
186 CONFIGURABLE COMPUTING

Application
profiles

Application
program

Reconfigurable
hardware

Machine-code
segments

Circuit
configurations

Compiler

Microprocessor

CONFIGURABLE COMPUTING Figure 1. A configurable computing system with an advanced com-
piler that automatically generates machine code for the instruction-

Configurable computing refers to the process of employing re- set processor and circuit configurations for the reconfigurable
programmable hardware and interconnect to enhance the hardware.
capabilities of traditional computing systems. The concept
and power of configurable computing have been recognized
and explored by many researchers for over a decade. Never- nally proceed to contemporary notions of FPGA-coupled mi-
theless, there is compelling evidence that recent advances in croprocessors and configurable computing in general.
this area may impact the very foundation of modern micro- From a historical perspective, the notion of reconfigurable
processors, or processors in general, and the way we program hardware systems is attributed to Estrin (1). However, much
them. By the early 21st century, it is conceivable that future of the subsequent research on configurable computing ap-
microprocessors, with several tens or hundreds of millions of peared in the context of parallel-processing architectures (2–
transistors, will incorporate configurable logic arrays as a pri- 9). This work started around the mid-1980s and continued
mary component. The integration of reconfigurable logic will to be a rich source of techniques for ultrafast algorithms for
pave the way for a new wave of dynamically transformable arithmetic computations, image processing, sorting, search-
microprocessors, with dynamically alterable instruction sets ing, and a host of other applications. We devote the second
and hardware resources that enable the specialization of in- part of this article to an overview of these efforts, especially
structions and hardware configurations to optimize the map- because they contribute to understanding the power and limi-
ping of specific applications. The reconfiguration process is tations of reconfigurable processor arrays.
aimed at eliminating many of the processing bottlenecks im-
posed by the fixed hardware structure of current processor ar-
chitectures. FPGA-BASED CONFIGURABLE COMPUTING

Programming such powerful processing engines requires
new types of compilers that can be integrated with conven- The FPGA was introduced in 1986 for designers requiring a

solution that bridged the gap between programmable arraytional compiler technology. These new compilers must be ca-
pable of profiling applications and selecting a set of hardware logic (PAL) and application-specific integrated circuits

(ASIC). In the late 1980s and early 1990s independent re-configurations and library routines that best accelerate the
applications subject to certain restrictions on the utilization searchers throughout the world started demonstrating that

computationally intensive software algorithms can be trans-of system resources. Ultimately, such compilers may evolve
the capability of automatically generating instruction sets, posed directly into FPGAs for extreme performance gain. This

continuing research and a growing commercial sector use ofhardware configurations, and correct code sequences for
transformable processors starting with high-level language FPGAs have spawned numerous developments in the area of

high-performance computing.programs or specifications of the application. This type of
compiler-architecture interaction is illustrated in Fig. 1. The term configurable (or transformable) computing refers

to the process of dynamically reconfiguring field-programma-This article presents an overview and survey of configura-
ble computing trends and technologies. We will start by re- ble custom-computing machines to adapt quickly to varying

algorithm and operating conditions under the control of a hostviewing the technology that harnessed and motivated the
rapid evolution of configurable computing, namely run-time processor. Transformable computers are those machines that

use the reconfigurable aspects of FPGAs to implement an al-field-programmable gate arrays (FPGA). We then review ear-
lier work on FPGA-based transformable coprocessors and fi- gorithm. The current state of development regarding the use

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

CONFIGURABLE COMPUTING 187

of FPGA devices and the systems developed is a testament to ments different functions by means of changing a sequence of
machine instructions. On the other hand, an ASIC is a special-the potential of this technology. Many computers have been

designed using FPGAs to accelerate the prototyping process, ized, self-contained system that reads data operands from an
external memory and performs a sequence of dedicated func-and several computer systems use FPGAs in place of custom

ASICs as a standard design practice. tions on the data before producing a result. The ASIC hardware
is fixed and highly specialized to execute a single or a limitedThe dynamic reconfigurability of static random access

memory-(SRAM) based FPGAs provides a very flexible plat- number of functions. Additionally, the ASIC I/O is strictly tai-
lored to specific data formats. The ASIC controller is containedform for implementing new types of coprocessor systems

whose architecture can be transformed, or reconfigured, dur- within the chip so that the ASIC can be controlled by very few
external control signals that specify the type of function to being run time, to realize different types of functions. The

coprocessor is normally attached to the bus of a host system performed and some information about the interface and data
formats. By contrast, FPGAs have reprogrammable hardware.running high-level software. Alternatively, the reconfigurable

coprocessor can be integrated with the microprocessor on the An FPGA is normally interfaced to two types of memories: a
data memory and a configuration memory. The configurationsame chip, thus eliminating the bus and I/O interface bottle-

necks. In a multitasking environment, a program executing memory contains several hardware configuration files that are
loaded into the FPGA according to the task flow specified by theon the host processor can allocate tasks dynamically to the

transformable coprocessor. Reconfigurable computer systems application. The configuration files can specify either control
circuits or computation (data-path) slices. In other words, theare normally characterized by a high level of hardware con-

currency and flexible routing channels that interconnect FPGA imports both its control function specification and its
data-path setup from the configuration memory, thus offering ahardware modules. Therefore, time-consuming computational

‘‘loops’’ are offloaded from the host processor and allocated to very flexible reconfigurable hardware platform for implement-
ing specialized systems. However, the flexibility of FPGAsthe FPGA-based coprocessor, which employs optimized pro-

grammable hardware to execute these tasks. Because large comes at the cost of smaller gate capacity and slower hardware
speeds as compared with equivalent ASIC chips.programs involve multiple tasks that are executed in a given

order, the FPGA-based coprocessor needs to be reconfigured Figures 3 through 5 compare the mapping and execution
of the same sequence of tasks on a hypothetical ASIC andto implement the hardware blocks required for executing the

present task only. The frequency of coprocessor reconfigura- a hypothetical FPGA. Figure 3 shows the relative hardware
resources required for implementing each task, as well as thetion depends on a number of factors including the size of

hardware blocks, reconfiguration loading time, speed of the relative execution times. Several points of difference can be
observed by studying Figs. 4 and 5. Here, an application re-host-coprocessor interface, and other application-specific

factors. quires the execution of three types of tasks, labeled A, B, and
C, according to the task flow graph given in Fig. 4. The nota-This new use for reconfigurable logic device technology re-

ceived a major endorsement in 1996 with the announcement tion B1, B2, B3, is used to indicate different instances of acti-
vating the same task (B) on different sets of data. Similarof a Defense Advanced Research Program Agency (DARPA)

funded program called Adaptive Computing. Whether it be notation is used for tasks A and C. It is assumed that the
hardware resources of the ASIC are capable of executing twoadaptive, chameleon, or reconfigurable, growing interest in

utilizing FPGAs in computing systems furthers the probabil- instances of each of the A, B, and C tasks simultaneously.
The FPGA is assumed to be much more resource-limited andity that transformable computers are the next frontier in com-

puter architecture evolution. is capable of executing a single instance of task B (i.e., imple-
menting task B consumes most of the FPGA hardware), twoMany contemporary transformable computers are designed

with fine-grained parallel (systolic) computation in mind. instances of task C, two instances of task A, or one instance
of task A with task C. Finally it is assumed that any of theOther systems have different design goals. The P4 Virtual

