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PROGRAMMING THEORY

The theory of programming consists of a body of theoretical techniques for reasoning about program behavior.
This body of techniques is divided into two classes: (1) techniques for reasoning about the functional behavior
of programs, and (2) techniques for reasoning about performance issues such as time and space complexity. For
historical reasons, only the techniques of the first class are referred to as “theory of programming,” while those
of the second class are referred to as “algorithm analysis.” The two sections of the journal Theoretical Computer
Science represent this division.

Theory of programming includes a vast array of formal and semiformal disciplines that address a wide
range of issues:

• Program specification addresses the issue of how to specify the intended functional behavior of programs.
(See also Formal Specification of Software.)

• Programming language semantics addresses the issue of how programs behave. It studies mathematical
models for capturing such behavior and techniques for reasoning about them.

• Programming logic studies reasoning principles for proving that programs have the intended behavior.
• Program verification builds on programming logic and studies practical techniques for proving program

correctness. (See also Program Testing.)
• Program derivation studies techniques and formal rules using which programs can be derived from specifi-

cations. Automated techniques for doing such derivation go by the names of program synthesis and program
transformation.

• Formal methods integrate all these techniques for practical software development. (See also Vienna Devel-
opment Method and Software Prototyping.)

Since programming theory is such a broad area, we obtain focus in this article by concentrating on the
issue of functional correctness of programs. This leads us through the sub-areas of program specification,
programming semantics and programming logic, with an emphasis on the last subject. Other aspects of this
area are discussed in the articles mentioned above.

Program Specification

For many algorithms that arise in practice, it is possible to state precisely what the algorithm is supposed to
achieve. For example, a sorting algorithm is expected to rearrange the elements of a collection in the increasing
(or decreasing) order. A compiler for a programming language must translate a program in the source language
into one in the machine language with the same behavior. Formalizing this involves defining the “behavior” of
programs in the source and machine languages. A theorem prover for some logical system is expected to say
yes or no depending on whether the input is a theorem in the logical system. A database search engine must
produce all and only those records in the database that form an answer to the input query. A suitably formalized
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2 PROGRAMMING THEORY

version of such statements constitutes a specification for the algorithm and the fact that the algorithm meets
the specification is called its correctness.

The reader can see that formalizing such specifications often involves its own theory, which we might call
the application domain theory. Research papers that publish algorithms often develop such application domain
theory in order to prove the correctness of the algorithms.

A second method of proving correctness involves the notion of program equivalence. Suppose we do not
possess a good application domain theory to give a formal specification of a problem. We might nevertheless be
able to write a naive program that can be clearly seen to be a correct solution. We can then show the correctness
of a real program by proving that it is equivalent to the naive program. For example, an algorithm for finding
paths in a directed graph can be proved correct by showing its equivalence with a naive program that computes
the transitive closure of the graph using set-theoretic operations like union. The program equivalence method
is especially appropriate for programs that involve sophisticated data structures, for programs that cache
intermediate results in clever ways, and for parallel or concurrent algorithms.

The techniques that are surveyed in this article are routinely used for small algorithms and in research
publications, but there is no clear agreement on how far they are applicable to real software systems. Software
systems involve such a massive amount of detail that writing complete specifications for them is itself a
challenging enterprise. Moreover, the application domain theories for various software applications are not
well developed. Thus, the state of the art is very far from being able to prove the correctness of a real-life
software system such as an air traffic control system or a telephone switching system. However, with the
present state of the art, the following applications of programming theory are recommended:

• Specification Significant components of software systems can be formally specified. Such specifications
allow a high degree of certainty for the implementors of the component as well as the client code. Often
they also lead to clean interfaces between components.

• Algorithm and Data Structure Correctness The correctness verification techniques can be applied to
small portions of systems that involve sophisticated algorithms and clever data structures. Examples
include storage management modules, central data structure like symbol tables in compilers, scheduling
algorithms, communication protocols, etc.

• Safety Properties It is often possible to identify critical “safety” properties that are necessary to avoid
severe loss of life or property. Such properties can be specified and proved for an entire software system.

Notwithstanding the extent of application, we believe that programming theory is an indispensable part
of every serious software professional’s arsenal. A conscious attention to correctness concerns often leads to
clear and well-organized code even if the verification techniques are not rigorously applied.

Proof Methods. Methods for proving properties of programs can be classified into three layers: opera-
tional methods, denotational methods, and axiomatic methods. These are not mutually exclusive classes, but
form different levels of abstraction for the same basic ideas.

Operational methods are based on the notion of operational equivalence. Two program phrases P1 and P2
(such as procedures or abstract data types) are said to be operationally equivalent if, in all possible complete-
program contexts, using P1 and P2 gives the same results. In other words, P1 and P2 must be interchangeable
in all contexts. No sophisticated mathematical ideas are required to understand this notion. All that is needed
is a clear idea of how complete programs behave. For example, a good abstract interpreter for the programming
language suffices. However, using this definition in practice can prove quite tedious because one must check
the condition for all program contexts.

Denotational methods are based on the notion of “meaning” in an appropriate denotational semantic
model. A denotational model is a mathematical structure in which every program phrase can be interpreted.
For example, it is common to interpret types as sets and programming functions as mathematical (set-theoretic)
functions. Commands in imperative programming languages are often interpreted as functions from states to
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states, expressions as functions from states to values and so on. Given such a denotational model, we consider
two program phrases as equivalent if they have the same denotation (meaning) in the model. Thus, denotational
methods avoid having to consider all possible program contexts. They can also deal with various properties
that can be stated for the denotations, not only equivalence. But the mathematical tools involved in the models
can be quite sophisticated, especially if one wants good accuracy.

Axiomatic methods give formal rules for deducing certain kinds of program properties. One kind of
property is just equivalence, but other kinds of properties are possible. An excellent example is that of Hoare
triples {P}C{Q}, which can be used to reason about commands. The Hoare triple {P}C{Q} says that, in any
state in which the condition P holds, running the command C (possibly) gives a state in which Q holds. C. A.
R. Hoare formulated an axiom system for deducing such properties for commands, which has been extremely
successful in practical applications. One can apply axiomatic methods without any sophisticated mathematical
background. However, it can be tedious to deduce facts carefully using the rules of an axiom system. Failure to
check all the conditions properly can lead to incorrect results. Some knowledge of the underlying denotational
model can be helpful in taking well-motivated leaps in reasoning.

The three classes of methods just mentioned above are closely related. The operational equivalence is
a hard bound on possible equivalences because if two phrases are not operationally equivalent, then their
difference is observable in some context. Thus, any equivalence provable by denotational or axiomatic methods
must in fact be an operational equivalence. Second, the soundness of axiomatic methods is typically proved
using a denotational model. Then any fact proved using the axiom system would hold in the model. Thus, the
relation between provable facts using various methods are related as follows:

Further discussion of the three approaches may be found in Ref. 1.

