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to meet deadlines. If a video player is slow, it causes annoy-
ance and nothing more. If an embedded fly-by-wire computer
misses a lot of deadlines, it can result in a crash.

This difference is reflected in the common subdivision of
real-time computers into two broad categories: hard and soft.
A hard real-time system is one whose failure to meet deadines
can have catastrophic consequences. A soft real-time system
has no such failure consequences. In the preceding examples,
the aircraft-control computer is a hard real-time system; the
other two are soft.

The previous definition is subjective because the definition
of what constitutes ‘‘catastrophic failure’’ is subjective. For ex-
ample, if a stock market database is very slow in executing
market transactions, that may cause events to occur that
some might describe as catastrophic, and others not.

Real-time systems add the dimension of time to the design
space. Every problem that the designer would confront in
other computer systems is encountered here; however, the
added dimension of having to meet deadlines can complicate
the design process enormously. This applies especially to soft-
ware. To guarantee that deadlines are met, the maximum
runtimes of individual tasks must be known. Finding good
upper bounds on task execution time is very difficult; indeed,
we only have a few partial solutions to this problem. Run-
times are a function not only of the various possible execution
paths through a task code, but also of the interaction of the
application software, the executive software, and the hard-
ware. Aspects of architecture, such as the cache and out-of-
order instruction execution in pipelines, are among the com-
plicating factors.

Another area that has resisted the most vigorous assault
is proving designs and programs correct. Many real-time sys-
tems are used in life-critical applications and must be vali-
dated or formally certified before being put in use. It would
be nice to have a formal way of certifying a real-time design
correct; however, the existence of temporal constraints can
make it very hard to prove correct any but the simplest real-

REAL-TIME SYSTEMS time systems.
This article is organized as follows. We begin by consider-

A real-time system can be loosely defined as a system whose ing what yardsticks are appropriate to evaluate the perfor-
response time is an important determinant of correct func- mance of real-time systems. Then we consider the problem of
tioning. Let us consider a few examples. Our first example is task assignment in real-time multiprocessors. This is followed
a video game, which accepts inputs from the user, carries out by a discussion of real-time communication protocols, and

then of fault-tolerance techniques. Finally, we briefly discusssome processing, and updates the state of the game on a
real-time languages.screen. If the system is not sufficiently fast, users can lose

interest. The second example is remote videoconferencing sys-
tems. These involve the transmission of images, voice, and PERFORMANCE MEASURES
data; and they include human interaction. The various image,
voice, and data streams must be coordinated and delivered to Performance measures used to characterize general-purpose
all the participants in a timely fashion. If this is not done, the computers will be familiar to most readers: They include
image will freeze on the screen, and voice dropouts will occur, throughput [e.g., in millions of instructions per second

(MIPs)], reliability, and availability. These measures are not,severely degrading the system performance. A second exam-
however, suitable for real-time systems. All systems are bestple is a computer that is embedded in the control loop of a fly-
characterized in terms suitable to their application. In gen-by-wire aircraft. The computer receives signals from sensors
eral-purpose systems, it is possible to translate the tradi-and control inputs from the pilot. It processes them and for-
tional measures of throughput, availability, and reliabilitywards the results to the actuators (control surfaces, such as
into such terms. This is not possible in real-time systems. Wethe ailerons, rudder, engines, etc.) and to the pilot display.
will describe here two performance measures that are partic-If the computer misses too many deadlines in succession in
ularly designed for real-time systems.updating control settings, the aircraft may become unstable

and crash.
PerformabilityThe common feature in all of these examples is that the

system has a deadline by which to deliver its outputs. How- This measure asks the user to specify accomplishment levels
associated with the application (1). An accomplishment levelever, there is one key difference: the consequence of a failure
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represents a quality of performance that is distinguishable Typically, it is assumed that its deadline equals its period
from every other level. A vector of such accomplishment levels (i.e., the deadline of a task is when its next iteration is re-
is therefore created: A � (A1 A2 A3 � � � An). Performability is leased). There can be exceptions, however: It is not unknown
then defined as the vector of probabilities P � (P1 P2 P3 � � � for task deadlines not to equal their periods. By contrast, ape-
Pn), where Pn is probability that the computer will perform riodic tasks arrive irregularly in the system. However, they
sufficiently to permit the application to meet accomplishment cannot arrive arbitrarily: It is assumed that there is a mini-
level An. mum duration that must elapse between arrivals of succes-

