can be
Figure 1. Turing machine.solved by a computer is equivalent to determining what so-

called decision problems can be solved by a computer. Hence,
the problems that cannot be solved by a computer are the
undecidable problems. We investigate this class of problems

ates by reading the tape one square at a time. Starting in theby returning to the mathematical description of a Turing ma-
internal start state q1, the action of the tape player is deter-chine. We employ a method of argument called diagonaliza-
mined by a transition function � that maps its internal state,tion to show that there are more different decision problems
q, and the symbol currently being read, s, into a resultingthan there are different algorithms or programs and, hence,
action to be taken. The actions that the Turing machine canthat there are indeed decision problems for which no algo-
perform are to: write a symbol, s�, onto the tape, move therithm exists. Finally, we give several examples illustrating
tape one square left or right and/or to change its internalthe impact and importance of these problems.
state (to q�). The transition function therefore encodes the al-
gorithm implemented by the Turing machine. The Turing ma-
chine will continue to make transitions in accordance withTURING MACHINES AND CHURCH’S THESIS
the transition function � until it reaches the single halt and
accept state q2 or the single halt and reject state q3. Figure 1To characterize what problems can and cannot be solved by a
shows an example of a Turing machine with the tape headcomputer, we must first explain what we mean by a computer
positioned over a 0 symbol.and, in turn, what we mean by something being computable.

To summarize, a Turing machine, M , is specified by aThese problems were indirectly posed to the mathematics
7-tuple: M � �Q, �, �, �, q1, q2, q3�, wherecommunity in 1931 by David Hilbert in the form of his

famous Entscheidungsproblem, which can be paraphrased
Q � �q1, . . ., qu� is a finite set of states.as follows:
� � a finite input language, typically �0, 1�.
� � �s1, . . ., sv� is a finite set of tape symbols such thatIs there some general mechanical procedure which could, in

� � � (typically � � � � �).principle, solve all the problems of mathematics (belonging
� � the transition function � : Q � � � Q � � � �L, R�,to some suitably well-defined class of problems) one after

where L means the tape is moved one square to the leftthe other?
and R means it is moved one square to the right.

q1 � Q is the single start state.As researchers eventually discovered, the answer to this
q2 � Q is the single halt and accept state.question is ‘‘no.’’ There is no such mechanical procedure that

can solve all the problems of mathematics. However, in prov- q3 � Q is the single halt and reject state.
ing this result, researchers made significant progress in for-
mally characterizing the power of an automatic machine or We restrict our attention to deterministic Turing ma-
computer, and the mechanical procedures or algorithms that chines, that is, we assume that for every pair of internal
could operate on it. One important contribution toward ad- states and tape symbols (q, s) � (Q � �), there is exactly one
dressing the Entscheidungsproblem was that of the British triplet consisting of an internal state, a tape symbol to be
mathematician Alan Turing. written, and a tape movement operator, (q�, s�, �L, R�) in

Turing’s effort to mathematically characterize the func- (Q � � � �L, R�) such that �(q, s) � (q�, s�, �L, R�). When the
tioning of a machine in terms of sets of primitive operations Turing machine M runs on the given tape input it goes
led him to introduce the notion of a Turing machine. Intu- through the transitions as specified by � until it reaches state
itively, what Turing did was to define and characterize math- q2 or q3 in Q, whereupon M halts.
ematically the operation of an idealized computer, a Turing Natural numbers can be encoded on the tape as input. For
machine. He then characterized the functions that can be example, the natural number x can be encoded as a sequence
computed by any possible instantiation of a Turing machine of zeroes and ones, representing x in binary notation. Simi-
(i.e., any possible computer). The functions that can be com- larly, there is a scheme to encode tuples of natural numbers
puted are referred to as the computable functions. (x1, . . ., xn). Suppose 	 is an n-variable partial function from