Programming Language Frameworks

The most widely used programming languages such as C, Ada, and Modula are called imperative programming
languages. This is because the basic construct in these languages is the executable command. Another class
of languages of interest to us is that of functional programming languages. Historically, the idea of functional
programming arose from the observation that the procedure concept in programming is similar to that of
mathematical functions (2). It was later recognized that most programs of interest can be expressed just
using the function or procedure concept without any commands at all. (See also Functional programming.)
Our interest in functional programming lies in the fact that most concepts of programming theory arise in
functional programming in a simplified form. The theory of imperative programming can then be obtained by
adding to functional programming the notion of commands.

Logic programming languages are closely related to functional programming and their programming
theory is essentially similar. So, we will not treat this class separately. (See also Logic programming.)

Object-oriented programming is essentially concerned with data abstraction. We treat the issues of data
abstraction in connection with both functional and imperative settings. (See also Abstract data types.)

The remainder of this article is organized under the headings:

Functional Programs
Abstract Data Types
Imperative Programs
Procedures and Objects

Under each heading, we discuss the theoretical techniques appropriate for that class of programs.
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Fig. 1. Quick sort.

Fig. 2. Sample computation using sort.

Functional Programs

Functional programming best illustrates the direct use of denotational methods in reasoning about programs.
Our treatment involves elementary mathematical concepts of sets and functions, and mathematical induction
on natural numbers.

Figure 1 shows a sample program in the programming language Haskell (3) for sorting a list of integers
using the quick-sort method. The function sort takes a list of integers as input and produces the sorted list
of integers as output. (The first line gives the type of sort where the notation [Int] stands for the type “list of
integers.”) The function partition takes an integer p and a list of integers xs and produces a pair of lists (lo, hi)
where lo contains the elements of xs that are less than or equal to p, and hi contains the remaining elements.
The notation for lists is as follows: [] denotes the empty list and x:xs denotes the list obtained by adding x at
the front of the list xs. So, a list with elements x1, . . ., xn is denoted in the Haskell notation as

x1:x2:. . .:xn:[]

Such a list can also be written as [x1, . . ., xn]. The symbol ++ represents the list append function. The
where clause allows one to define one or more variables via local definition. Computation proceeds by expanding
function applications by their definitions and simplifications. See Fig. 2.

The denotational model we use interprets types as sets (Int is the set of integers, [Int] is the set of lists
over integers, etc.) and functions as mathematical functions. Because the recursive calls are made for smaller
lists, there are unique functions sort and partition that satisfy the equations in the program. Thus, we can
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treat sort and partition as ordinary mathematical functions and apply ordinary mathematical reasoning. We
illustrate this by proving the correctness of sort.

Theorem 1. If sort xs = ys, then ys contains the same collection of elements as xs and is ordered.

We also need a lemma for the partition function.

Lemma 2. If partition(p, xs) = (lo, hi), then

(1) lo ++ hi has the same collection of elements as xs
(2) All the elements of lo are less than or equal to p (“small” values)
(3) All the elements of hi are greater than p (“large” values)

There is some ambiguity in these statements because we have not defined what is meant by having the
same collection of elements. Fortunately, all we need are the following facts. Use the notation xs ≈ ys to mean
xs and ys have the same collection of elements.

• The relation ≈ is an equivalence relation.
• If xs ≈ xs′ and ys ≈ ys′, then xs ++ ys ≈ xs′ ++ ys′.
• xs ++ ys ≈ ys ++ xs.
• If xs ≈ ys, then length(xs) = length(ys).

More formally, one interprets collection as the mathematical notion of multiset and, by induction, defines
xs ≈ ys to mean that the multiset of elements of xs and ys are equal. The facts just noted are provable from
this formalization.

Proof of Lemma 2. By induction on the length of xs:

• If the length is 0, that is, xs = [], then lo = [] and hi = [] and the statement clearly holds because xs = lo ++
hi.

• If the length is positive, let xs = x:xs′. Since xs′ is shorter than xs, the lemma holds for xs′ by induction.
Hence, if partition(p, xs′) = (lo′, hi′), then lo′ ++ hi′ has the same elements as xs′, and lo′ contains “small”
values and hi′ contains “large” values. If x ≤ p then (lo, hi) = (x:lo′, hi′). Clearly, lo ++ hi has the same
elements as x:xs. The elements of lo = x:lo′ are “small” and those of hi = hi′ are “large.” The case x > p is
similar.

Proof of Theorem 1. By induction on the length of xs.

• If the length is 0, that is, xs = [], then sort xs = [] and the statement clearly holds.
• If the length is positive, let xs = x:xs′ and partition(x, xs′) = (lo, hi). By lemma 2, we have that lo ++ hi has

the same collection of elements as that of xs′ and hence has the same length as xs′. Since xs′ is shorter than
xs, both lo and hi are shorter than xs. So, the inductive hypothesis applies to lo and hi, and sort lo and sort
hi are sorted versions of lo and hi. It is easy to see that (sort lo) ++ [x] ++ (sort hi) satisfies the statement
of the theorem.

The remarkable feature of the preceding correctness proof is that it directly encodes the informal reasoning
programmers use in thinking about correctness of programs. No advanced mathematical theories or special
logical notations are involved. Experienced functional programmers often carry out simple proofs like this
mentally without writing down a single word. This leads to a high degree of reliability for functional programs.
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Fig. 3. Two programs for list reverse.

Fig. 4. Sample computation using rev.

Next, we consider a proof of program equivalence in which explicit manipulation of expressions will be
involved. Figure 3 shows two programs for reversing a list. The first program reverse is a straightforward
solution whose correctness is more or less obvious. But it is inefficient: it has O(n2) time complexity because
the append operation ++ takes time linear in the length of its first argument. The second program rev has
O(n) complexity, but its correctness is far from obvious. In fact, unless the reader has experience with similar
programs, it is hard to believe that it works at all. Figure 4 shows a simple computation that gives some insight
into how rev works.

We would like to show the correctness of rev by proving that it is equivalent to reverse. The key to the
proof is coming up with a lemma that captures the behavior of loop. The sample computation of Fig. 4 suggests
that loop reverses its first argument and appends it to the front of the second argument. This insight leads to
the following lemma.

Lemma 3. loop(xs, p) = (reverse xs) ++ p

Proof. By induction on the length of xs:

• loop([], p) = p = [] ++ p = (reverse []) ++ p
• loop(x:xs′, p)

= loop(xs′, x:p) by definition of loop
= (reverse xs′) ++ (x:p) by inductive hypothesis
= (reverse xs′) ++ ([x] ++ p) by inductive hypothesis
= ((reverse xs′) ++ [x] ++ p by associativity of ++
= (reverse (x:xs′)) ++ p by definition of reverse

The correctness of rev is immediate from the lemma.