Let us consider a simple example (see Ref. 1 for another). sive iterations of the same task.
Suppose a video game is being created. The designer may pick Another classification of tasks is according to the conse-
the following accomplishment levels: quences of their not meeting their deadlines. Tasks whose

failure to meet deadlines can be significant are often referred
• A1: The game responds to the user’s input with no notice- to as critical (or hard-real-time) tasks; others are referred to

able delay. as soft-real-time tasks.
A third classification is according to whether they are all-• A2: Some slight delay can be noticed, but not so as to

or-nothing tasks, or are gracefully degradable with respect toreduce significantly the quality of the game.
their execution time. Two examples will illustrate what we• A3: The system delays are considerable and can cause an-
mean. Consider an algorithm that must add up some figuresnoyance.
in your checking account before it can let you make a with-

• A4: System delays are so considerable that most users
drawal. This is an all-or-nothing task: If it is terminated be-would give up.
fore it finishes adding up all the numbers, it will not be able
to produce any useful output. On the other hand, consider an

Once these accomplishment levels are picked, the designer
iterative algorithm to calculate the value of �. This algorithmthen has to map them to the performance of the computer.
quickly gets the first few significant digits for �, but couldThat is, he or she has to determine what the computer re-
potentially go on until the numerical precision of the com-sponse times will have to be for each of its tasks for each
puter is exceeded. If we stop the processing before this hap-accomplishment level to be reached.
pens, we will get a result for � with fewer significant digits;
however, even this less accurate result is useful. This is an

Cost Functions
example of a gracefully degrading algorithm with respect to

This is a performance measure that is meant for embedded its execution time: If it is terminated prematurely, it can still
systems in the control of some process (2). It accounts for the produce useful results. Such tasks generally consist of man-
fact that the real-time computer is in the feedback loop of the datory portions, which have to be done before any useful re-
controlled process. Control theory teaches us that feedback sult can be generated, and an optional portion. Such tasks
delay increases the instability of the controlled process. This are sometimes called increased reward with increased service
performance measure quantifies such a degradation of (IRIS) or imprecise computation. Most of the research on
control. scheduling such tasks has been very recent (see Ref. 3 for

We start by assuming the existence of a performance func- several algorithms for IRIS tasks).
tional for the controlled process. Typical functionals include Tasks may have precedence constraints. That is, they may
fuel or energy consumption, time taken to travel a given dis- require the output of other tasks to execute. However, most
tance, and so on. Denote the performance functional by �(�), of the results in the literature pertain to independent tasks.
where � is a vector indicating the computer response time to The overall task scheduling problem is as follows. Suppose
its various tasks. Then the associated cost function is given we are given a set of tasks and their associated parameters.
by That is, we are given the task periods (for periodic tasks) or

the minimum interarrival time (for aperiodic tasks). We are
C(ξξξ ) = �(ξξξ ) − �(0) (1) also given the maximum task execution times. The problem

is then to develop an overall task schedule that ensures that
where 0 is a vector of zero response times. all deadlines are met.

The cost function therefore indicates how the actual re- Such a scheduling problem can be shown to be NP com-
sponse times of the computer degrade performance, as com- plete, except under the simplest and most unrealistic condi-
pared to an idealized computer, which exhibits zero response tions. Practical multiprocessor scheduling algorithms tend to
time. work in two phases. In the allocation phase, tasks are as-

signed to processors. In the uniprocessor scheduling phase, a
uniprocessor scheduling algorithm is executed to schedule theTASK ASSIGNMENT AND SCHEDULING
task assigned to each processor.

This is often an iterative process. If the allocation phaseThe problem of how to assign tasks to processors and sched-
results in an assignment that cannot be scheduled success-ule them is one of the most important in real-time systems.
fully (i.e., so that all tasks meet their deadlines) by the sched-It is probably the area on which researchers have focused the
uling phase, another allocation attempt must be made.greatest attention.