Computer, developed in 1987, was designed as a vector style tasks requires the same execution time on either the FPGA
or the ASIC. Figure 4 shows the ASIC and FPGA schedulesnumeric processor (10). The DVC, from Virtual Computer

Corporation (US), was designed to perform mostly symbolic for executing the different tasks. Figure 5 shows the various
stages of task execution on the ASIC versus that of the FPGA.processing. Other forms utilize FPGAs as high-speed commu-

nications agents as in ArMen, designed by researchers at Uni- Note that the ASIC operation involves activating one or more
dedicated hardware blocks at a time. In the FPGA, only theversite de Bretagne Occidentale (France). ArMen is a hybrid

system consisting of linear asynchronous transputers. In this circuit configurations of current active tasks are loaded into
the FPGA. The schedules of Fig. 4 show that, despite its lim-system, FPGAs are used to configure high-speed systolic com-
ited hardware resources, the overall FPGA execution time ismunications agents between processors achieving improve-
not much longer than that of the ASIC. Observe that thement in data processing in excess of two orders of magnitude
FPGA schedule (Fig. 4) does not show the FPGA configurationover conventional software methods (11).
time during task swapping. However, the ratio of configura-
tion time to execution time is relatively small for most non-FPGAs for Reconfigurable Computing
trivial tasks. Also, modern FPGAs have configuration times

In many respects, FPGAs are attempting to provide an alter on the order of a few microseconds.
native to ASICs in providing highly customized fast hardware Current FPGAs consist of an array of uncommitted (but
for specific applications that cannot be handled adequately by field-programmable) logic blocks and programmable intercon-
a traditional microprocessor. Figure 2 contrasts three types of nect resources. Although many different types of FPGAs are
systems based on FPGAs, ASICs, and microprocessors. The mi- currently available, only static random access memory

(SRAM)–based reprogrammable FPGAs provide a true imple-croprocessor is a general-purpose computing machine. It imple-

188 CONFIGURABLE COMPUTING

Figure 2. Three types of computing sys-
tems: a microprocessor system, a FPGA-
based system, and an ASIC-based system.

Circuit configurations
memory

Function
select

Configuration
bit streams

D
a

ta
 m

e
m

o
ry

FPGA

D
a

ta
 m

e
m

o
ry

ASIC

Program
memory

Instructions

D
a

ta
 m

e
m

o
ry

Microprocessor

Figure 3. Relative hardware versus exe-
cution time for three types of tasks. Execution time

Type A Type C

Type B

Execution time Execution time

H
a

rd
w

a
re

re
so

u
rc

e
s

H
a

rd
w

a
re

re
so

u
rc

e
s

H
a

rd
w

a
re

re
so

u
rc

e
s

Figure 4. Task flowchart and execution
schedules for hypothetical ASIC and
FPGA systems.

FPGA
schedule

ASIC
schedule

B3

B1

B2

A1

A2

C1

C2

C3

B
1

B
1

B
2

B
3

B
2

C1

C1 A1 A2

C2 C3

C2 C3 A2

A1

B
3

FPGA execution time

ASIC execution time

C
o

n
cu

rr
e

n
t

ta
sk

s
C

o
n

cu
rr

e
n

t
ta

sk
s

Time

Time

Task flow graph

CONFIGURABLE COMPUTING 189

shifting in strings of zeros and ones through I/O pins. The
Xilinx technology is characterized by fast reprogrammability.
The functionality of the FPGA can be altered dynamically by
shifting in new configuration files.

The FPGA logic and interconnect can be programmed by
loading the proper bit values in the SRAM control bits. SRAM
bit control is achieved by using two different techniques. The
first technique is used to set up the appropriate bits for build-
ing programmable lookup tables, which are used to realize
logic functions on input data. The second technique uses
SRAM bits to control multiplexing or demultiplexing logic and
pass transistor circuits like those shown in Fig. 8. Figure 9
shows the pass transistor circuit for a reconfigurable intercon-
nect switch, and Fig. 10 shows a 4 	 4 SMB realization using
16 copies of the switch of Fig. 9.

The P4 Virtual Computer system (10), SPLASH (6,11), and
PAM (4,15), are a few configurable computing systems imple-
mented with Xilinx FPGAs. The Virtual Computer P4 system
uses over 50 of the XC4010 chips placed on a single board
with additional ICUBE field-programmable interconnect de-
vices to provide wide communication paths among the
FPGAs. The overall system contains over 520,000 gates, mak-
ing it one of the largest reconfigurable systems to be built up
until the early 1990s. The DVC transformable coprocessor
from Virtual Computer Corporation is another system based
on a single XC4013 FPGA with additional memory. The DVC
board is designed for interfacing with the SBUS of a Sun
SPARC workstation.

The Xilinx XC6200 FPGA

B
1 B

1

ASIC sequence FPGA sequence

B
3

B
2

B
1

C1

C1 C3

C2 A1

C2

C3

A1

A2

A2

B
2

The Xilinx XC6200 FPGA marks a significant departure from
Figure 5. Task activation on an ASIC, and task reconfiguration on previous FPGA generations in several aspects, including,
an FPGA.

technology, logic-block granularity, and areas of application
(13). The XC6200 family is based on a fine-grained (sea-of-
gates) register-rich cell structure, with a low-delay hierarchi-

mentation technology for reconfigurable computers. Prime ex- cal routing scheme that flexibly implements local and global
amples of this technology are the Xilinx family of SRAM- interconnection among logic cells. The larger number of regis-
based FPGAs (12,13), AT&T’s ORCA series (14), and the more ters in the XC6200 FPGA is well suited for computationally
recently proposed multicontext FPGAs. The following sections intensive data-path applications.
consider some of the popular FPGA families as well as some The XC6200 family provides a truly powerful and very
of the promising emerging reconfigurable computing technolo- flexible platform for implementing transformable coproces-
gies. For pedagogical reasons, we start by describing the Xil- sors in particular and a host of other reconfigurable architec-
inx XC4000 FPGA, which is a very good representation of the tures in general. The XC6200 architecture features a built-in
type of FPGAs used for implementing a number of transform- processor interface to facilitate the implementation of recon-
able processors. figurable coprocessors in embedded system applications. The

built-in interface distinguishes the XC6200 family from previ-
The Xilinx XC4000 FPGAs ous generations of FPGAs (such as the XC4000 series). In the

XC4000 series, the interface to the main processor bus mustThe XC4000 structure is shown in Fig. 6. The major compo-
be implemented using programmable logic resources in thenents of this FPGA are configurable logic blocks (CLBs), in-
FPGA, and that may consume a significant portion of theput-output blocks (IOBs), and switch matrix blocks (SMBs).
FPGA resources. More importantly, the XC6200 interface pro-All these structures are connected by wire segments of vary-
vides high-speed access to all internal registers in the logicing lengths, as shown in Fig. 7. Xilinx uses complementary
cells, that is, any register can be mapped into the memorymetal oxide semiconductor (CMOS) SRAM technology to store
address space of the host processor, allowing fast data trans-the programming information for the FPGA. SRAM cells dis-
fers using simple hardware. In general, internal FPGA archi-tributed around the FPGA are used to program specific func-
tectures are not always optimized for the data-path algo-tions in the CLBs and define the interconnectivity among the
rithms typical of coprocessing applications. The XC6200CLBs through the switch matrices. After powering up the
FPGA is one of the first commercial products to address thisFPGA circuits, ‘‘bit files’’ carrying configuration information
problem effectively. In the following, we take a more detailedare loaded into the SRAM cells. For this purpose the SRAM
look at the XC6200 architecture, emphasizing its role as acells sprinkled around the FPGA chip are linked into a long

shift register, and loading configuration bit files is done by transformable coprocessor.