Theorem 4. rev xs = reverse xs
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Proof. rev xs = loop(xs, []) = (reverse xs) ++ [] = reverse xs

Equational proofs of this kind arise commonly in verifying program optimizations and program restructur-
ing. In fact, since equational reasoning steps are invertible, they can be used for program transformation. One
starts with an unoptimized program and applies equational steps to derive an optimized version. Pioneered
by Burstall and Darlington (4), the technique of program transformation is widely used by the functional
programming community (5,6).

Type Theory. Functional programming is implicitly based on a type theory that is often referred to as
typed lambda calculus. A type theory consists of a collection of types built from designated type constructors.
For each type constructor, there are term-forming operations that build or unbuild values of the type and there
are equations that specify that building and unbuilding cancel each other out. We illustrate this for two type
constructors:

• Whenever A1, . . ., An are types (for n ≥ 0), there is a type (A1, . . ., An) that we think of as the type of n-tuples
(or the product type). The term-forming operations are as follows:

(1) If M1:A1, . . ., Mn:An are terms of their respective types in some context, then the term (M1, . . ., Mn) is
a term of type (A1, . . ., An).

(2) If M is of type (A1, . . ., An) then sel[i] M is a term of type Ai for any integer i in 1, . . ., n. The term sel[i]
M denotes the operation of selecting the ith component of M.

These two term-formers satisfy the equations

The first equation says that building a tuple (M1, . . ., Mn) and then unbuilding it by a selection operator
for the ith component has the same effect as Mi. The second equation says that unbuilding a tuple M and
rebuilding it has no net effect.

• Whenever A and B are types, there is a type A → B that we think of as the type of “functions” from A to B.
In ordinary usage, we define functions by writing equations that specify their action on prototypical inputs,
for example, f (x) = M. We are really saying here that f is “the function that maps x to the corresponding
value of M.” From a type-theoretic point of view, it is better to introduce a term-former that denotes this
construction. The notation λx.M is used to denote the function that maps x to the corresponding value of
M. So,

(1) If M is a term of type B that (possibly) uses a free variable x of type A, then λx.M is a term of type
A → B.

(2) If M and N are terms of type A → B and A, respectively, then M N is a term of type B. This denotes
the operation of applying the function value of M to the value of N. The notation M(N) is also used,
but the clutter of the parentheses is really unnecessary.

The variable x is said to be bound in the term λx.M. To formalize the variable binding features as well as
the type correctness conditions, it is conventional to give type rules for the term-formers. These are shown
in Fig. 5 for both the product and function type constructors. The symbol � stands for a finite collection of
typings for distinct variables such as x1:A1, . . ., xn:An. The statement � ( M:A means that “the term M has
the type A assuming that its free variables have the types listed in �.” The fact that λ binds a variable is
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Fig. 5. Type rules for product and function type constructors.

represented by deleting this variable from the free-variable list in the consequent of the type rule. The
equations for the term-formers are

The first equation states the effect of building a function and then “unbuilding” it by application to an
argument. The net effect is to use N in place of x in the term for the function. The second equation says
that the function that maps x to M(x) is the same as M.

The equations that underlie type theory are fundamental. They have to do with the inherent meaning
of the data structures or computational structures such as tupling and functions. While they are best known
in the context of functional programming, their applicability is not limited to functional programming. They
apply wherever type constructors of tupling and function spaces are involved. We will see in the section entitled
“Procedures and Objects” their application in the context of imperative and object-oriented programming.

Textbooks on semantics (1,7,8), have a detailed treatment of type theories. It has been found that more
sophisticated type theories can be used for encoding properties of programs as well as proving them (9,10).
These theories exploit a certain correspondence between types and propositions in intuitionistic logic called
Curry–Howard correspondence. Category theory provides a more mathematical (and abstract) treatment of
type theory with wide-ranging applications. Texts (see Refs. 11 and 12) have a detailed treatment, while Ref.
(13) is a gentle introduction to the subject.

General Recursion. In the examples of this section (sort and partition), we have taken care to write
recursive programs so that they denote well-defined functions. This is done by ensuring that the recursive calls
are made to smaller arguments. However, usual programming languages allow unrestricted recursion. The
functions denoted by programs may then be partial functions that are undefined for some inputs and defined
for others. In computational terms, such undefinedness gets exhibited as nontermination. For example, the
recursive definition

f:Int → Int
f n = if n = 0 then 1
else n ∗ (n − 1) ∗ f(n − 2)

defines a partial function: f maps any non-negative even integer n to the factorial of n, it is undefined for
the other integers.



PROGRAMMING THEORY 9

The general type-theoretic situation is as follows. If F:t → t is a function, there is a value (rec F of type t
that satisfies

We then express the about function f as:

The value (rec F) is called a fixed point of F because it remains unchanged under the action of F.
To deal with recursion in general, we need a theory of partial elements. Such a theory was developed by

Scott (14), based on the classical work of Kleene in recursive function theory (15).
We consider sets D together with a specified partial order �D. The partial orders are used to model

definedness: x �D y means that x is “less defined” than or equal to y. For example, the set of partial functions
[A ⇀ B] between sets A and B can be partially ordered by defining that f � g iff, whenever f (x) is defined, g(x)
is defined and equal to f (x). A partially ordered set 〈D, �D〉 is called a complete partial order (or cpo, for short)
if

• there is a least element ⊥D ∈ D such that ⊥D �D x for all x ∈ D, and
• whenever x0 �D x1 �D x2 �D ··· is an increasing sequence (possibly infinite), there is an element x∞ ∈ D

that the least upper bound of the sequence, that is, (1) x∞ is greater than or equal to every xi, and (2) if z
is greater than or equal to every xi, then x∞ �D z.

The idea is that the least upper bound x∞ captures the information of all the approximations xi and
nothing more. It can be verified that [A ⇀ B] forms a cpo. A function F:D → E between cpo’s is said to be
continuous if it preserves the least upper bounds of increasing sequences. All the functions definable in usual
programming languages are continuous.

If a = F(a) is a recursive definition of a value a ∈ D, where F:D → D is a continuous function, then the
interpretation is that a is the least value such that a = F(a) holds. Such a value is called the least fixed point of
F. It is a result of Kleene that the least fixed point always exists: it is the least upper bound of the sequence

To prove properties of recursively defined values, one uses the fixed-point induction principle. Let P(x) be
a property for values x ∈ D that includes the least upper bounds of increasing sequences, that is, whenever x0
�D x1 �D ··· is an increasing sequence such that P(xi) holds for each xi, then P(x∞) holds for the least upper
bound x∞. Such a property P is called an inclusive predicate. To prove P(a) for a recursively defined value
a = F(a), it is enough to show

(1) P(⊥D), and
(2) P(x) → P(F(x)) for all x ∈ D.