There are several variations on the exact description of a natural numbers to natural numbers. Then a particular Tur-
Turing machine. Informally, a Turing machine is a tape ing machine M computes the function 	 if for any tuple of
player that can be in one of a finite number of states Q � natural numbers (x1, . . ., xn) the following holds: (1) If 	(x1,
�q1, . . ., qu�. The machine operates on a tape of potentially . . ., xn) is defined and 	(x1, . . ., xn) � y, then when M is run
infinite length that is divided into squares, each of which con- with x1, . . ., xn initially encoded on the tape, and the tape is
tains a symbol. The symbol is either blank, �, or is drawn blank everywhere else, M eventually halts in q2 with x1, . . .,
from an input language, � (e.g., 0, 1). Collectively, these sym- xn, y encoded on the tape; and (2) If 	(x1, . . ., xn) is undefined,
bols compose the finite set of tape symbols, �. The tape player then when M is run with x1, . . ., xn initially on the tape and

blank everywhere else, M either fails to halt or halts in statehas a head that can both read and write symbols and it oper-



614 COMPUTABILITY

q3. We say that a partial function 	 is (Turing) computable 3. Projection Function. �ni : N n � N for 1 
 i 
 n, such
that �ni(x1, x2, . . ., xn) � xi. The projection functionwhen there is a Turing machine M that computes it.

While Turing conceptualized the notion of computability therefore, returns the value of the ith of n natural num-
bers which are specified as inputs to the function.with respect to his Turing machines, the mathematical notion

of computability is more fundamental and is not limited to
Turing’s conceptualization of a computer. Indeed, a number Additionally there are three generating rules for functions:
of different mathematicians, including Markov, Post, Kleene,
Church, and Gödel contributed in different ways to these 1. Composition. Let f and h1, h2, . . ., hm be functions with
ideas. Out of their work came several characterizations of the n parameters (i.e., n-place functions) and let g be an
notion of an algorithm and the set of computable functions. m-place function. Then f is obtained from g and h1, h2,
Church, Turing, and Markov all claimed that the class of . . ., hm by composition if
functions they had defined coincided with the class of comput-
able functions. It turns out that all their characterizations f (x1, x2, . . ., xn) = g[h1(x1, x2, . . ., xn), . . ., hm(x1, x2, . . ., xn)]
were equivalent. This claim was captured in Church’s Thesis
(sometimes referred to as the Church–Turing Thesis), which 2. Primitive Recursion. Let f be an m-place function, h an
can be stated as follows: (m � 1)-place function, and g an (m � 1)-place function.

The following system of equations determines a unique
m-place function f , by primitive recursion.The class of problems that can be solved in any reasonable

model of computation is exactly the same as the class of
problems that can be solved by a Turing machine. f (x1, . . ., xm−1, 0) = g(x1, . . ., xm−1)

f (x1, . . ., xm−1, y + 1) = h[x1, . . ., xm−1, y, f (x1, . . ., xm−1, y)]

That is, any problem for which we can find an algorithm that
3. Minimization. Let f be an m-place function and g becan be programmed in any programming language and run

an (m � 1)-place function. Then f is obtained from gon any computer, real or imaginary, even one exploiting un-
with the aid of a minimization operator or a least num-bounded time and memory space is computable by a Turing
ber operator, if for any x1, . . ., xm, and y, f (x1, . . ., xm)machine. Hence, we can use the concept of computable func-
� y holds if and only if g(x1, . . ., xm, 0) . . . g(x1, . . .,tions to characterize the problems that can be solved by a
xm, y � 1) are defined and are not equal to 0, whilecomputer. Observe that Church’s Thesis is indeed a thesis or
g(x1, . . ., xm, y) � 0.a claim, rather than a theorem, since it is predicated on an

intuitive and informally defined notion of computability and
Recursive functions are total functions (i.e., functions thatcannot be supported by mathematical proof. Nevertheless,