190 CONFIGURABLE COMPUTING

Figure 6. The Xilinx XC4000 FPGA struc-
ture (CLB denotes a configurable logic
block; IOB an input/output block, and S a
switch matrix block).

IOB

IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IOB IOB IOB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB

S S S S S

S S S S S

S S S S S

S S S S S

S S S S S

CLB

IOB IOBIOB IOB

IOB IOB IOBIOB IOBIOB IOB

XC6200 Architecture. The XC6200 FPGA is equipped with 	 64 block. Thus, each level of the hierarchy has its own rout-
ing resources. Each of the basic cells consists of a functionsimple function units and abundant hierarchical routing in-

terconnect resources. The XC6200 FPGA is arranged as a hi- unit as well as a reconfigurable switch capable of realizing
any interconnection pattern among the cell ports. The de-erarchy of cells, blocks of cells, blocks of blocks of cells, etc.,

with each level in the hierarchy having its own routing re- tailed structure of a cell is shown in Fig. 12. Two sets of input
multiplexers are used to connect a cell to its four nearest-sources. At the lowest level of the hierarchy, neighbor-con-

nected cells are grouped into blocks of size 4 	 4 cells. At the neighbor cells and to the adjacent 4 	 4 blocks. The inputs
from nearest-neighbor cells are labeled N, S, E, and W, corre-next level of the hierarchy, 16 of the 4 	 4 blocks are grouped

in a 4 	 4 array to form a 16 	 16 block, as shown in Fig. 11. sponding to neighbor cells, respectively, to the north, south,
east, and west of the cell shown. Inputs from cells connectedIn the XC6216 FPGA, the 16 	 16 blocks are grouped in a

4 	 4 array to form a 64 	 64 block of logic cells. At each to the shown cell by length-4 wires are labeled N4, S4, E4,
level of the hierarchy, blocks are interconnected by wires of and W4. Inputs from cells connected by wires of length 16, or
appropriate length. The XC6200 FPGA employs wires of even length 64, are also available as inputs. However, such
length 1 (cell), length 4, length 16, and chip length for the 64 inputs are not shown in Fig. 12 to maintain clarity. The

Magic output in each cell provides an additional routing re-
source but is not always available for routing. The role of
Magic outputs will be explained in more detail below. The
function unit shown in the center of the cell of Fig. 12 is im-
plemented using the logic circuit of Fig. 13. Clock and clear
functions are required for the correct operation of the D flip
flop in the function unit. Despite its simplicity, a function unit
is capable of realizing over 50 distinct logic functions.

To support hierarchical routing resources in the XC6200
FPGA, additional boundary switches are provided around the
periphery of larger blocks of cells. Figure 14 shows how
boundary switches are placed around a 4 	 4 block. A cell’s

Unit-length
wires

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

Length-2
wires

Long
(chip-wide)

wires

Magic output is routed to two distinct boundary switches. The
Magic wire can be driven by one N, S, E, or W input from anFigure 7. Wire segments of different lengths are available in the
adjacent cell or from the N4, S4, E4, and W4 signals passingXC4000 FPGA to realize local and global interconnections among

CLBs. over the cell. The Magic output is particularly useful for mak-

CONFIGURABLE COMPUTING 191

Figure 8. Pass-transistor switch con-
trolled by a RAM configuration bit,
NMOS � n-channel metal oxide semicon-
ductor; PMOS � p-channel metal oxide

RAM

A B

RAM

A B

NMOS

CMOS

Open state

0

BA

1

BA

Closed state

Open state

Transistor
switch

Switch
representation

Simplified
symbol

A B

A B

Closed state

semiconductor.

ing large buses turn around corners, as illustrated in Fig. 14. fore some IOBs will remain padless. The XC6200 FPGA incor-
It is also useful for allowing the cell outputs to jump to the porates a powerful I/O feature in that every IOB can route
boundary switches of a 4 	 4 block and onto longer wires to either a cell-array signal or a control logic signal to and from
other 4 	 4 blocks. the device pin. This implies that all control signals can be

routed into the cell array and incorporated in user designs. By
I/O Architecture of the XC6200 FPGA. The XC6200 FPGA the same token, user logic outputs can be used in the XC6200

employs user-configurable input/output blocks (IOBs) to pro- internal control circuits. For example, a user-generated signal
vide the necessary interface between external package pins can be used to drive the internal chip-select (CS) signal rather
and the internal logic circuits. Basically one IOB is provided than the CS pin on the package. Figure 15 shows how the
for every cell position around the array border. For example, interface circuitry between an XC6216 FPGA and a micropro-
64 IOBs are provided along each of the four borders of a 64 	 cessor can actually be placed within the FPGA. This greatly
64 block of cells. However, the number of IOBs is larger than simplifies board design by eliminating the need for interface
the number of I/O pads available for the package, and there- ‘‘glue’’ logic circuitry normally implemented by additional

logic-array packages.

The XC6200 FPGA as a Transformable Coprocessor. Several
flexible and fast reconfiguration capabilities of the XC6200
FPGA make it suitable for realizing the concept of a trans-
formable coprocessor. As a part, the XC6200 FPGA can be
used as a microprocessor peripheral or as an application-spe-
cific device. When used as a microprocessor peripheral, the
XC6200 interface contains the same data, address, and con-
trol signals as a conventional SRAM device. When used as an
application-specific device, the XC6200 FPGA may require
only user-defined I/O signals. The block diagram of Fig. 16
presents the cell array and I/O layout for the XC6216 part.
Larger arrays can be constructed by tiling several XC6200
parts together. In some cases data and address buses may
have to be used on every part of the large array. In the
XC6200 FPGA, the control signals use every other IOB, leav-
ing evenly distributed IOBs for interconnecting adjacent
XC6200 chips.

If the XC6200 FPGA is to be used as a transformable

W E

Symbol

S

N

T1 T2

T5

T3 T4
T6

coprocessor, the host-processor program must be designed soFigure 9. A four-port reconfigurable switch—the key element of any
that it can interact with the design running on the FPGA.reconfigurable interconnect. Any subset of ports (N, S, E, and W) can
In this regard, the XC6200 FPGA provides several advancedbe interconnected by closing one or more of the transistor switches

(T1–T6) as shown in the example configurations. processor-compatible features such as the following.