We show an example. Consider proving that f � λn.n! where f is the recursively defined partial function
given before and n! is the factorial of n (undefined if n is negative). In other words, we are showing that,
whenever f(n) is defined, its value is the factorial of n. We first verify that the property P(f) ⇐⇒ f � λn.n! is
inclusive. The two conditions for the fixed-point induction are verified as follows:
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(1) ⊥ � λn.n!. This is immediate from the fact that ⊥ is the least element.
(2) f � λn.n! → (λn.if n = 0 then 1 else n ∗ (n − 1) ∗ f(n − 2)) � λn.n!. By assumption, whenever f(n − 2) is

defined, it is equal to (n − 2)!. So, whenever n ∗ (n − 1) ∗ f(n − 2) is defined, it is equal to n!. Moreover,
1 = 0!. Thus, we have the conclusion.

Textbooks on semantics (1,7,8) as well as those on program verification (16,17) have a detailed discussion
of fixed-point theory and proof methods for recursively defined functions. The introduction of partially defined
elements has implications for the type theory. In particular, the theory for call-by-name programming languages
and call-by-value languages diverges. The texts cited on semantics contain discussion of the differences.

Abstract Data Types

An abstract data type (ADT) is an implementation of a data structure via a collection of specified operations.
The client programs that use the ADT can manipulate the values of the abstract type only by using the provided
operations. They do not have direct access to the data representation used for implementing the type. A variety
of programming languages such as Modula-2, Ada, and Standard ML include module facilities for defining
ADTs. Specifying the behavior of such ADTs and ensuring that implementations meet the specifications are
important concerns for a software engineer.

Two kinds of methods are followed for the correctness of ADTs:

• Axiomatic or Algebraic Method The behavior of the ADT is specified by a collection of axioms. Any
implementation that satisfies the axioms is deemed correct.

• Equivalence method The behavior is specified by giving a naive implementation for the ADT without
concern for efficiency. The correctness of any other implementation is proved by showing that it is equivalent
to the naive implementation.

Note that these two methods parallel the two methods we have seen for the correctness of functions (an
independent specification for quick sort, and a naive program for reverse). We illustrate the two methods for
the data structure of queues.

Axiomatic Specifications. Figure 6 shows an axiomatic specification for queues of integers. The
specification consists of three parts: First, the type of the data structure being specified is given (Queue).
Second, the operations on the data structure are listed (empty, insert, . . .). Third, a collection of equational
axioms for the operations are specified. Note that no definitions are given for the type Queue or the operations.
An implementation of the ADT is free to choose definitions for them in such a way that the axioms are satisfied.

In understanding the specification, keep in mind that the operations are genuine functions with no “side
effects.” For example, the insert operation, given an element x and a queue data structure q, returns a new
queue data structure that contains all the elements of q and the additional element x. How to define insert
without excessive copying is a matter addressed in the implementation. Recall that queues are first-in–first-out
data structures. So, insertions are done at the tail end of the structure and deletions at the front. The first
three axioms capture this behavior. The first axiom is trivial while the second says that deleting the front of a
singleton queue gives the empty queue. The third axiom says that inserting x at the end of a nonempty queue
and then deleting the front has the same effect as doing these operations in the opposite order. The remaining
axioms can be understood in a similar fashion.
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Fig. 6. Axiomatic specification for queues.

One might wonder if the third axiom could be written more simply as

q �= empty ⇒
delete(insert(x, q)) = insert(x, delete(q))

Unfortunately, this statement is not quite acceptable because it uses the inequality predicate and we have
not given any axioms for inequality. But the following restatement is meaningful:

isempty(q) = false ⇒
delete(insert(x, q)) = insert(x, delete(q)).

A natural question that arises is whether the specification is “correct” and even what it would mean for
it to be “correct.” Two criteria are often used:

• Consistency An ADT specification is consistent if it does not equate any two distinct values of predefined
types (types other than the one being specified). The consistency criterion ensures that the axioms are
reasonable (even though they might still be “wrong” in the sense that they might not capture the intended
behavior). For example, if we replace axiom (7) by the following:

(7′) front(insert(x, q)) = front(q)
then it follows that any two values of type Int are equal:

x =(6) front(insert(x, empty)) =(7′) front(empty) =(7′) front(insert(y, empty)) =(6) y
The axiom (7′) is thus wrong because it leads to an inconsistency.

• Sufficient Completeness An ADT specification is sufficiently complete if it equates every term of a prede-
fined type to some value of that type. This criterion ensures that we have enough axioms in the specification.
For example, if we delete the axiom (4), then the term isempty(empty) is not equal to any value of type
Bool.

Note that the specification of Fig. 6 is not in fact sufficiently complete because the term front(empty) is
not equated to any value of type Int. Intuitively, front(empty) should be undefined because an empty queue
does not have a front element. If we are interpreting types as cpo’s rather than sets, we can use the axiom



12 PROGRAMMING THEORY

Fig. 7. A list implementation of queues.

Fig. 8. Verification of the list implementation.

front(empty) = ⊥

For set-theoretic types, the notion of “error values” has been proposed (18) to solve this problem.
These concerns indicate that writing axiomatic specifications is a rather delicate task. Considerable

mathematical maturity is required to develop trustworthy specifications. A vast body of theory has been
developed for facilitating this task (see Refs. 19, 20 and 21).

Models. Recall that an axiomatic specification introduces a type name (the abstract type) and a col-
lection of operation names of specified types. These two pieces of data form what is called the signature of
the abstract type. By picking a specific type to serve as the representation for the abstract type and specific
functions to serve as the implementation of the operations, we obtain what is called a structure. A structure
that satisfies the axioms of the specification is called a model. (The term algebra is also used to refer to models
in our sense.) One way to implement abstract types is by giving models.

Figure 7 shows an implementation of queues using the representation of lists. The elements of a queue
are stored in a list in the order in which they are to be deleted. Hence, insert is defined to add an element at
the end of the list. The operations delete and front are implemented by the tail and head operations on lists,
respectively.

To verify that the implementation forms a model, one merely proves the axioms in the specification for
the particular functions defined in the implementation. For example, we show, in Fig. 8, the verification of the
first three axioms for the list implementation of queues. Note that simple equational reasoning suffices. For
the third axiom, we rely on the following lemma, which can be proved by induction on the length of q.

Lemma 5. For all lists q and q′ such that q �= [], delete(q ++ q′) = delete(q) ++ q′.

Equivalence. The equivalence method for ADT implementations eschews the idea of specifications. We
prove the correctness of an implementation by showing that it is equivalent to a naive implementation whose
correctness is taken to be obvious. The central issue in such a proof is to recognize that the two implementations
might use quite different representations for the abstract type. So, it is not possible to talk about the equality
of representations in the two implementations.
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Fig. 9. Melville implementation of queues.