are defined for every argument) that are obtained from theChurch’s thesis is widely accepted as true.
initial functions by means of a finite number of applications
of the generating rules for composition, primitive recursion,
and minimization. If the class of functions includes partialRECURSIVE FUNCTIONS
functions (i.e., functions which may not be defined for some
arguments), then they are called partial recursive functions.In the previous section we explained that every effective com-
If minimization is not employed to obtain the total functionsputation can be carried out by a Turing machine, and that
then the functions are said to be primitive recursive. Most ofthe Turing computable functions (computable functions) char-
the computable functions of everyday interest can be charac-acterized exactly what can be computed. In this section we
terized by the class of primitive recursive functions.provide a precise mathematical characterization of the class

of computable functions by introducing the notion of recursive
functions. The set of computable functions is equivalent to the

DECISION PROBLEMS AND DECIDABILITYset of partial recursive functions. Hence, a function on the
natural numbers is computable if and only if it is a partial

We have seen that the class of partial recursive functions co-recursive function. In what follows we provide a precise defi-
incides with the functions that are computable. This gives anition of the class of recursive functions.
precise mathematical characterization of the functions and,Recursive functions map natural numbers to natural num-
hence, the problems, that are computable.bers. The class of recursive and partial recursive functions is

While it is extremely important to characterize the class ofcomposed of a distinguished set of initial functions that are
functions that are computable, many important problems inassumed to be computable, and the functions that can be ob-
computer science and engineering are not computable. Thattained from the initial functions by repeated application of
is, when we think of these problems as some function to beany combination of three specific generating rules for func-
solved, we find that they cannot be computed—there is notions. There are three initial functions:
guaranteed mechanical procedure or algorithm to solve them.
In this section, we examine the equally interesting class of

1. Zero Function. Z : N � N such that Z(x) � 0 for all x. functions that are not computable. We do so by returning to
That is, Z(x) is the function on the natural numbers our notion of a Turing machine and introducing the concept
that for any given input x returns 0. of a decision problem and the related notion of decidability.

We show below that to study the problems that can and can-2. Successor Function. S : N � N such that S(x) � x � 1
for all x. In other words, the successor function simply not be solved by a computer, it is sufficient to study the spe-

cial class of problems known as decision problems.returns the successor of x (i.e., x � 1).



COMPUTABILITY 615

We make two assumptions in order to simplify the discus- string x over � and outputs 1 (accepts) on x if x � L and
outputs 0 (rejects) on x if x � L.sion. First, we assume that all functions of interest map

strings (A string is a finite sequence of elements.) over a finite A language L is decidable or computable or recursive if
alphabet � to strings over �. Typically, the finite alphabet there exists a Turing machine (over �) that halts on all
will be �0, 1�. This assumption is not restrictive, because any inputs, and that accepts exactly those strings in L.
enumerable set of objects (i.e., any set of objects that can be A language L is semi-decidable or semi-computable or re-
listed by a computer) can always be encoded by a set of cursively enumerable if there exists a Turing machine
strings over �0, 1�, just as we encoded the natural numbers as (over �) that accepts exactly those strings in L.
binary strings in the discussion above.

Our second assumption is that functions are limited to Note the distinction between decidable and semidecidable. If
those whose range (possible outputs) consists of only two ele- L is decidable, then there is an algorithm that always halts
ments, 0 and 1. With these functions, if f (x) � 1, then we say and can always distinguish members of L from nonmembers.
that x is accepted; if f (x) � 0 then we say that x is rejected. For example, the (encodings of the) set of all prime numbers
For example, the function ODD(n) that returns a 1 if n is odd is decidable. On the other hand, consider the example above
and a 0 if n is not odd, is such a function. Similarly, the problem of determining for any natural number n whether there are n
of determining whether or not there are n consecutive 7’s in the consecutive 7’s in the decimal expansion of �. One can imag-
decimal expansion of �, can be expressed using such a function. ine a procedure that would generate consecutive digits in the
Problems that can be expressed using this restricted set of func- expansion of � one at a time, watching for consecutive 7’s. If
tions are referred to as decision problems; if the decision prob- n 7’s appear consecutively, the procedure will halt and output
lem is computable, then we say that it is decidable. a 1 for yes. The problem with this procedure, of course, is that