192 CONFIGURABLE COMPUTING

Figure 10. A simple switch matrix block
(SMB), like that used in the XC4000
FPGA, can be configured to realize a large
number of interconnections among its
ports. The connected groups of ports are
(W1,S4), (E1,N4), (W2,N3,S3), (W3,E3),
(W4,N1,S1).

W1

W2

W3

W4

W1

W2

W3

W4

E1

E2

E3

E4

N1 N2 N3 N4 N1 N2 N3 N4

S1 S2 S3 S4 S1 S2 S3 S4

E1

E2

E3

E4

4

3

2

1

• Direct processor read and write access to all internal reg- highly optimized custom hardware configurations for specific
applications. Second, the process of deciding on how to parti-isters in the FPGA with no logic overhead, and support

for 8-, 16-, or 32-bit data bus width. The XC6200 FPGA tion task executions between the host and the coprocessor is
mostly ad hoc and based on the user experience. The formeroffers a flexible mechanism for mapping all the possible

cell outputs from a column (in the cell array) onto the problem is likely to become less serious as predefined device
drivers and efficient run-time libraries of components for8-, 16-, or 32-bit external data bus. This is illustrated in

Fig. 17. It should be noted that the cells producing the FPGAs continue to be offered by vendors. The latter problem,
however, is more difficult and requires the development of in-outputs need not be adjacent. However, the output bits

must appear in descending order of significance within a telligent compilers that are capable of optimizing the parti-
tioning of tasks among the host processor (for execution incolumn of cells.
software) and the transformable coprocessor (for execution in• All user registers and SRAM control memory are mapped
hardware). This problem is harder than it may initially ap-onto the host-processor address space. In other words,
pear because the compiler must keep track of the state andthe various registers within an XC6200 design appear
gate usage of the transformable coprocessor, and it must alsoas locations within the processor memory map. Also, the
be aware of the specifics of the coprocessor performance.configuration memory of the FPGA appears within the

processor memory map. Therefore portions of the
XC6200 FPGA can be configured under the control of the DYNAMICALLY PROGRAMMED GATE ARRAYS AND
host processor. MULTICONTEXT FPGAs

The features just noted demonstrate how the XC6200 family One problem with current FPGA architectures is the speed of
of FPGAs bring the concept of transformable coprocessors reconfiguration. In such FPGAs, the function of a logic block,
closer to reality. However, two major hurdles remain to be or logic cell, remains fixed between relatively slow reconfigu-
conquered before transformable coprocessors become a widely ration sequences. This is caused by the time-consuming oper-

ation of loading configuration bit files from off-chip memory.accepted concept. First, it is still time consuming to develop

Cell Cell Cell Cell

Cell Cell Cell

4 x 4
cells

4 x 4
cells

Four length-16
fast buses

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

4 x 4
cells

Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

Figure 11. The basic layout of an XC6200 FPGA showing the hierarchical structure of logic
cells and interconnects.

CONFIGURABLE COMPUTING 193

Figure 12. Basic cell structure in the
XC6200 FPGA (for clarity, only a subset

From local
interconnect
(N, S, E, W)

X3

F

X1 X2

MAGIC
output

Function
unit

E out

W

W4

W out

N out

S out N4N

N

N
S
E
W

N4
S4
E4
W4

N
S
E
W

N4
S4
E4
W4

E W F

From length-4
interconnect

(N4, S4, E4, W4)
N

N

S E W F

X2 X3
S
W
F

S

SS4

E4

E

E
F

of the interconnect is shown).

Dynamically programmed gate arrays (DPGAs) present an
enhancement over standard SRAM-based FPGAs towards re-
alizing highly efficient configurable computers that are capa-
ble of changing a portion or all of their internal configuration
on a clock-cycle by clock-cycle basis. A DPGA provides on-chip
memory to allow multiple configurations to be stored in sev-
eral memory banks within the chip. An application can store
multiple customized array configurations into the same
DPGA and switch rapidly (within one clock cycle) and dynam-
ically among these configurations. This allows the DPGA to
be reconfigured using its own local memory, thus eliminating
several bottlenecks caused by limited I/O speeds and external
memory access. With this method, full or partial DPGA recon-
figuration can be achieved in one clock cycle, which is in the
order of several tens of nanoseconds. In comparison, recon-
figuration of the fastest current FPGAs requires a few micro-

X3

Clk \Q

Q

C

S

D

Clr

Y3

Y2
F1

0

X2

X1

seconds. A DPGA is also called a multicontext FPGA, indicat-
ing the fact that a DPGA is an FPGA that can switch amongFigure 13. The XC6200 function unit consists of a simple logic cir-
multiple contexts (i.e., configurations) stored in its on-chipcuit with one flip-flop and several configurable multiplexers. The

SRAM bits that control the multiplexers are not shown for clarity. memory.

194 CONFIGURABLE COMPUTING

Figure 14. An XC6200 4 	 4 block with
boundary switches for enabling global in-
terconnects among blocks. The Magic out-
puts within the cells are used to enable
long buses to turn corners within a cell.

N switch N switch

W
 sw

itch
W

 sw
itch

W
 sw

itch
W

 sw
itch

E
 sw

itch
E

 sw
itch

E
 sw

itch
E

 sw
itch

N switch N switch

Cell Cell Cell Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

S switch S switch S switch S switch

The basic unit of the DPGA is an array element, which is based on a global context identifier distributed to all array
basically a look-up table (or LUT) with a memory block that elements. The DPGA employs a two-level routing architec-
stores multiple configurations or contexts. Figure 18 illus- ture. At the lower level, array elements are grouped in square
trates the architecture of a DPGA array element based on the subarrays, with horizontal and vertical interconnects en-
prototype reported in Ref. 16. The context decoder selects the abling communication among array elements in the same row
appropriate configuration for the LUT from the memory or the same column of the subarray. At the higher level,

neighbor-to-neighbor interconnection among subarrays is
achieved by large crossbar switches.

64 x 64
Cell array

Global
I/O

64 I/O pins

Control

Row
decode

64 I/O pins

Column decode

64
I/O
p
i
n
s

64
I/O
p
i
n
s

Internally
generated
chip-select

signal
Microprocessor

Decode
interface
signals

“Glue logic” circuitry
placed in XC6200 FPGA

User-
defined
I/O pins

Chip-select
I/O pin

CS

FPGA

Address bus

Data bus

CS

Figure 15. Microprocessor-FPGA interface. Figure 16. Cell array and I/O layout for the XC6216 part.

CONFIGURABLE COMPUTING 195

Figure 17. Distributed register access in

Map
register

FPGA chip
boundary

User-defined register
within cell array

Cell array

Bit 7

1

1

0

1

1

0

0

0

1

0

1

1

0

1

0

0

1

1

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

CPU
Interface

and
address
decode

logic

Address
bus Column select

Bit 0

8-bit
data bus

the XC6200 FPGA.