Fig. 10. Diagrammatic view of Melville queues.

The solution, developed by Milner (22), Hoare (23), and Reynolds (24), is to use a binary relation called
simulation between the two representation types. Suppose X and Y are the two representation types. We
choose a relation R:X ↔ Y, which relates x ∈ X and y ∈ Y precisely when they have identical effect in the two
implementations. The equivalence of the representations can then be shown by using the relation R in place of
equality.

To make these ideas concrete, consider the Melville implementation of queues (25) shown in Fig. 9. The
elements of the queue are split into two lists f and r. The queue elements in f are stored in the order they
are to be deleted and those in r are stored in the order they are inserted. See Fig. 10. When the f part of the
representation becomes empty, we reverse the r part and store it in f. This is done by the function reform. (Since
list reversal can be done in linear time, this gives a constant-time amortized cost for the queue operations.)
Furthermore, we arrange matters so that the f part of the representation is nonempty whenever the r part is
nonempty.

Now, consider proving that the Melville implementation is equivalent to the list implementation of Fig. 7.
We need to define a relation R:[Int] ↔ ([Int], [Int]) such that it relates the representations that have equivalent
effect in the two implementations. The following definition serves the purpose:

The relation treats a list q and a Melville representation (f, r) as equivalent if
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Fig. 11. Verification conditions for queue operations.

(1) q consists of the elements of f followed by the elements of r in the reverse order, and
(2) f is empty only if r is empty.

Note that the second condition is independent of q. It is a condition that all good Melville representations
must satisfy. Such conditions are often called representation invariants.

To formulate the verification conditions for the queue operations, we first introduce some notation for
relations.

• For any type A, EqA:A ↔ A is the equality relation.
• If R1:A1 ↔ A

′
1, . . ., Rn:An ↔ A

′
n are relations, then there is a relation (R1, . . ., Rn):(A1, . . ., An) ↔ (A

′
1, . . .,

A
′
n) between the tuple types, defined by

• If R:A ↔ A′ and S:B ↔ B′ are relations, then there is a relation [R → S]:[A → B] ↔ [A′ → B′] between the
function spaces, defined by

Using these notations, for every type expression F(a) over an abstract type a, we can define a parallel
relational expression F(R) that extends a relation R:X ↔ Y to a relation F(R):F(X) ↔ F(Y). The definition is
as follows:

• If F(a) = a, then F(R) = R.
• If F(a) = A, where A is a type other than a, then F(R) = EqA.
• If F(a) = (F1(a), . . ., Fn(a)), then F(R) = (F1(R), . . ., Fn(R)).
• If F(a) = [F1(a) → F2(a)], then F(R) = [F1(R) → F2(R)].

The relations F(R) defined in this fashion are called logical relations and they have a long history in type
theory (1). A simulation relation between two ADT implementations is a relation R between their representation
types such that all the corresponding operations satisfy the logical relation F(R). If there is a simulation relation
between two ADT implementations then the implementations are equivalent.

Figure 11 lists the verification conditions for showing that the relation R defined in Eq. (1) is a simulation
relation. We are using the subscripts L and M for the operations in the list implementation and Melville
implementation, respectively.

The verification conditions are easy to check. As a sample, we prove the condition for delete. First, note
that the reform function satisfies the property
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reform(f, r) = (f′, r′) ⇒
(f ++ (rev r) = f′ ++ (rev r′)) ∧I(f′, r′)

In other words, the reform function establishes the representation invariant without altering the contents
of the queue.

Now, the verification condition for delete can be expanded as

(q = f ++ (rev r) ∧ I(f, r)) ⇒
deleteL(q) R deleteM(f, r)

Consider two cases:

• Case f = []. We have r = [] by I(f, r), and hence q = []. So, deleteL(q) = [] and deleteM(f, r) = ([], []). These are
related by R.

• Case f = x:f′. We have q = x:f′ ++ (rev r). So, deleteL(q) = f′ ++ (rev r) and deleteM(f, r) = reform(f′, r). These
are related by R.

The verification conditions for the other operations can be checked similarly.
Why does this method work? Intuitively, the verification conditions ensure that (1) whenever the same

sequence of operations is carried out to build a queue, then the queues obtained in the two implementations
are related by the simulation relation, and (2) whenever the same sequence of operations is carried out to
observe queues related by the simulation relation, we obtain identical observable values. Thus, the existence of
any simulation relation between the two implementations implies that the implementations are behaviorally
equivalent.

A variant of the simulation method, popularized by Hoare (23), relies on the fact that the simulation
relation is often a partial function from the more concrete representation type to the more abstract represen-
tation type. For example, we can define the correspondence between Melville queues and list representations
of queues by the function

abs: ([Int], [Int]) → [Int]
abs(f, r) = f ++ (rev r)

The Melville representation is more concrete in the sense that it has multiple representations that
correspond to the same abstract queue. (The queue elements can be split between the f and r parts in different
ways.) The same reasoning as before shows that all the queue operations preserve the abs function. Structure-
preserving functions of this kind are called homomorphisms and have a long history in mathematics. The
majority of the literature on abstract types (21) uses homomorphisms to relate different data representations.
All these ideas, in fact, work more generally for simulation relations. The relational method is discussed, with
numerous examples, in Refs. (26) and 27, but they treat imperative programs. Some of the research articles
discussing the relational method include Refs. 28 to 30.

Implementations and Models. In the section entitled “Models,” we have seen that models of ax-
iomatic specifications provide valid implementations. However, implementations might also be behaviorally
equivalent to models even if they are not models themselves. Such implementations are certainly acceptable.
For example, the Melville implementation of queues does not form a model of the axiomatic specification of
queues. [For instance, the axiom (3) does not hold if q = ([0] [1])]. However, it is behaviorally equivalent to the
list implementation which is a model.

There is a general technique for identifying the model underlying an implementation (if there is one) (31).
An implementation may fail to be a model for two kinds of reasons: (1) some of the values of the representation
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Fig. 12. Verification conditions for implementations of queues.

type may be unused, and (2) multiple values of the representation type may represent the same abstract value.
By factoring out these differences, we can obtain a model.

The formalization of the idea is as follows. A partial equivalence relation (PER) is a binary relation ∼:X
↔ X that is symmetric and transitive (but not necessarily reflexive). The subset {x ∈ X | x ∼ x} is called the
domain of ∼, and denoted dom(∼). Note that the relation ∼ reduces to an ordinary equivalence relation over
dom(∼). Typically, we use a representation invariant to identify dom(∼). For every x ∈ dom(∼), there is an
∼-equivalence class, which is the set of all values equivalent to x, denoted [x]. Note that [x] = [y] if and only if x
∼ y. The set of all ∼-equivalence classes is denoted X/∼.