In characterizing the problems that can and cannot be it is not guaranteed to halt. Since the expansion of � is infi-
solved by a computer, it is sufficient to consider only the deci- nite, there is no point in the execution of the procedure at
sion problems. To provide the intuition behind this claim, we which the procedure knows it can halt and answer no, if it
assume without loss of generality, that all functions have a has not seen n consecutive 7’s. Thus, the procedure is not
range consisting of the natural number, N . If f (x) � i is a guaranteed to halt.
function over N , then the decision problem Df, associated A related concept is that of effective enumerability. A set (or
with f takes as input (x, y) and is defined in such a way that language) is said to be effectively enumerable if there exists a
it accepts the input if and only if y � f (x). Therefore, by using Turing machine that can output the complete list (possibly
the decision problem, the function f (x) � i can be computed by with repetition) of the elements in the set (or language). It
posing the following sequence of questions of Df until a yes re- can be shown that a set (or language) is effectively enumera-
sult is returned: Is 0 � f (x)? Is 1 � f (x)? Is 2 � f (x)?, . . .? Is i � ble if and only if it is recursively enumerable (i.e., semide-
f (x)? As a result, one can show that for any function f , one can cidable).
construct a corresponding decision problem Df, with the prop- While decidable problems (sets) and semidecidable prob-
erty that Df is computable if and only if f is computable. lems (sets) are not equivalent, there are some interesting re-

We provide a formal definition of a decision problem and lationships between them. In particular, every decidable
related concepts, in terms of a Turing machine. Recall that in problem is semidecidable. Also, a problem is decidable if and
the previous section, we characterized Turing machines in only if both it and its complement are semidecidable.
terms of the arbitrary functions that they compute. Since we
have elected to simplify our discussion by focusing on the re-

Turing Machine Enumeration
stricted set of functions having a range of only two elements
it will also be helpful to modify our definition of a Turing As mentioned earlier, some important decision problems aris-

ing in science are not decidable or even semidecidable. Inmachine to be an acceptor or rejecter of a string, rather than
computing a function on a string. Such Turing machines are what follows, we will set up the framework to prove some of

these impossibility results. The intuition behind the simplestcalled deciders. That is, the Turing machine takes as input a
string x over � and must either accept or reject the string x. impossibility result, that some languages are not semidecid-

able, is the fact that the set of all semidecidable languages isAs before, a Turing machine M will be specified by the same
7-tuple, and the computation steps of the Turing machine on not very large (technically, it is countable), whereas the set of

all languages is very large (it is not countable). In this sectiona particular input x will again be prescribed by the transition
function. However, now we will say that M halts and accepts we will first describe how to represent a Turing machine by a

unique natural number. This unique representation is thenx if M halts in state q2; M halts and rejects x if M halts in
state q3; and M does not halt and rejects x if it never reaches used in a subsequent section to show that there are functions

that are not semidecidable.q2 or q3. The language accepted by M will be the set of all
strings that are accepted by M . (The language corresponds to We will only consider Turing machines whose input alpha-

bet, � is �0, 1�. This restriction is not necessary, but it willall of the domain elements of the function that map to 1.)
Note that there is a unique language accepted by any particu- slightly simplify our discussion. We will also assume that our

Turing machine uses the following conventions: (1) The stateslar Turing machine.
With this modified definition of a Turing machine we de- are ordered q1, . . ., qu, and the tape symbols are also ordered

s1, . . ., sv; (2) q1 is the start state; (3) q2 is the single halt andfine the following:
accept state; (4) q3 is the single halt and reject state; (4) s1

denotes 0, and s2 denotes 1, and the remaining tape symbolsDenote �* to be the set of all strings over �. A language L
(over �) is simply a subset of �*. The decision problem are s3, . . ., sv. Note that the number of states, u, and the

number of tape symbols, v, is always finite but can be arbi-associated with L is a function that takes as input a



616 COMPUTABILITY

trarily large. Any Turing machine accepting some language
over �0, 1� can be reconfigured to satisfy the above conven-
tions and still accept the same language.