FPGA-COUPLED MICROPROCESSORS

The most common microprocessors nowadays are general pur-
pose. They are configured for a specific application by their
instruction streams. However, the instruction set as well as
the computational resources of a microprocessor cannot be
tailored to a specific application. To maintain operational di-
versity, microprocessor designs are almost universally charac-
terized by a complicated control structure that aims at reus-
ing the relatively small data-path portion of the processor for
all types of instructions. Configurable computing aims at re-
moving this rigidity by allowing the data-path and control
logic resources to be reallocated, or reconfigured, for a specific
application. In this section, we present a number of new per-
spectives on integrating configurable logic with microproces-
sor architectures, which will pave the way for a new genera-
tion of powerful, dynamically transformable architectures for
future microprocessors.

The Coarse-Grained MATRIX Architecture

Context 1

Configuration bits

1

2

3

4

Input
data
bits

Look-up table (LUT) logic

Context ID

Context
decoder

Context 2

Context 3

Context 4

Output

In contrast to the fine-grained architecture of the Xilinx
XC6200 FPGA, MATRIX is a coarse-grained reconfigurableFigure 18. DPGA basic array element.

196 CONFIGURABLE COMPUTING

Figure 19. The main blocks of a BFU in
MATRIX.

Incoming
network lines
(levels 1, 2, 3)

Level 1
network drivers

Level 2, 3
network drivers

Network
switch N2

Floating
port P2

Address
data B

ALU
function

FB

Network
switch N1

Floating
port P1

Address
data A

ALU
function

FA

BFU
core

Incoming
network lines
(levels 1, 2, 3)

Level 3
control line

A

FA

B

FB

Level 2 or level 3
Network

architecture, developed by A. DeHon and others at MIT, Pipeline registers are provided at each BFU input port, so
that the operation of MATRIX can be pipelined at the BFUwhich specifically targets configurable instruction distribu-

tion (17). A typical MATRIX architecture consists of an array level. Pipelining is a particularly powerful feature of the MA-
TRIX architecture that enables higher utilization of the BFUsof basic functional units (BFUs) with a hierarchical (three-

level) network of reconfigurable eight-bit buses. Each BFU is as well as higher computational throughput. A BFU can serve
as an instruction memory (for controlling the ALU and/or thea powerful computational device containing an arithmetic or

logic unit (ALU), a large register file (or memory), control interconnect), as a read/write data memory, or as an ALU/
register-file slice. Thus a BFU can serve as a unit of the con-logic, and reconfigurable network switches as shown in Fig.

19. The local interconnect (called a level-1 network) provides trol logic or as a component of the data path. This flexibility
is a key feature of the MATRIX philosophy, which is based oncommunication channels between each BFU and its 12 near-

est-neighbor BFUs, within two Manhattan grid squares, as allowing the application to control the division of resources
between control and computations according to its own char-shown in Fig. 20. At the next level (level-2 network) length-4

bypass buses provide medium-distance interconnects among acteristics. For example, regular computations may dictate al-
locating most BFUs to data-path logic, while irregular compu-the BFUs as shown in Fig. 21. Level-2 networks also allow

corner turns and some data-shifting operations. At the top tations may dedicate most BFUs to control logic.
With current technology, it is possible to integrate hun-level (level-3 network), global row and column buses span the

entire chip width and length. Each BFU is connected to the dreds of BFUs on a single silicon chip. Alternatively, a MA-
TRIX array can be integrated on a single chip with a tradi-level-3 network through special ports and network switches.
tional microprocessor. In this case, the MATRIX array

BFU

Figure 20. Nearest-neighbor interconnects among BFUs in Figure 21. Length-4 bypass buses in MATRIX (black squares indi-
cate BFUs).MATRIX.

CONFIGURABLE COMPUTING 197

aspect of the Garp processor is the development of a software
environment that links configuration files into C programs.

Dynamic Instruction Set Computer

The dynamic instruction set computer (DISC) presents an-
other effort toward combining reconfigurable computing with
microprocessors (21). DISC employs FPGAs to augment and
alter the instruction set of the processor dynamically. The ba-
sic system is illustrated in Fig. 23. As shown, the DISC ap-
proach employs two FPGAs: a processor FPGA and a control-
ler FPGA. The controller FPGA loads configurations stored
in a special memory onto the processor FPGA in response to
requests from the program running on a host computer. If the
configuration memory does not contain the requested circuit,
the processor FPGA initiates a request to the host computer,
which loads the appropriate configuration.

External memory

Data
cache

Instruction
cache

Main processor Reconfigurable
hardware

Figure 22. The main blocks of the Garp architecture.

PROCESSOR ARRAYS WITH RECONFIGURABLE BUSES

Configurable computing has been known to the parallel pro-provides a programmable function unit (PFU) that can be
cessing community since the mid-1980s. The work was ini-used as part of the data path, the control path, or both. When
tially pioneered by Miller, Prasanna-Kumar, Reisis, andimplemented as a part of the data path, the PFU can serve
Stout (8), and soon after, a large number of researchers con-as an application-specific functional unit for executing opera-
tributed to this area (see Refs. 2, 3, 5, 7–9, 22–26). The bulktions that are not supported efficiently by a traditional micro-
of the research work in this area has targeted developing ul-processor. For example, the PFU can be used to implement a
trafast solutions for several basic problems such as sorting,parallel systolic array to process multidimensional arrays of
searching, arithmetic computations, and problems from com-data rapidly, such as those appearing in video processing or
putational geometry. This research has laid out the theoreti-computer graphics applications. When implemented as a part
cal foundations of configurable computing and established theof the control path, the PFU can be used, for example, to emu-
justification for using processor-array models with recon-late and decode new instructions not supported by the micro-
figurable interconnects.processor, or it can be used to customize instruction streams

A typical reconfigurable processor array consists of simpleto a particular application.
processors or processing elements (PEs), which are intercon-
nected in a regular multidimensional structure by short links

The Garp Processor or bus segments. The distinguishing feature of such arrays is
that each PE is capable of locally, or internally, reconfiguringThe Garp architecture proposed in Ref. 18, combines a stan-
the interconnection among its various ports, allowing data todard MIPS microprocessor (Silicon Graphics, Inc.) with recon-
transparently ‘‘pass through’’ the PE. Local reconfigurationfigurable hardware on the same silicon die. The goal of the
can be used to realize other useful interconnection configura-Garp concept is to employ reconfigurable hardware in a pro-
tions such as crossover and broadcast interconnects. A subsetcessor architecture that fits into ordinary processing environ-

ments. Figure 22 shows the main blocks of the Garp architec- of interprocessor links that are interconnected through local
ture. The reconfigurable hardware used in the Garp processor reconfiguration forms a single bus spanning the involved PEs.
employs reconfigurable logic blocks, which are very much like
the CLBs in the XC4000 FPGA described earlier. However,
the logic blocks are arranged in rows to allow parallel access
to, and processing of, wide words of data as required by typi-
cal microprocessor operations. Observe from Fig. 22 that the
instruction stream does not access the reconfigurable array
directly, but rather through the MIPS processor. In the Garp
processor, the loading and execution of configurations on the
reconfigurable hardware are always done under the direct
control of a program running on the MIPS processor. There-
fore, the main thread of control in a program is always man-
aged by the processor, with certain computational loops for-
warded to the reconfigurable hardware for faster execution.
In this respect, the Garp architecture presents an enhanced

Stored
configuration

memory

Controller
FPGA

Processor
FPGA

Host computer

single-chip version of the transformable coprocessor concept
developed in Refs. 10, 19, and 20. However, one interesting Figure 23. Basic organization of a DISC.