For the simple type expressions that we are considering, it turns out that, if a PER ∼:X ↔ X is a simulation
relation between an implementation and itself then there is a behaviorally equivalent implementation using
X/∼ as the representation type. We only need to ensure that this derived implementation is a model for the
original one to be a valid implementation. Moreover, since the equality relation of X/∼ corresponds to the
relation ∼, it is possible to formulate verification conditions for the implementation without mentioning the
derived implementation explicity.

To illustrate this, we show in Fig. 12, the verification conditions for showing that an implementation
equipped with a PER ∼ meets the axiomatic specification of queues. Note that (1) every free variable of type
Queue is restricted to lie within the domain of the relation ∼, and (2) the equality relation for queues is replaced
by ∼. These changes reflect the fact that it is the derived implementation over equivalence classes that is being
verified to be a model.

The correctness of the Melville implementation of queues can be verified using the following PER:

(f, r) ∼ (f′, r′) ⇐⇒ I(f, r) ∧
I(f′, r′) ∧ (f ++ (rev r) =
f′ ++ (rev r′))

The relation treats two representations as being equivalent if they have the same queue elements (as-
suming they are valid representations satisfying the invariant).

Imperative Programs

In this section, we review correctness methods for an entirely different programming model, viz., that of basic
imperative programs. In this model, we consider mutable variables, assignment commands and control struc-
tures. Procedures and other high-level mechanisms are postponed to the next section. Denotational methods as
for functional programs are still applicable to this programming model. However, it will be seen that axiomatic
methods are somewhat more effective owing to the specialized nature of commands.
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The concept of variable is central to imperative programming. A variable is an abstract storage cell
that holds a specific value and this value can be altered during the execution of a program. It is important
to distinguish this from the notion of variable encountered in functional programming. Variables there were
symbols that stand for arbitrary values of some type. The variables of imperative programming are not symbols,
though we often use symbols to name variables. Some languages and formalisms fuse the two notions of
variables into one. We keep them separate. In this section and the next, symbols, that is, variables in the sense
of functional programming, are called identifiers, and the term variable is reserved for storage cells.

A basic imperative program is written over a fixed collection of variables, designated by separate identi-
fiers. The types of these variables are specified via declarations such as

var x,y:Int

Types such as Int are called data types. Variables and expressions can take values of data types. A program
is a command that is made up of

• assignments of the form X := E where X is a variable and E an expression,
• the trivial command skip,
• sequencing operation C1; C2,
• conditional construction if B then C1 else C2, where B is a boolean expression, and
• loops of the form while B do C, where B is a boolean expression.

The structure of expressions is standard; it is made of variable identifiers, constants, and the usual
operations appropriate for various data types. In an assignment command X := E, the variable X and the
expression E are required to be of the same type.

It is conventional to treat arrays as forming a data type. The values of an array type Array t are partial
functions from integers to t, whose domain is a contiguous range of integers i, . . ., j. The subscripting expression
a[p] produces the pth element of a, and a[p → x] denotes the modified partial function with the pth element
mapped to x. Both the expressions are undefined if p is not a valid index into the array. If a is an array variable,
the assignment command a[p] := E is regarded as a notational variant of a := a[p → E].

The denotational model of the basic imperative language is defined using the idea of states. Given a
declaration for a collection of variable identifiers X1, . . ., Xn, a state is a mapping [X1 �→ v1, . . ., Xn �→ vn] such
that each vi is a value of the type of Xi. Let State denote the set of all such states. If s ∈ State, we write s(X) for
the value assigned to X in the state s, and s[X → v] for the state that is the same as s except that it maps X to
v.

Expressions of type t are interpreted as partial functions State ⇀ t. We call such functions state valuations.
In particular, a variable X used as an expression denotes the function λs.s(X). An expression of the form E1 + E2
denotes the function λs.E1(s) + E2(s).

Commands are interpreted as state transformations, that is, partial functions of type State ⇀ State.

• The assignment X := E denotes the partial function λs.s[X → E(s)].
• The trivial command skip denotes the identity transformation λs.s.
• A sequencing command C1; C2 denotes the partial function λs.C2(C1(s)).
• A conditional command if B then C1 else C2 denotes the partial function
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• A loop command while B do C denotes the recursively defined partial function w defined by

Using this denotational model, it is easy to verify a number of simple equivalences for commands:

The commutativity property C1; C2 ≡ C2; C1 does not hold in general because C1 can affect variables that are
used in C2 or vice versa. However, there are important special cases in which such reordering is valid. For
instance, if C1 and C2 do not share any free identifiers, one expects the reordering to be valid. We consider a
more general situation.

Definition 6. A free identifier X of a term T is called a passive free identifier of T if all its occurrences are within
expressions. Otherwise, it is called an active free identifier. Two terms T1 and T2 are said to be noninterfering if
all their common free identifiers are passive in both T1 and T2. We write this fact symbolically as T1 # T2.

The idea is that the passive free identifiers of a term denote variables that are used in a “read-only”
fashion. If two terms are noninterfering, none of them writes to any variables used in the other term. So, the
execution or evaluation of one term does not affect the meaning of the other. For example, the two commands x
:= x + z and y := y ∗ z are noninterfering because their only common free identifier is z which is used passively
in both terms.

Theorem 7. If C1 and C2 are noninterfering commands then C1; C2 ≡ C2; C1.

Since the denotational model of the basic imperative language is in terms of functions, one might expect
that the standard reasoning techniques for functions are applicable to them. This is certainly the case for
simple programs. For example, the following program exchanges the values of variables x and y using an
auxiliary variable t for temporary storage:

It is easy to prove the correctness statement:

by calculating C(s) = s[t → s(x)][x → s(y)][y → s(x)]. However, this kind of reasoning involves excessive manip-
ulation of states. Since states are never explicity mentioned in imperative programs, it is preferable to devise
logical notations that operate at a high-level without mentioning states. The notation of Hoare triples (32) is
the most widely used notation for this purpose.
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Fig. 13. Program rules of Hoare logic.

A Hoae triple is a formula written using the notation

where P and Q are generalized boolean expressions called assertions and C is a command. The triple is a logical
statement that means

Informally, this says that, in any initial state in which P is true, if the execution of the command C terminates
then the assertion Q is true in the final state. Note that nothing is said in case the execution of C does not
terminate. For this reason, Hoare triples are called partial correctness statements. (It is also possible to devise
a Hoare triple notation for total correctness, but rules for their manipulation are more involved.) The assertion
P is called the precondition or the input assertion and Q the post-condition or output assertion.

An example of a valid Hoare triple is

In any state in which x is non-negative, incrementing x leads to a state in which x is positive. The correctness
of the variable-swapping command C can be formulated by the statement

Here, we have used two value identifiers a and b to record the initial values of x and y. They are not variables
and so, cannot be modified. Such identifiers are sometimes called logical variables. In our terminology, they are
not variables but identifiers.