We are now ready to describe our encoding. Consider a
Turing machine satisfying the above conventions: M � (Q �
�q1, . . ., qu�, � � �0, 1�, � � �s1, . . ., sv�, �, q1, q2, q3). We will
now designate ‘‘move left’’ by D1, and ‘‘move right’’ by D2. We
can represent a transition of this Turing machine, �(qi, sj) �
(qk, sl, Dm) by a 5-tuple (i, j, k, l, m), which we will encode
uniquely by the 0-1 sequence 0i10j10k10l10m (i.e., i 0’s followed
by a 1 followed by j 0’s followed by a 1, etc.). In this way, the

Turing
machines

Mi, xj = 1
if and only if
Mi accepts
the input xj 

Inputs

M1

x1 x1 x1 x1

M2

M3

M4

binary code for M is: 111code111code211 . . . 11coder111,
where codei is the code for one of the possible transitions, two Figure 2. Diagonal language.
consecutive 1’s are used to separate each codei and the entire
sequence begins and ends with three 1’s.

simulation terminates, then U accepts if and only if the simu-For example, consider an unrealistically simple determin-
lation accepts. Otherwise, if the simulation does not termi-istic Turing machine with states q1, q2, q3, input symbols �0,
nate, then U will also fail to terminate on �M , x�.1� and tape symbols �0, 1, ��. M � (Q � �q1, q2, q3�, � � �0,

1�, � � �0, 1, ��, �, q1, q2, q3). Recalling our conventions, the
Diagonalizationelements 0, 1, � of � will be renamed s1, s2, s3, respectively.

The code for M is 111code111code211code311 . . . In this section we will show that there exists a language that
11code9111, where code1, . . ., code9 are the codes for the 9 is not semidecidable. We have already seen that each Turing
transitions. (Since there is one transition for every possible machine can be represented by a unique binary number.
pair consisting of a state and a tape symbol, there are a total Therefore, it is possible to order all Turing machines over
of 9 transitions specified by �.) Below, we specify 4 of the 9 � � �0, 1�: M 1, M 2, M 3, . . . according to their encodings,
transitions of �, along with the code associated with these where M i � M j if the encoding �M i� for M i is less than the
transitions. encoding �M j� for M j. We can also order all binary inputs x1,

x2, x3, . . . in the obvious way.
(a) �(q1, 1) � �(q3, 0, D2)�; code1 � 0100100010100 Now we define the diagonal language LD as the set of all

binary strings xi such that xi is the ith binary input, and M i,(b) �(q3, 0) � �q1, 1, D2)�; code2 � 0001010100100
the ith Turing machine, does not accept xi. We now show that(c) �(q3, 1) � �(q2, 0, D2)�; code3 � 00010010010100
LD is not semidecidable. Construct a table as shown in Fig. 2,(d) �(q3, �) � �(q3, 1, D1)�; code4 � 0001000100010010
where the horizontal axis is labeled with all possible binary
input strings, x1, x2, x3, . . . and the vertical axis is labeledGiven an encoding as specified above, it is possible to com-
with all possible Turing machines, M 1, M 2, M 3, . . .. Entrypletely recover the specification of the Turing machine, up to
(i, j) in the table has value 1 if M i accepts xj and has value 0