198 CONFIGURABLE COMPUTING

In this class of reconfigurable architectures, the simple
processors participate dynamically in the process of reconfig-
uring the network of buses interconnecting their ports. The
dynamic reconfiguration process can alter the interprocessor
topology on a per-instruction basis. Varying the interconnec-
tion network topology in this dynamic manner provably con-
tributes to enhancing the computational power of such pro-
cessor arrays. Indeed, such processor arrays are capable of
solving many classes of problems in constant time, that is, in
a fixed number of steps, which is independent of the problem
size or the number of data items that must be processed by a
parallel program.

Reconfigurable Network of Processors Model

The reconfigurable network of processors (RNP) models dis-
cussed in the following all fall under the single-instruction
multiple data (SIMD) model of parallel processing architec-
tures. In the SIMD model all PEs operate synchronously un-
der the control of a single control unit that issues the same
instruction to all PEs within each instruction cycle. However,
a PE can modify the execution of an instruction based on its
local information. For example, two different PEs may apply
the same instruction on a different subset of ports based on
some local state information.

To simplify presentation, only one- or two-dimensional
RNP models will be discussed. However, one should bear in
mind that the discussion can be extended in many cases to
larger dimensions. It will be assumed that each PE has a
fixed amount of local memory and a fixed number of ports,
which are both independent of the RNP size. It is very impor-
tant to realize that each PE employed in such models exe-
cutes one of two types of activities within each instruction.
The first activity is configuring the local interconnection
among the PE ports; the second is executing arithmetic or
logic operations on local data (in the PE memory or available
at the PE ports). We assume that both activities can be com-
pleted in constant time for a single instruction.

{N} {E} {W} {S} {N, E} {W} {S} {N, E} {W, S}

{N, S} {E, W}

PE

{N, E, W, S}

Bus A

Bus B

{N, E, S} {w}

S

S

W E

It is interesting to observe that the close resemblance be-
Figure 24. A reconfigurable network of processors showing a four- tween RNP models and the MATRIX reconfigurable architec-
port PE with some allowable configuration, an uncommitted 4 	 5 ture described earlier. The RNP model is still slightly more
RNP, and a 4 	 5 RNP configured to form two global buses (bus A powerful than what the MATRIX architecture can achieve,
and bus B). because the PEs in a RNP model can execute several types of

conditional and unconditional instructions that the BFU of
the MATRIX architecture cannot handle. However, the MA-

Figure 24 shows a few possible local-switch configurations for
TRIX architecture can be easily augmented with such capabil-

a PE with four ports labeled N, E, W, and S, which can be
ities.

used to connect the PE to its north, east, west, and south
neighbor PEs, respectively. In representing the different

Local Switch Models and Properties
switch configurations, we adopt the convention of placing
within parenthesis the ports that are connected together At this point it may be useful to consider each PE to consist

primarily of a reconfigurable switch connecting the PE ports,within a PE. For example, the notation (N,S,W)(E) indicates
that ports N,S, and W are connected together within a PE, in addition to the arithmetic or logic processing hardware.

The type of local interconnect function supported within a PEwhile the notation (N,E)(S,W) indicates two distinct groups of
connected ports within the same PE. Figure 24 also illus- has a direct impact on the relative computational power of

reconfigurable processor arrays. In the following, severaltrates how a group of PEs can use their local reconfiguration
capability to construct multiple global buses. Observe that switch models will be defined and their effect on global com-

putations will be discussed.more than one bus can pass through the same PE when the
crossover local configuration [i.e., the configuration
(N,S)(E,W)] is employed. It should be realized that all PE Conditional versus Unconditional Switch Configuration. One

important aspect of local switch configuration is whether aports and interprocessor links can be n-bit wide. In this case
each link, shown as a single edge in Fig. 24, actually repre- switch is controlled locally, that is, by the PE, or globally by

the centralized control unit that issues instructions to allsents an n-bit-wide bus segment.

CONFIGURABLE COMPUTING 199

on the ease with which they can be manipulated for a given
arithmetic operation. The addition circuits shown in Fig. 26
use two different types of coding schemes, one for the digits
entered from the leftmost column and the other for the digits
entered from the bottom row of the RN. Inputs through the
leftmost column and outputs from the rightmost column are
represented using a unitary coding scheme in which n bits
are used to represent an integer in the range [0, n � 1]. An
integer I is represented by presenting a 1 signal to the W port
of the lower I � 1 PEs in the leftmost column, and a 0 signal
to the rest of the PEs in that column. Each input from the
bottom row controls the column of PEs above it. In this case,
it is sufficient to represent this digit using a nonpositional
count-based code. Such a code represents an integer I in the
range [0, n] by presenting 1 signals to the S port of any subset
of I PEs in the lower row of the array, as shown in Fig. 26.
Note that the representation of a number by such a code is
not unique. In Ref. 26, it has been shown that the combina-
tion of ‘‘adder’’ RNPs with the ‘‘divide-by-2’’ RNPs leads to
constant-time algorithms for adding N k-bit numbers on a bit-
model RNP with 2N 	 2kN PEs.

1

1

1

0

0

0

Out 1

1010
Inputs

01

Out 2

Out 3

Out 4

Out 5

Out 6

Figure 25. Counting 1’s on a 6 	 6 RNP. Bit versus Word Models. In general, parallel-processing
computational models can be divided into bit models and
word models. The difference between the two models depends

PEs. Local switch control provides each PE with a certain mainly on how many bits of information a PE needs to access,
level of autonomy in the sense that different PEs, executing within a single instruction cycle, before it can decide on how
the same instruction, can select different switch configura- to configure its local switches. In a bit model, a PE only needs
tions based on local state information or other local decisions a fixed number of bits to make its decision independent of the
made within each PE. Global, or unconditional, switch con- problem size or the processor array size. In a word-model PE,
figurations can be also issued by the control unit to force all, the number of bits required is a function of problem size. For
or a selected subset, of PEs to select the same local switch example, if a PE, in an array containing K PEs, needs to know
configuration among their respective ports. The example its relative position among the other PEs before deciding on
given in Fig. 25 illustrates the interplay among global and which ports to connect, then this is a word-model processor
local switch configurations in solving a simple, but important, array even if the links and internal data paths within the PEs
counting problem. Here, a 7-bit binary input of 0’s and 1’s is are 1-bit wide. This is because log K bits are needed to encode
input to a 6 	 6 RNP, such that 1 bit is supplied to port N of

the position (or address) of each PE in the processor array,
each of the top-row PEs. The RNP is required to count the

and this information must be stored within each PE.number of 1 bits in the input. This problem can be solved
using the following procedures. Initially, an unconditional in-
struction is issued to each PE to connect its N and S ports,
which results in six column broadcast buses. Each one of
these buses can be used to copy the input bit to all PEs in its
column. The next instruction is executed conditionally by
each PE as follows. Each PE that has received a 1 connects
its N port to its E port and its W port to its S port, that is,
the PE sets up a (N,E)(S,W) configuration. On the other hand,
a PE that has received a 0 will set up a (E,W)(N)(S) configu-
ration, that is, it internally connects its E and W ports.
Counting is performed by observing that the output PEs, la-
beled Out 1 to Out 6 in Fig. 25, have the 1 bits and 0 bits
appearing in sorted order on their E ports. To determine the
actual number of 1’s present in the input, each output PE
with a 1 appearing on its E port determines whether its south
neighbor PE has a 0 on its E port. Only one output PE will
detect this condition. Then this PE can use its own row ad-
dress to indicate the number of 1’s in the input. In Fig. 25,