In the following, we outline some simple algorithms forLet us begin by considering the various task types. Tasks
both these phases. Unless otherwise specified, we assumecan be classified in a variety of ways. One is according to their
that all tasks are independent and periodic, that their dead-regularity: Periodic and aperiodic categories are defined. A

periodic task, as its name suggests, is released periodically. lines equal their periods, that tasks can be preempted at any
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time during the course of their execution, and that the cost of
a task preemption is negligible.

1 2 3 1 3 2 1 3 21 3 11

0 2 4 6 8 10 12 14 16
Time

Task Assignment
Figure 1. Example of schedule generated by rate monotonic algo-

Both the algorithms we will describe are heuristics: They are rithm.
not provably optimal in any sense. Their justification is that
they are fairly easy to implement, and they perform quite well
in most instances.

In the RM algorithm, tasks are assigned preemptive prior-
ity in inverse proportion to their periods. Task Ti has higherUtilization-Balancing Algorithm. This algorithm allocates
priority than Tj if its period is less than that of Tj.tasks one by one. Each task is allocated to the processor that

As an example, consider the following task set.is least heavily utilized up to that time.
As an example, let us consider periodic tasks with execu-

tion times and periods, as shown in the following: Execution
Task Time Period

Execution Period Utilization
T1 1 3Task Time ei Pi ui

T2 1 5
T1 5 10 0.5 T3 2 7
T2 3 30 0.1
T3 10 50 0.2

Assuming that the first iteration of each of the three tasks isT4 2 5 0.4
released at 0, we will have task T1 released at 0, 3, 6, 9, 12,
� � � ; T2 released at 0, 5, 10, 15, 20, � � � ; and T3 released atSuppose we have two processors in all, P1 and P2. The follow-
0, 7, 14, 21, 35, � � � . T1 has higher priority than T2, whiching lists the sequence of assignment actions. Ub(i) and Ua(i)
has higher priority than T3. The first few cycles of the re-denote the utilization of processor Pi before and after the indi-
sulting schedule are shown in Fig 1. Whenever T1 is ready tocated assignment step, respectively.
run, T2 or T3 must be preempted, if necessary. Similarly, T2

can preempt T3. T3 will only run when the processor is notAssign
required by either T2 or T3.Task Ub(1) Ub(2) to Ua(1) Ua(2)

There is a simple sufficiency check for the schedulability of
T1 0.0 0.0 P1 0.5 0.0 tasks under RM. A set of tasks T1, T2, � � � , Tn with execution
T2 0.5 0.0 P2 0.5 0.1 times e1, e2, � � � , en and periods P1, P2, � � � , Pn is guaranteed
T1 0.5 0.1 P2 0.5 0.3 to be schedulable if
T4 0.5 0.3 P2 0.5 0.7

First-Fit Bin-Packing Algorithm. In this algorithm, we specify
e1

P1
+ e2

P2
+ · · · + en

Pn
≤ n(21/n − 1) (2)

a utilization bound for each processor. A task is assigned to
the first processor whose utilization bound would not be ex-

We should emphasize that this is a sufficient, not a necessary,ceeded by such an assignment.
condition for schedulability under RM. That is, some task setsConsider again the set of tasks in our previous example.
exist that do not satisfy the preceding expression but still canSuppose the utilization bound is set to 1 (this relates, as we
be scheduled successfully by the RM algorithm.shall see, to the earliest deadline first (EDF) uniprocessor

This bound, n(21/n � 1), decreases monotonically as a func-scheduling algorithm). The sequence of assignment actions is
tion of n. A plot is shown in Fig. 2. The bound tends to lnshown in the following:
2 	 0.693 as n � �.

Assign
Task Ub(1) Ub(2) to Ua(1) Ua(2)

T1 0.0 0.0 P1 0.5 0.0
T2 0.5 0.0 P1 0.6 0.0
T3 0.6 0.0 P1 0.8 0.0
T4 0.8 0.0 P2 0.8 0.4

Uniprocessor Task Scheduling of Independent Periodic Tasks

We will describe the two best-known scheduling algorithms
in this area: the rate monotonic (RM) and the EDF algo-
rithms. Also covered briefly is the minimum laxity (ML) algo-
rithm.