Valid Hoare triples can be inferred using a system of if–then rules without ever mentioning explicit states.
This system of rules is called Hoare logic and shown in Figs. 13 and 14. In addition to Hoare triples, the logic
uses a logical statement of the form {P}, with the meaning that the assertion P is true in all states.

The rules of Fig. 13 deal with the various command forms. The Assign rule is somewhat surprising at
first sight: an assertion P is true at the end of the assignment X := E if the assertion P[E/X], obtained by
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Fig. 14. “Logical” rules for Hoare triples.

substituting E for all occurrences of X in P, is true before the assignment. What is surprising is that the
substitution is working backwards. The post-condition determines the precondition, not the other way around.
However, the forward-reasoning Hoare triple

is an instance of the Assign rule provided X does not occur in E. In that case, (X = E)[E/X] ≡ (E = E) ≡ true.
The Assign rule works even when X occurs in E. For example, the Hoare triple

follows from the Assign rule because (x > 0)[x + 1/x] ≡ x + 1 > 0, which is equivalent to x ≥ 0. Why is the Assign
rule sound? Suppose s is a state such that P[E/X](s) = true. A little thought reveals P[E/X](s) = P(s[X → E(s)]).
But s[X → E(s)] is nothing but (X := E)(s), the final state of the assignment. Hence, P holds in the final state.

The rules Skip, Sequencing, and Conditional are straightforward. The while rule introduces the idea of
an invariant assertion. The premise of the rule requires that whenever P and the loop condition B are true,
the execution of the loop body C leads to a state in which P is again true. We say that C leaves the assertion
P invariant. It is then easy to see that the entire loop (while B do C) leaves the assertion P invariant. Note
that there is no requirement that the loop terminates. This is reasonable because Hoare triples are partial
correctness statements.

The rules of Fig. 14 are termed logical rules because they derive from the logical meaning of Hoare triples
and are independent of the commands involved. Since the interpretation of {P}C{Q} is that if P is true in some
initial state of C, then Q is true in the corresponding final state of C, the assertion P plays the role of a premise
and the assertion Q plays the role of a conclusion. Hence, it is valid to replace P by a stronger assertion P′

and Q by a weaker assertion Q′. The Consequence rule formalizes this. The rules Conjunction and Disjunction
allow one to combine Hoare triples.

If P is independent of C, then the value of P is constant throughout the execution of C. Hence, {P}C{P}.
This gives the Constancy rule.

The Strong Constancy rule is a more powerful version of Constancy, invented by Reynolds (chapter 6 of
Ref. 38). If a command C does not affect an assertion P then, whenever P is true in the start state, it will
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continue to be true throughout the execution of C. Therefore, in proving properties of C, we can assume that P
is true for all states. (P may not be actually true for all states. But it will be true for all the states that arise
during the execution of C.) If P # C, we say that P is a general invariant in C.

Proofs in Hoare logic are often presented as proof outlines. These are programs annotated with assertions
at strategic places. In particular, the beginning and ending of the program are annotated with input and output
assertions. Every while loop is annotated with {whileinv I} where I is an assertion (the invariant for the loop).
A proof outline is valid if

(1) for every segment of the form {P}C{Q} or {P}C {whileinv Q} in the outline, {P}C{Q} is a valid Hoare
triple, and

(2) for every segment of the form {whileinv I} while B do C; C′ {Q}, the following are valid Hoare triples:

(3) for every block of the form

the condition I # C must be true.

A proof of correctness consists of a proof outline together with a proof of its validity.
Figure 15 shows a program for partitioning an array together with a proof outline. We assume that

SWAP(a, p, q) is some command that is equivalent to

The input assertion for the program is

(0 ≤ i ≤ j ≤ 99) ∧ (a = a0)

which specifies that indices i and j are within the array bounds and names the initial values of a to be a0.
The task is to partition the array segment a[i . . . j] using a[i] as the pivot. The program partitions the segment
into three subsegments a[i . . . (mid − 1)], a[mid], and (a[(mid + 1) . . . j]) such that all the elements in the first
segment are less than or equal to a[mid] (small values) and those in the last segment are greater than a[mid]
(large values). This suggests the post-condition

0 ≤ i ≤ j ≤ 99 ∧ a ≈ a0 ∧
i ≤ mid ≤ j ∧
a[i . . . (mid − 1)] ≤ a[mid] ∧
a[(mid + 1) . . . j] > a[mid]

Here, a ≈ a0 means that a and a0 have the same collection of elements. The notation a[p . . . q] ≤ x means,
for all k such that p ≤ k ≤ q, a[k] ≤ x. Since i and j are passive free identifiers, the condition 0 ≤ i ≤ j ≤ 99 is
a general invariant in the program. Thus, by using the Strong Constancy rule, we can assume that it holds
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Fig. 15. Proof outline for array partitioning.

Fig. 16. The structure of array segments during partition.

in all states. The condition a ≈ a0 can be proved separately and is, in fact, rather obvious because the only
changes made to a are via SWAP. (It is possible to regard this condition as a general invariant using a more
sophisticated notion of general invariants. See Ref. 26.) The proof outline of Fig. 15 is meant for showing the
remaining conditions of the output assertion.

The key to the proof of correctness is the invariant assertion for the while loop. In our solution, indices l
and h are used to mark the low end and high end, respectively, of the array segment to be partitioned. Thus,
the structure of the array segment is as shown in Fig. 16. (The notation used for this diagram is called partition
diagram. It is formalized in 26.) The first subsegment contains the pivot element, the second and the fourth
subsegments contain small and large values, respectively, and the middle subsegment contains unprocessed
values. The invariant assertion is based on this analysis.

The task of proving correctness is now split into three parts (using W for the invariant, F for the final
assertion):

(1) {0 ≤ i ≤ j ≤ 99} l := i + 1; h := j {W}
(2) {W ∧ (l − 1) < h} loop-body {W}
(3) {W ∧ (l − 1) ≥ h} mid := l − 1; SWAP(a, i, mid) {F}

For part 1, we see by assignment and sequencing rules that {true} l := i + 1; h := j {l = i + 1 ∧ h = j}. We
need to show that the post-condition here implies W, which is a straightforward verification. Note that the
segments a[(i + 1) . . . (j − 1)] and a[(h + 1) . . . j] are empty.

For part 2, we first check that l and h are proper subscripts for the array (since i ≤ l − 1 < h ≤ j). If
a[l] ≤ a[i], then W ∧ (l − 1) < h → W[l + 1/l]. If a[h] > a[i], then W ∧ (l − 1) < h → W[h − 1/h]. Otherwise, l and
h are distinct, and we verify W ∧ (l − 1) < l < h → W[a′/a, (l + 1)/l, (h − 1)/h]. where a′ = a[l → a[h], h → a[l]].