Right input = 3 Output = 5

0

1

1

1

1

1

1

1 1 0
Bottom input = 2

0

0

0

0

1

1

1

1

the rightmost PE in row 3 determines that the total number
of 1’s is 3. Figure 26. RNP for addition. The RNP accepts one input digit (rep-

To perform arithmetic operations on a RNP in which each resented in unitary code) from the rightmost column, and a second
processor has four ports (N, S, E, and W), it is necessary that input (represented in nonpositional code) from the bottom row. The

output is produced in unitary code format.the numbers be represented in an efficient form depending

200 CONFIGURABLE COMPUTING

Figure 27. A two-port, plus-1 shift-
switching PE and its equivalent bit-
model RNP.

R5
R4
R3
R2
R1
R0

R5
R4
R3
R2
R1
R0

No connection Direct switching Plus-1 shift
switching

R5
R4
R3
R2
R1
R0

L5
L4
L3
L2
L1
L0

L5
L4
L3
L2
L1
L0

L5

L R

Equivalent
bit-model RNPs

PE

PE
L4
L3
L2
L1
L0

L5

L4

L3

L2

L1

L0

R5

R4

R3

R2

R1

R0

A two-layered bit model of the reconfigurable mesh was reconfigurable processor arrays. In shift switching, the data
lines from one port can be cyclically shifted before they areintroduced in Ref. 7. This model is capable of simulating all

other reconfigurable mesh models without an asymptotic in- connected to the data lines of another port. It should be em-
phasized that the shift-switching model is meaningful onlycrease in the size of the mesh, an increase in the size of the

mesh, or an increase in its time complexity. It can be shown within the context of a word model of computation. Specifi-
cally, shift switching provides additional computationalthat a two-layered bit-model RNP of size wK 	 wK can simu-

late all arithmetic and logic operations performed by a corre- power only when compared to standard word-model RNs.
However, it can be shown that it is always possible to con-sponding word-model RNP of size K 	 K, where w is the word

length in bits. struct bit-model RNPs of equivalent computational powers as
shift-switching RNs, and with comparable hardware complex-A number of improvements in very-large-scale integration

(VLSI) area and time complexity can be achieved with the bit ity (2,7). Figure 27 shows that a two-port, plus-1 shift-switch-
ing PE with w-bit-wide ports has an equivalent bit-modelmodel for several problems, such as counting 1’s in a binary

string, computing innerproducts, and radix sorting. For in- RNP with 2wn-bit-size PEs (each having four ports). This
transformation that converts shift-switching PEs to bit-modelstance, the problem of counting 1’s in a binary string of length

K can be solved in constant time on a bit-model RNP with K RNPs can be generalized to shift-switching PEs with more
than two ports. For example, if a two-port PE in a one-dimen-log 2K PEs, while logarithmic time is required on a corre-

sponding word-model RNP with K word-size PEs. Also, inte- sional shift-switching RNP with a w-bit-wide bus allows q dif-
ferent shift states, then its function can be realized by atger sorting on the bit-model RNP is faster by a factor of

O(w) over the algorithm reported for the RNP with a shift- most 2wq bit-model PEs. Shift-switching models play a useful
role in developing simple RNP algorithms with a small num-switching word model (7).
ber of configuration states, for example, connect-with-shift,
connect-with-no-shift, and do-not-connect states. Such algo-Direct versus Shift-Switching Models. The computational

power of a reconfigurable network depends directly on the ba- rithms can then be mapped onto their equivalent bit-model
RNPs using standard transformations.sic capabilities of its local switches. For example, a RNP em-

ploying switches that allow several wires to cross over one One particular useful application of shift switching is in bit
counting, or addition, problems. For example, a prefix mod-kanother is more powerful than a RNP that employs noncross-

over switches. Shift switching is another type of a local switch bit-counting RNP can be constructed from a linear connection
of two-port shift-switching PEs with a k-bit bus, as shown inthat can contribute to the computational power of word-model

Figure 28. A mod-6 bit counter or adder.
A PE reading a 0 selects a direct connec-
tion among its ports while a PE receiving
a 1 selects a plus-1 shift connection
among its port. Counting is achieved by
passing a marker bit through the array.
The final output position of the marker in-
dicates the total number of 1’s in the in-
put string. In this example, the marker
emerges from output port R4 indicating a
sum of four 1’s.

#

#

(R4)

0 1 1 0
Input bit string

1 0 1 0

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

CONFIGURABLE COMPUTING 201

18. J. R. Hauser and J. Wawrzynek, Garp: A MIPS processor with aFig. 28 for the case k � 6. Another important application of
reconfigurable coprocessor, in Proc. IEEE Symp. Field-Program-bit counting is in enumeration sorting. To sort N elements,
mable Custom Comput. Mach. FCCM ’97, April 1997.the enumeration-sort algorithm starts by comparing all pairs

19. H. Chow, Transformable computing for MPEG video coding, Mas-of input numbers and produces a two-dimensional array of 0’s
ter’s thesis, University of British Columbia, Vancouver, B.C., No-and 1’s based on whether a particular number is smaller or
vember 1996.larger than its mate. The second step of the algorithm con-

20. H. Chow, H. M. Alnuweiri, and S. Casselman, FPGA-based trans-sists of computing the rank of each number by summing the
formable computing for fast digital signal processing, 3rd Cana-1’s in each column of the 0-1 array. This summation can be
dian Workshop Field Programmable Devices FPD’95, 1995, pp.implemented using mod-k shift-switching RNPs. The summa-
25–31.tion procedure continues in an iterative fashion and can be

21. M. J. Wirthlin and B. L. Hutchings, A dynamic instruction setshown to require log N/log k iterations on an N � N mod-k
computer, in Proc. IEEE Symp. FPGAs Custom Comput. Mach.,shift-switching RNP.
April 1995, pp. 99–107.

22. H. M. Alnuweiri, Constant-time parallel algorithms for image la-
BIBLIOGRAPHY beling on a reconfigurable network of processors, IEEE Trans.