Rate Monotonic Algorithm. This is a static-priority algo-
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rithm. That is, the relative priority of the tasks does not
change with time. Figure 2. Utilization bound for sufficiency condition.
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The necessary and sufficient schedulability conditions are Priority inversion can cause a task to wait needlessly for a
lower-priority task to finish.as follows. Define the function

The canonical example of priority inversion is as follows.
Consider three tasks, T1, T2, T3, in descending order of prior-
ity. Suppose both T1 and T3 require the use of critical section,�i(t) = 1

t

i∑
j=1

e j

⌈
t

Pj

⌉
(3)

S. T3 arrives at some time, say time t0, and starts running. At
time t1, it enters S. At some subsequent time, t2, T1 arrivesThen task Ti will be successfully scheduled by the RM algo-
and preempts T3. Note that T3 has not yet relinquished itsrithm if �i � 1 (3). These conditions are derived based on the
lock on S; it has just been pushed aside by T1. T1 runs until,observation that the time available to execute any task is its
at t3, it wants S. It cannot proceed any further because T3 isperiod minus all the demands of the higher-priority tasks
in possession of it. So it waits and lets T3 execute. At time t4,over that duration.
T2 arrives. Because it has higher priority than T3, it preemptsIt can be proved that when the task deadlines equal their
T3, and runs to completion (T2 does not require S). Only afterperiods, RM is an optimum static-priority scheduling algo-
T2 has finished, at t5, can T3 resume execution. At t5, T3 exitsrithm for uniprocessors. That is, if RM does not succeed in
S and is immediately preempted by T1. Now T1 has been madescheduling a set of such tasks, neither can any other static
to wait for T3 to exit S and for T2 to execute. The wait for T3priority algorithm.
is unavoidable: It arises from the constraint imposed by theThe schedulability tests for when the deadlines do not
critical section. However, the time spent by T1 in waiting forequal the periods are much more complicated and are out of
T2 to execute is entirely avoidable: In fact, T2 has, for all prac-the scope of this article. See Refs. 3 and 4 for information on
tical purposes, been treated as if it had higher priority thanthis case.
T1. This is called priority inversion.The RM algorithm can be extended to handle aperiodic

To avoid priority inversion, we have the priority ceiling al-tasks. One approach is to associate a period with aperiodic
gorithm (7). The priority ceiling of the semaphore guarding atasks in general and reserve a certain amount of time every
critical section, S, is the maximum priority of any task thatsuch period when pending aperiodic tasks can be run.
wishes to access it. Let Smax(t, T) be the highest-priority ceil-
ing of all the semaphores that are locked at time t by tasksEarliest Deadline First Algorithm. This is a dynamic-priority
other than T. Then task T cannot enter any critical section atalgorithm. As its name suggests, it gives highest priority to
time t if its priority is less than Smax(t, T). When a task is inthe task whose deadline is the earliest among the tasks eligi-
a critical section and is blocking higher-priority task(s), it in-ble to run.
herits the highest priority of the task(s) it is blocking.When tasks are periodic and the task deadlines equal their

It is possible to show that, under the priority ceiling algo-respective periods, the schedulability test is easy: If the re-
rithm, no task will be blocked by more than one lower-priorityquired overall processor utilization does not exceed one, the
task. This allows us to bound the blocking time that could betask set is schedulable. More precisely, a task set �T1, T2,
suffered by any task. If bi is the maximum blocking time that� � � , Tn� is schedulable under the EDF algorithm if and only
task Ti can suffer, it is easy to show that the task set is sched-if
ulable under the RM algorithm if

e1

P1
+ e2

P2
+ · · · + en

Pn
≤ 1 (4) e1

P1
+ e2

P2
+ · · · + ei

Pi
+ bi

Pi
≤ i(21/i − 1)∀ 1 ≤ i ≤ n (5)

Once again, the situation is much more complex when the
As with Eq. (2), this is a sufficient, not a necessary, condition.task deadlines do not equal their respective periods: See Refs.

3 and 5 for details.
The EDF algorithm can be shown to be an optimal dy- COMMUNICATION ALGORITHMS

namic scheduling algorithm for uniprocessors.