renaming of the states and tape alphabet. It is also possible, if M i does not accept xj. While the constructed table is infinite
given an arbitrary natural number in binary notation, to de- in both directions (and therefore cannot actually be written
cide whether or not it is a valid encoding of a Turing machine. down by any human), for any particular i and j, the entry (i,
Thus the set of all Turing machines is countable since it can j) is well defined.
be mapped in a one-to-one fashion to the set of natural num- We claim that LD cannot be accepted by any of the Turing
bers. If M is a Turing machine satisfying the above conven- machines that have been listed in the table. This is because
tions, �M � will denote the binary number that encodes M . for every i, the machine M i gives the wrong answer on the
Also �M , x� will denote the concatenation of the encodings of input xi; in other words, M i accepts xi if and only if xi is not
the pair of numbers where the first number in the pair is in LD. Put another way, a language over �0, 1� can be de-
�M �, and the second number in the pair is x, (where x is the scribed by an infinite 0-1 sequence, where the jth element in
input to the Turing machine). the sequence is 1 if and only if the jth input, xj is in the lan-

guage. In the table shown in Fig. 2, the set of all languages
Universal Turing Machines that are accepted by Turing machines are listed by the rows

of our table: row i describes the language accepted by M i.The universal language, Lu over � � �0, 1� is defined to be the
LD, again viewed as an infinite 0-1 sequence, is carefully cho-set of pairs �M , x� such that �M � encodes a Turing machine
sen to be the complement of the sequence along the diagonal.over � and x is an input string over � and such that M ac-
LD is thus different from every row since LD differs from anycepts x. A universal Turing machine, U over � is simply a
row k on the kth input.Turing machine that accepts LU. It is an important fact that

The above argument is called a diagonalization argumentLU is semidecidable. That is, there exists a universal Turing
and it was originally devised by Cantor in order to show thatmachine U that takes as input �M , x� such that: (a) if M
the real numbers are uncountable; that is, there is no one-to-accepts x, then U halts on �M , x� and accepts; (b) if M does
one function from the real numbers to the natural numbers.not accept x, then U may or may not halt on �M , x� and does

not accept. The idea behind the construction of U is quite sim-
Reductionsple: U first decodes �M , x� into the pair of numbers �M �,

which represents the ‘‘program’’ and x which is the input. In the previous section we have argued that there exists a
language (albeit an unnatural one) that is not semidecidable.Then U simulates the execution of M on the input x. If the



COMPUTABILITY 617

Now we can use this language to show that many other more the simulation of M on x will not enter an infinite loop, so we
can safely simulate M on x. Otherwise, if M does not haltnatural languages are also not semidecidable, and even to

show that some languages which are semidecidable are not on x, then we want to reject �M , x�. Now we can complete the
argument showing that the halting problem is not decidable.decidable. The technique that we use here is called the

method of reductions. It is also a variation of the primary Suppose for sake of contradiction that it were decidable.
Then M Halt described above exists, and therefore, we can ob-method used in complexity theory to give evidence that a

function is difficult to compute. (See COMPUTATIONAL COMPLEX- tain M U, a Turing machine that always halts and accepts ex-
actly LU. But LU is not decidable, and thus we have reached aITY THEORY.)

Let A and B be two decision problems, or even more gener- contradiction and can therefore conclude that LHalt is not de-
cidable.ally let A and B be two languages or functions. Then A re-

duces to B if we can use a program solving B to solve A. Intu-
Other Undecidable Problemsitively, if A reduces to B, then A is not harder than B. This

idea can be used in the contrapositive form to get negative Many problems of fundamental importance in mathematics,
results. In other words, if A reduces to B, and A is not decid- science, economics, and engineering are also known to be un-
able, then it follows that B is also not decidable. decidable (see Ref. 6). Here we give some examples of such