Parallel Distrib. Syst., 5: 320–326, 1994.
1. G. Estrin et al., Parallel processing in a restructurable computer 23. X. Jenq and S. Sahni, Reconfigurable mesh algorithms for the

system, IEEE Trans. Electron. Comput., 747–755, Dec. 1963. area and perimeter of image components and histogramming, in
Proc. Int. Parallel Process. Symp., 1991, pp. 280–281.2. H. Alnuweiri, M. Alimuddin, and H. Aljunaidi, Switch models

and reconfigurable networks: Tutorial and partial survey, in 24. H. Li and M. Maresca, Polymorphic-torus network, IEEE Trans.
Proc. Workshop Reconfigurable Architectures, 8th Int. Parallel Comput. C-38: 1345–1351, 1989.
Process. Symp., Cancun, Mexico, April 1994.

25. R. Lin and S. Olariu, Short reconfigurable buses for computer
3. Y. Ben-Asher et al., The power of reconfiguration, J. Parallel Dis- arithmetic, in Proc. Workshop Reconfigurable Architectures, 8th

trib. Comput., 13 (2): 139–153, 1991. Int. Parallel Process. Symp., Cancun, Mexico, April 1994.
4. P. Bertin, D. Roncin, and J. Vuillemin, Introduction to program- 26. K. Nakano, Efficient summing algorithms for a reconfigurable

mable active memories: A performance assessment, in J. mesh, in Proc. Workshop Reconfigurable Architectures, 8th Int.
McCanny, J. McWirther, and E. Swartslander (eds.), Systolic Parallel Process. Symp., Cancun, Mexico, April 1994.
Array Processors, Englewood Cliffs, NJ: Prentice-Hall, 1989, pp.
300–309.

5. J. Elmesbahi, O(1) algorithm for image component labeling on a Reading List
mesh connected computer, IEEE Trans. Syst. Man Cybern., 21:

M. Bolotski, A. DeHon, and T. F. Knight, Jr., Unifying FPGAs and427–433, 1991.
SIMD arrays, Transit Note 95, MIT Artificial Intelligence Labora-

6. M. Gokhale et al., Building and using a highly parallel program- tory, September 1993.
mable logic array, IEEE Comput., 24 (1): 81–89, 1991.

W. S. Carter et al., A user programmable reconfigurable logic array,7. J. Jang, H. Park, and V. K. Prasanna, A bit model of a reconfi-
IEEE 1986 Custom Integrated Circuits Conf., May 1986, pp.gurable mesh, in Proc. Workshop Reconfigurable Architectures,
233–235.8th Int. Parallel Process. Symp., Cancun, Mexico, April, 1994.

H. Chow and H. M. Alnuweiri, FPGA-based transformable coproces-8. R. Miller et al., Meshes with reconfigurable buses, in Proc. 5th
sor for MPEG video processing, Photonics East ’96—SPIE Int.MIT Conf. Advanced Res. VLSI, Cambridge, MA, 1988, pp.
Symp. Voice, Video, Data, Conf. 2914: High-Speed Comput., DSP,163–178.
Filtering using Reconfigurable Logic, November 1996.

9. B. F. Wang, G. H. Chen, and F. C. Lin, Constant time sorting on
S. A. Cuccaro and C. F. Reese, The CM-2X: A hybrid CM-2X/Xilinxa processor array with a reconfigurable bus system, Inf. Process.

prototype, in Proc. IEEE Workshop FPGAs Custom Comput. Mach.,Lett., 34 (4): 187–192, 1990.
April 1993, pp. 121–130.

10. S. Casselman, Virtual computing and the virtual computer, in
C. Ebeling, D. C. Cronquist, and P. Franklin, Rapid—reconfigurableProc. FPGAs Custom Comput. Mach., Los Alamitos, CA: IEEE CS

pipelined datapath, Proc. Field-Programmable Logic, Heidelberg:Press, 1993, pp. 43–48.
Springer-Verlag, 1996, pp. 126–135.11. P. M. Athanas and H. F. Silverman, Processor reconfiguration

B. Fawcet, FPGAs as configurable computing elements, in Proc. Work-through instruction-set metamorphosis, IEEE Comput., 26 (3):
shop Reconfigurable Architectures, 9th Int. Parallel Process.11–18, 1993.
Symp., Santa Barbara, CA, April 1995.12. Xilinx, The Programmable Logic Data Book, 1994.

J. P. Gray and T. A. Kean, Configurable hardware: A new paradigm13. Xilinx, XC6200 Field Programmable Gate Arrays, Product De-
for computation, in Proc. 10th Caltech Conf. VLSI, 1989, pp.scription (Version 1.10), April, 1997.
279–295.

14. AT&T Field Programmable Gate Arrays Data Book, Allentown,
R. Hartenstein and R. Kress, A datapath synthesis system for thePA: AT&T Microelectronics, April 1995.

reconfigurable datapath architecture, in Proc. Asia South Pacific15. J. E. Vuillemin et al., Programmable active memories: Recon-
Design Autom. Conf., 1995, pp. 479–484.figurable systems come of age, IEEE Trans. Very Large Scale In-

D. T. Hoang, Searching genetic databases on Splash 2, in Proc. IEEEtegr. (VLSI) Syst. 4: 56–69, 1996.
Workshop FPGAs Custom Comput. Mach., April 1993, pp. 185–191.16. A. DeHon, DPGA-coupled microprocessors: Commodity ICs for

E. Lemoine and D. Merceron, Run time reconfiguration of FPGA forthe early 21st century, in Proc. IEEE Workshop FPGAs Custom
scanning gnomic databases, in Proc. IEEE Symp. FPGAs CustomComput. Mach., April 1994, pp. 31–39.
Comput. Mach., April 1995, pp. 90–98.17. E. Mirsky and A. DeHon, MATRIX: A reconfigurable computing

architecture with configurable instruction set and deployable re- D. Lpresti, Rapid implementation of a genetic sequence comparator
using field-programmable logic arrays, in Advanced Research insources, in Proc. FPGA’s Custom Comput. Mach., Los Alamitos,

CA: IEEE CS Press, 1996, pp. 157–166. VLSI, Cambridge, MA: MIT Press, pp. 138–152.

202 CONFORMAL ANTENNAS

W. Luk, N. Shirazi, and P. Cheung, Compilation tools for run-time
reconfigurable designs, in Proc. FPGA’s Custom Comput. Mach.,
Alamitos, CA: IEEE CS Press, 1997, pp. 56–65.

W. H. Mangione-Smith et al., Seeking solutions in configurable com-
puting, IEEE Comput., 30 (12): 38–43, December 1997.

M. Wazlowski et al., PRISM-II compiler and architecture, in Proc.
IEEE Workshop FPGAs for Custom Comput. Mach., April 1993,
pp. 9–16.

R. D. Wittig and P. Chow, One chip: An FPGA processor with recon-
figurable logic, in Proc. IEEE Symp. FPGAs Custom Comput.
Mach., April 1996, pp. 126–135.

J. Villasenor and W. H. Mangione-Smith, Configurable computing,
Sci. Am., 276 (6): 54–59, 1997.

HUSSEIN M. ALNUWEIRI

University of British Columbia

STEVE CASSELMAN

Virtual Computer Corporation

CONFIGURATION MANAGEMENT FOR NET-
WORKS. See NETWORK MANAGEMENT.

CONFOCAL MICROSCOPY. See MICROSCOPE IMAGE

PROCESSING AND ANALYSIS.