The aim of real-time communication algorithms is to ensure
Minimum Laxity Algorithm. The latest time by which a task that messages are delivered within a specified bound of being

must be started if it is to finish on time is given by di � ei, sent. There is a large number of such algorithms available:
where di is the absolute task deadline. This time is called the For a good survey, the reader should consult Ref. 8. We will
task laxity. As its name implies, the ML algorithm picks to describe two such algorithms, one designed for optical rings
run the task of minimum laxity. and another for store-and-forward networks. In the discussion

Minimum laxity is not more successful than EDF in ensur- that follows, we will assume that the reader has some famil-
ing that all task deadlines are met: After all, EDF is, as we iarity with communication networks; if not, a reference such
said previously, an optimal dynamic priority algorithm for un- as Ref. 9 should be consulted.
iprocessors. However, EDF does have one drawback, which
ML does not. In cases when the entire task set cannot be suc- Fiber Distributed Data Interface
cessfully scheduled, EDF tends to discriminate against tasks

Fiber Distributed Data Interface (FDDI) is a token-based pro-with longer execution times. Such tasks miss their deadlines
tocol meant to run on optical ring topologies (10,11). A tokendisproportionately often. The ML algorithm is fairer.
circulates on the ring, and whichever node currently holds the
token has the right to transmit on the ring. The algorithmPriority Inversion. Priority inversion is a troublesome side-

effect of using critical sections of code. A critical section can- owes its real-time characteristics to the bound that is imposed
on the token-holding time at each node.not be held by more than one processor at any one time (6).
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Traffic is classified into synchronous and asynchronous cat- meant for conceptual purposes only. The frames that they de-
egories. Synchronous traffic is that which has a deadline asso- fine, however, are very real and lie at the heart of the Stop-
ciated with it, while asynchronous traffic is handled on a and-Go protocol.
‘‘best-effort’’ basis. Every node is assigned a quota of synchro- Multiple traffic classes are supported by this protocol, and
nous traffic: It is guaranteed the right to transmit this quota associated with each class is a frame size. The protocol is as
every time it receives the token. follows. When a class-i packet arrives at an intermediate node

Central to the operation of the algorithm is the target token (en route to its destination), it becomes eligible for forwarding
rotation time (TTRT). This is the desired average cycle time by that node to the next node in its path only upon the begin-
of the token. It has an important part to play in maintaining ning of the next outgoing frame following its arrival. To make
the real-time characteristics of this protocol. this clear, consider Fig. 3. The figure shows class-i frames

The TTRT determines whether the token is early or late at incoming and outgoing at a node. When a packet arrives at a
any stage. The token is said to be late if its current cycle time node, it becomes eligible for forwarding by that node at the
exceeds the TTRT; it is said to be early otherwise. beginning of the outgoing frame indicated by the arrows. We

If the token arrives late at any node, that node only trans- call the incoming-outgoing frame pairs as conjugate frames.
mits up to its synchronous quota on the ring before passing Packets eligible for transmission are transmitted according
the token to the next node. If the token arrives x seconds to a non-preemptive order. The priority of a class is inversely
early, the node may transmit not only its assigned synchro- related to its frame size. For example, if f 1 � 3, f 2 � 5, eligible
nous quota, but also up to x seconds’ worth of other traffic. packets in class 1 will have priority over eligible packets in

It has been shown that the bound on the token cycle time class 2.
is 2 � TTRT. That is, each node is guaranteed that it can It can be shown that so long as the traffic intensities do
transmit up to its synchronous quota every 2 � TTRT sec- not exceed a given bound, incoming traffic on a frame will
onds. This is the special case of a result that says that the always be able to be transmitted in the outgoing (conjugate)
time for K consecutive cycles cannot exceed (K � 1) � TTRT. frame in which it becomes eligible; we will describe this

Let us now turn to a procedure for setting the TTRT value bound later. What this result means is that the maximum
and the per-node synchronous traffic quota (12). We will begin delay of any class-i traffic in any node is given by 3f i � d,
by defining some notation. Consider the (periodic) synchro- where f i is the frame size associated with class-i traffic and d
nous traffic, Si, emerging from node i. Such traffic is charac- is the overhead for handling the packet at the node. This is
terized by the 3-tuple, Si � (ci, Pi, di); ci is the size of the derived as follows. The earliest a packet can arrive in a frame
traffic generated per period Pi, and di is its relative transmis- is at its very beginning; the latest it leaves is at the end of its
sion-start deadline (i.e., the time following its arrival by conjugate outgoing frame. This accounts for 2f i time. Further-
which it has to start transmitting). Define ui � ci/min(Pi, di): more, there is no requirement that the incoming and outgoing
ui can be regarded as a measure of the utilization of the ring frames be aligned with respect to one another. The worst case
by stream Si. arises when an outgoing frame begins momentarily before an