Here is a simple example illustrating the idea. Consider problems. In all cases, proving that a problem is undecidable
the complement of the diagonal language, LD, which is de- requires a reduction from another problem already known to
fined to be the set of strings xi such that xi is the ith binary be undecidable. However, in many of the cases below, the re-
string and M i, the ith Turing machine, accepts xi. (The usual ductions are highly sophisticated.
notion of a complement of a language A would be defined to
be the set of all strings over �0, 1� that are not in A. The Post’s Correspondence Problem. The input to this problem
languages LD and LD are not complements in this usual sense is a collection of dominos. Each domino contains one string
since some strings are not valid encodings of Turing machines (over � � �a, b, . . ., z�) on each side. For example, �(b, ca)(a,
and hence are not in either LD or LD.) It is not hard to see ab), (ca, a), (abc, c)� is a collection of four dominos. The task
that LD reduces to LD and also that LD reduces to LD in the is to decide if there exists a listing of the dominos, possibly
following sense: there exists a Turing machine that always with repetitions, such that the top string equals the bottom
halts and accepts LD, if and only if there is a Turing machine string. For example, a listing that satisfies this property for
that always halts and accepts LD. Thus it follows that LD the above set of four dominos is:
cannot be decidable since if it were decidable, then LD would
also be decidable, and we already know that LD is not even (a, ab), (b, ca), (ca, a), (a, ab), (abc, c)
semidecidable.

We will now show that the universal language, LU is not since the concatenation of the elements in the first half of the
decidable by reducing LD to LU. (Recall that we have already tuple is abcaaabc, which equals the concatenation of the ele-
seen that LU is semidecidable.) Suppose that LU is decidable ments in the second half of the tuple. An example where it is
and M U accepts exactly LU and always halts. We will now not possible to obtain such a listing is: �(abc, ab), (ca, a),
describe an algorithm for LD, which uses M U as a subroutine: (acc, ba)� because the top string will always have greater
(1) Given y, determine i such that y � xi. That is, y is the ith length than the bottom string. However, sometimes it is not
string in the infinite ordering of all possible input strings, and possible for more subtle reasons and, in fact, Post’s correspon-
determine M i, the ith Turing machine. (2) Run M U on �M i, dence problem is not decidable. The reduction in this case is
xi� and accept y if and only if M U accepts. a more complicated one than the simple reductions illustrated

There are hundreds of problems that are known to be un- above and uses the idea of computation histories.
decidable, and the proof is generally a reduction. As a last
example, we will show that the famous halting problem is not Hilbert’s Tenth Problem. This problem was first posed by
decidable. The halting language, LHalt are those numbers �M , Hilbert as the tenth in his famous list of problems. This prob-
x�, such that M eventually halts on the input x. The halting lem, also known as the diophantine equation problem, is as
problem is semidecidable: simply simulate M on x; if M halts follows: Given a multivariate polynomial equation with inte-
and accepts, then the simulation will halt and in this case ger coefficients, does it have an integer solution? For exam-
�M , x� will be accepted; if M halts and rejects, then the simu- ple, 4x2 � x2 �1 has no integer solution, whereas by Fermat’s
lation will halt and �M , x� will be accepted; otherwise if M last theorem, xa

1 � xa
2 � xa

3 has no integer solution for all a 

does not halt on x, then the simulation will not halt on �M , 3. This problem, posed by Hilbert in 1900, remained open un-
x�, and thus �M , x� will not be accepted. til it was proven to be undecidable by Matiyasevich in 1973.

We will now show that the halting problem is not decidable
by reducing LU to LHalt. Assume for the sake of contradiction Rice’s Theorem. We’ve seen that a fundamental question

about programs (whether a program halts or not) cannot bethat M Halt is a Turing machine that always halts, and accepts
exactlyLHalt. Now we want to use M Halt to construct another answered by a program that always halts. There are similar

results for many other questions about programs, such asTuring machine, M U, that always halts and accepts exactly
LU. Given input �M , x�, M U simulates M Halt on �M , x�. If whether a program halts on a particular input, whether a pro-

gram accepts a particular input, or whether a program everM Halt accepts, then we simulate M on x and accept �M , x� if
and only if M accepts x. Otherwise (M Halt rejects �M , x�), halts. Rice’s theorem says that any nontrivial question about

the behavior of programs cannot be answered by a programM U rejects �M , x�. To prove the correctness of M U, notice that
this algorithm first checks whether or not M halts on x, us- that always halts. More precisely, suppose that C is a proper,

nonempty subset of the set of all semidecidable languages.ing M Halt. As long as it does halt, then we are guaranteed that



618 COMPUTATIONAL COMPLEXITY THEORY

4. M. Sipser, Introduction to the Theory of Computation, Boston: PWSThen the following problem is not decidable: Given �M �, is
Publishing, 1997.the language accepted by M in C ?