Since the cycle time is upper bounded by 2 � TTRT, we
incoming frame ends. This can lead to up to f i further delay.must set TTRT � min di/2. Now comes the task of setting the
Putting all this together with the processing overhead at thesynchronous quotas. It can be shown that assigning the fol-
node, we get 3f i � d.lowing synchronous quota per node will satisfy the need to

It only remains for us to specify the traffic intensity boundstransmit ci bits of data every Pi seconds, to meet transmis-
under which this protocol will work correctly. Let Cl(i) denotesion-start deadline di: the total load on link l imposed by class-i traffic, and � denote
the maximum packet size. Let Bl denote the total bandwidth
of link l, and n the total number of traffic classes. Then theQi = uidi

	di/TTRT − 1
 (6)
protocol requires that the following inequalities be satisfied
for the preceding delay bound to work:so long as

n∑
i=1

Qi + τ ≤ TTRT (7)
n∑

i= j

C
(i)
�

1 +
⌈ f j

fi

⌉�
fi

f j
− C
( j) ≤

{
B
 − γ / f j if j = 2, . . ., n

B
 if j = 1
(8)

where 	 is the overhead associated with token passing. That
is, TTRT � 	 is the time available for transmitting packets.

The Stop-and-Go Protocol

The Stop-and-Go protocol is meant for multihop networks.
The protocol works by bounding the delay at each hop. Know-
ing the route that a message takes from input to output
allows us to bound the total time taken.

The time axis at each link is subdivided into frames. The
best way to think about frames is to imagine (virtual) in-
terframe markers transmitted at regular intervals by a node
on its outgoing links. As the marker travels down the link, it

Incoming link class-i frames

Outgoing link class-i frames

Indicates incoming/outgoing frame pairdefines the end of one frame and the beginning of another. It
should be stressed that these markers are imaginary and Figure 3. Illustrating frames in the Stop-and-Go protocol.
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It can also be shown that the total buffer required at per link the reliability that can be obtained from software redundancy.
Not much is known about the extent to which industrial-l for traffic-class i is upper bounded by 3Cl(i)f i.

The designer must subdivide the traffic suitably into grade replicates of software modules suffer correlated failure:
Most experiments on software fault tolerance have been car-classes, pick appropriate frame sizes, and set the link band-

widths. ried out in universities, where students can be used as pro-
grammers.

FAULT TOLERANCE
Time Redundancy

The article in this encyclopedia on fault tolerance covers gen- Time redundancy consists of having sufficient slack in the
eral-purpose fault-tolerant techniques. In this section, we schedule, so that after a failure is detected, the system is still
limit ourselves largely to fault-tolerant issues specific to real- able to meet the deadline of the affected tasks. Time redun-
time systems. dancy is most often exploited in the handling of transient

To tolerate faults, a system must have redundancy. Redun- faults. As the term implies, these are faults that occur and
dancy may be in hardware, software, or time. Hardware re- then go away after some time. Such faults have many causes.
dundancy takes the form of additional processors and commu- One of the most common is the impact of alpha-particle radia-
nication links; software redundancy is implemented in having tion. When alpha particles go through a memory cell, they
multiple versions of software executing the same function, sometimes have enough charge to change their state from 0
and time redundancy exists whenever there is slack in the to 1 or vice versa. This fault is transient because the cell has
schedule. Of these, hardware redundancy is a general fault- not been physically damaged; it goes away when it is over-
tolerance technique, so we do not discuss it further here. written.

Checkpointing is frequently done to render time redun-
Software Redundancy dancy more efficient. The state of the process is stored regu-

larly in a safe place. If faulty behaviour is discovered, theSoftware faults are essentially design faults. Unlike hard-
process is simply rolled back to the last checkpoint and re-ware, software does not wear out as time goes on, and there
sumed. This avoids having to restart the process from the be-is no point replicating software modules in the same way as
ginning.hardware is replicated in N-modular redundancy. To imple-

The question arises as to how to place the checkpoints.ment software fault tolerance, we need multiple versions of
Typically, they are placed at equal intervals along the execu-software, written by independent teams of programmers. The
tion trajectory. The question then is how many checkpointshope is that since they are written independently, the ver-
should be used. The greater this number, the smaller the dis-sions will not suffer correlated failure (i.e., they will not fail
tance between them, and hence the less the time taken for aon the same set of inputs).
rollback. In general-purpose systems, the checkpoints areThere are two ways of implementing software fault-toler-
placed so as to minimize the average execution time. By con-ance. The first is similar to N-modular redundancy in hard-
trast, in real-time systems, they should be placed so as toware fault-tolerance. Called N-version programming (13), it
reduce the chances of missing a hard deadline, even if thisconsists of N versions of software independently written for
entails increasing the average execution time (15).the same algorithm. These versions are executed in parallel,

and their outputs are voted on. So long as a majority of the
versions run successfully, there will be a correct output from Fault-Tolerant Clock Synchronization
the system.

Clock synchronization allows for faster communication be-The second approach is to use recovery blocks (14). Again,
tween processors. The simplest clock synchronization methodmultiple versions of software are used; however, only one ver-
consists of distributing a single clocking signal to all the pro-sion is ever run at any one time. The sequence of events is as
cessors. If the length of the path from the root of the clockingfollows. One version is run, and its results passed through an
tree to the processors is roughly the same, the clocks will beacceptance test. This test checks to see if the output falls
fairly well synchronized. However, this approach is not faultwithin the expected range. If the test is passed, the output is
tolerant, since the failure of the common clocking source willaccepted by the system; if not, another version is made to
bring down the entire clocking system.execute. Its output is similarly run through an acceptance

We present in this section two approaches to fault-toleranttest. The process continues until either a version is executed
clock synchronization. First, we provide some background in-that passes the acceptance test (success) or we run out of ver-
formation.sions or miss the task deadline (failure).

All clocks can be regarded mathematically as a mappingThe major drawback of software redundancy approaches is
from the fictitious ‘‘real time’’ to something called ‘‘clockcost. Software costs dominate the development costs of most
time.’’ For example, if at real time of 10:00 UTC (coordinatedlarge systems. Generating independent replicates of the criti-
universal time) my watch says 10:02, my clock time at a realcal tasks can increase costs even more. Another problem is
time of 10:00 is 10:02. Real clocks drift (i.e., they go faster orthat even if the versions are developed independently without
slower than a perfect clock would). Their maximum drift ratethe development teams exchanging ideas, it is possible to
(i.e., the rate at which they run fast or slow) varies with thehave correlated failures. For example, different teams may
clock technology. Clocks based on quartz crystals typicallyinterpret ambiguities in the specification in the same way, or
have drift rates of about 10�6 (i.e., they may gain or lose aboutcertain types of mistakes may simply be so common that they
a second for every million seconds). The clocks at the Bureausoccur in multiple versions. If the same algorithm is imple-
of Standards around the world are about a million timesmented, numerical instabilities in it can cause further corre-

lations. The existence of correlated faults severely degrades more accurate.
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REAL-TIME PROGRAMMING LANGUAGES

In this section, we describe some of the features one looks
for in a real-time programming language. This treatment is
necessarily brief; for more complete coverage, the reader
should consult either a language manual or books devoted to
real-time programming languages (19,20).

Window

Timing signals outside
this range are ignored

Marker

Time
Most of the desired features in real-time languages are the

Figure 4. Interactive convergence algorithm. same as those for a general-purpose language and are omitted
from this section. We concentrate instead on those features
that are much more important to the real-time programmerIf two clocks are synchronized at time 0 and then left to
than to his or her general-purpose counterpart. Many of ourrun freely, at time t they will diverge by at most 2�t, where �
examples are from the Ada programming language (Ada is ais the maximum drift rate. This is because in the worst case,
trademark of the US Department of Defense).one clock can run fast at rate (1 � �), while the other runs

slow at the rate (1 � �).
Subtypes and Derived TypesIf, whenever a clock fails, it simply stops sending out tim-

ing signals, clock synchronization would be a very simple Real-time languages should be strongly typed and permit the
problem. However, this is not always the case: Often, when a programmer to construct subtypes. A subtype has to follow
clock fails, it sends out incorrect timing information, or even

the rules of its parent type and be restricted to a given range.inconsistent information (e.g., it could say ‘‘it is 2:00 PM’’ to
Thus, for example, the programmer might sayone processor and ‘‘it is 3:00 PM’’ to another processor at the

same time). Failures that result in such contradictory outputs type DEPTH is new int range 0..500
are called Byzantine or malicious failures. The two algorithms