5. J. Hopcroft and J. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, Reading, MA: Addison-Wesley, 1979.Word Problems for Groups. An important class of problems

from algebra are the combinatorial word problems for presen- 6. M. Davis, Unsolvable Problems, in J. Barwise (ed.), Handbook of
Mathematical Logic, New York: Elsevier Science, 1977.tations of various algebraic structures. In 1947, Post showed

that the word problem for semigroups was undecidable. The
TONIANN PITASSIanalogous result for groups was open for many years, and was
University of Arizonafinally established in 1982 by Novikov.
SHEILA MCILRAITH

Stanford UniversityFractal Geometry. Complex systems abound in many fields,
including biology, physics, ecology, and meteorology. Geomet- TIMOTHY BRECHT
rically one can display the working of such complex systems University of Waterloo
as fractal images, where fractals are defined by rather simple
iterative methods. However, it turns out that simple ques-
tions about fractals cannot be answered by programs that al-

COMPUTATIONAL BIOLOGY. See BIOLOGY COM-ways halt. Penrose originally conjectured that the Mandelbrot
PUTING.set is undecidable in a nonstandard theory of computation

COMPUTATIONAL COMPLEXITY. See GRAPHover the real numbers. More recently, some fractal properties
THEORY.have been shown to be undecidable in the usual sense.

Decidability of Logical Theories. The problem of determining
if a mathematical logic statement is true or false is not decid-
able. In order to state this problem rigorously, we need to
define what a mathematical statement is, and what it means
for it to be true or false. The underlying alphabet consists of
the symbols: ∧, ∨, ¬, (,), �, �, x, R1, . . ., Rk. Variables x1, x2,
. . . are denoted by x, xx, and so forth. The Ri’s are relation
symbols, each of a fixed arity. A well-formed formula is de-
fined inductively as follows: (1) Ri(x1, . . ., xj) is an atomic
formula, as long as Ri has arity j; (2) If A and B are formulas,
then so are A ∧ B, A ∨ B, ¬A, �xiA, �xiA. A model is a collec-
tion of underlying elements (a universe) together with an as-
signment of relations to the relation symbols. For example,
(N, �, �) is the model whose universe is the natural numbers,
and with two relations, addition and multiplication. Now the
decision problem, Th(N, �, �) associated with the model (N,
�, �) is the set of encodings of well-formed formulas that are
true over (N, �, �). It is a fundamental theorem in mathe-
matical logic that Th(N, �, �) is not decidable. That is, given
an arbitrary formula � as specified above, where the only two
relations are addition and multiplication, there is no proce-
dure that always halts and decides whether or not � is true.

ACKNOWLEDGMENTS

Author Pitassi’s research was supported by NSF Grant CCR-
9457782, US-Israel BSF Grant 95-00238, and Grant INT-
9600919/ME-103 from NSF and MŠMT (Czech Republic).
Authors McIlraith’s and Brecht’s research was supported by
the Natural Sciences and Engineering Research Council
(NSERC).

BIBLIOGRAPHY

1. H. Rogers, Jr., Theory of Recursive Functions and Effective Comput-
ability, New York: McGraw-Hill, 1967.

2. N. Pippenger, Theories of Computability, Cambridge: Cambridge
University Press, 1997.

3. C. Papadimitriou, Computational Complexity, Reading, MA: Addi-
son-Wesley, 1994.