DEPTH is of type int and has the additional restriction thatwe present next are designed to work in the face of such a
its value should lie between 0 and 500. If, at any time duringfailure mode. In general, it can be shown that if up to f mali-
execution, it strays beyond this limit, the system will reportciously faulty clocks are to be tolerated, the system must con-
an error.sist of at least N � 3f � 1 clocks.

Subtypes can be mixed in expressions. For example, if weIn both algorithms, we assume a system model in which
define subtypes of int, DEPTH, and ALTITUDE, we can have aeach processor has its own clock. These clocks interchange
statement A = DEPTH + ALTITUDE. It is possible to defineclocking signals, and the clocking signal used by each pro-
types that cannot be mixed in this way: These are called de-cessor is a function of these. We will also assume that the
rived types. For example, we may definepropagation time for clock signals is negligible.

type PRESSURE is new intPhase-Locked Clocks. Each processor (more accurately, its
type TEMPERATURE is new intclocking subcomponent) receives inputs (i.e., square-wave sig-

nals) from all the clocks in the system, including its own. The We cannot now mix PRESSURE and TEMPERATURE in the same
clocking network is a fully connected graph (i.e., each clock

expression. Just as with subtypes, derived types can also behas a line to every other clock in the system). If up to f faulty
given a range.clocks are to be tolerated, each clock averages the timing sig-

nal from the ( f � 1)th and (N � f )th signals it receives (ac-
Numerical Precisioncording to the order in which it receives them). It speeds up,

or slows down, its own clock to try to align it with this aver- Every C programmer knows that double is supposed to give
age signal. This approach can be shown to ensure very tight a higher precision than float. However, the exact level of
synchronization if there are at least N � 3f � 1 clocks in the precision varies from one machine to the next. It is important
system (16). to be able to specify exactly how much precision one wants.

A completely connected network can be quite expensive if In Ada, for example, one can say
N is large, since the number of links grows quadratically
with N. It is possible to use a sparser interconnection network type xyz is digits 8 range �1e5..1e5
to propagate the clocking signals, by subdividing the network

Then xyz is a type with eight decimal digits of precision, withinto a hierarchy of completely connected clusters. The clusters
range between �1e5 and 1e5.themselves are more sparsely connected to one another. This

can substantially reduce the network cost, although it can re-
sult in tripling the maximum clock skew between clocks in Supporting Time
different clusters. See Ref. 17 for further details.

One of the most difficult things for a language to do is to
specify that one event must take place x milliseconds afterAn Interactive Convergence Synchronization Algorithm. This
some other event. Practically, no languages exist that do thisis a software synchronization technique (18). Every time it
precisely. Languages such as Ada allow us to specify a delay,reads a multiple of R seconds, a clock sends out a message
although it is implemented as a lower bound. That is, we can(marker) announcing its current time to the other clocks.
specify only that two events must be separated in time by atEach clock therefore has a sequence of timing messages com-
least x milliseconds.ing in. It ignores timing signals that fall outside a certain

We should also mention that at least one language tries towindow of its own clocking signal and averages the clocking
make it easier to estimate program runtimes. As we pointedsignals that fall within it. This is the time value that is used

(Fig. 4). out earlier, such estimates are extremely difficult to make.
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270 RECEIVING ANTENNAS

RECEIVER PROTECTORS. See MICROWAVE LIMITERS.
RECEIVERS. See DEMODULATORS; MICROWAVE RECEIVERS;

UHF RECEIVERS.
RECEIVERS, RADAR. See RADAR SIGNAL DETECTION.
RECEIVING AND SHIPPING. See WAREHOUSE AUTO-

MATION.