For part 3, we verify W ∧ (l − 1) ≥ h → F[(l − 1)/mid, a′/a] where a′ = a[i → a[l − 1], (l − 1) → a[i]].
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This completes the proof of the partial correctness of the partitioning program. For termination, we note
that h − (l − 1) ≥ 0 is an invariant of the loop and the loop body monotonically decreases it, that is,

Therefore, it follows by induction on k that, for all states s in which h − (l − 1) has the value k, w(s) is defined
(where w is the state transformation function of the while loop).

Correctness proofs of this kind are fairly elementary to construct. See Manna (17), Loeckx and Sieber
(16), or Mitchell (1) for a detailed treatment. The texts by Gries (33), Reynolds (26) and Jones (34) give an in-
troductory treatment with numerous examples. These texts also describe techniques for program development
with correctness proofs integrated into the process. A closely related system to Hoare logic is the weakest-
precondition calculus of Dijkstra (35). A somewhat more structured framework for program development is the
“refinement calculus” presented by Morgan (27,36).

Procedures and Objects

Procedures are parametrized commands. For example, the notation SWAP used in the partition program is a
parameterized command, which can be defined as follows:

SWAP(a, p, q) ≡
begin var t: Real;
t := a[p]; a[p] := a[q]; a[q] := t
end

Mathematically, SWAP is a function that maps the parameter list (a, p, q) to a command. Thus the type
theory of procedures is an instance of the type theory of functions provided we formalize the types of the
parameters and results involved in imperative procedures. Such a type theory was first provided by Reynolds
(37) and came to be called Idealized Algol.

The basic insight is to recognize that in addition to the data types that demarcate values storable in
variables, there is another class of types called phrase types. Every class of phrases involved in the basic
imperative language gives rise to a phrase type.

We use t to range over data types and θ to range over phrase types. The basic phrase types are

• Exp t for expressions that give t-typed values,
• Comm for commands, and
• Var t for variables that hold t-typed values.

In the logic for reasoning about programs, we also encounter the following phrase types:

• t for values of data type t, and
• Assert for assertions.

We adopt tuple types and function types from the type theory of functions:

• (θ1, . . ., θn) for phrase types θi
• θ → θ′ for phrase types θ and θ′
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Fig. 17. Type theory of record and class types.

The reader would have noted that the type system of Idealized Algol differs considerably from the type
systems of practical programming languages. For example, a type like Exp Int is rarely found in a typical
programming. The point of Idealized Algol is to provide a clean and straightforward formal system to facilitate
reasoning.

Using these phrase types, SWAP can be given the type

SWAP:(Var Array Real, Exp Int, Exp Int) → Comm

In general, functions with result type Comm correspond to procedures. Functions with result type Exp t
correspond to function procedures or parametrized expressions. The type theory also allows functions whose
results are variables, assertions, or other kinds of functions. See the papers in Ref. (38) for examples, especially
Chaps. 8, 9, and 19.

For dealing with objects, we add two more phrase type forms:

• [l1:θ1, . . ., ln:θn] is the type of records that have fields named l1, . . ., ln of respective types
• Cls θ is the type of classes that describe θ-typed objects

The type theory of these types is shown in Fig. 17. Here is a gentler explanation.
Record types are essentially notational variants of tuple types that allow the use of mnemonic field names

for the components. Instead of writing a tuple as (M1, . . ., Mn), we can write a record construction [l1 = M1, . . .,
ln = Mn], which builds a tuple and associates the field names l1, . . ., ln with the components. To select a field of
a record R, we write R.li instead of sel[i] R. The record type [l1:θ1, . . ., ln:θn] is thus isomorphic to the tuple type
(θ1, . . ., θn) and its operations satisfy laws similar to those of tuple types.

Objects are entities with hidden internal state and an externally accessible method suite. The methods
are values of types that we have already seen: (possibly) parametrized commands and expressions, which act
on the hidden state. We will treat the method suite as a record. The type of the object is merely the type of this
record. For example, a counter object with an “increment” method and a “read value” method is of type:

type Counter = [inc: Comm, val: Exp Int]
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Fig. 18. A class of counters.

A class describes a particular behavior for objects by giving an implementation, which includes the internal
state variables and the definitions of the methods. For example, the class COUNTER of Fig. 18 describes these
for counter objects. Having defined the COUNTER class, we can create an instance of this class within a
command by writing:

begin new COUNTER c; T end

The counter named c is created at the beginning of the command (by creating its internal state variable
and binding c to the method suite) and it is destroyed at the end of the command. We will not consider storable
references to objects. So, both the scope and extent of the object c are limited to the command T.

We assume primitive classes

VAR[t]:Cls (Var t)
ARRAY[t]:Int → Cls (Var (Array t))

for all data types t. The traditional declaration form var x: t is now equivalent to new VAR[t] x.
Classes, like ADTs, incorporate data abstraction. The difference is that while ADTs export types and expect

the client programs to create and manipulate values of such types, classes keep their data representations
completely hidden from client programs. This is possible because classes work in the context of imperative
programming where there is always a hidden mutable state.

For the verification of ADTs in the functional setting, we considered an axiomatic method that relies on
axiomatic specifications and an equivalence method that uses simulation relations. The best known method
for classes, due to Hoare (23), combines the two techniques, by using axiomatic specifications that incorporate
simulation of an abstract representation. These kinds of specifications are often called model-based specifica-
tions.

To see the issues, let us first consider specifying the behavior of a counter object. If c is an instance of
COUNTER then, for all integers k: Int, we have

{c.val = k} c.inc {c.val = k + 1}

In other words, the effect of c.inc is to change the internal state of the counter in such a way that the
value of c.val is incremented. It is possible to specify the behavior of counters directly because the entire state
of the object is observable via the val method. However, for more complex data structures, the entire state
may not be directly observable. Consider specifying bounded queues with the type shown in Fig. 19. For any
integer n ≥ 1, QUEUE(n) is a class whose instances denote queues of capacity n. The internal state of the data
structure consists of all the elements of the queue, but only the front element is directly observable. We cannot
specify the action of, say, the insert operation by its effect on front. The solution then is to consider an abstract
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Fig. 19. Type declarations for queue class.

Fig. 20. Axioms for queue class.

representation of queues, say in terms of lists, so that the effect of all the operations can be specified in terms
of the abstract representation.

A model-based specification of the queue class is as follows: For all integers n ≥ 1, and all instances q of
QUEUE(n), there exists a parametrized assertion contains: [Int] → assert such that the axioms of Fig. 20 are
satisfied. Thus, for every q that is an instance of QUEUE(n), there must be a parametrized assertion contains
that relates the state of the queue data structure to a list. The assertion contains(xs) holds in a state if and
only if the contents of the queue in that state represents the list of elements xs (with the first element of xs
representing the front). For every valid implementation of queues, there must be such a simulation predicate.

The axioms of Fig. 20 are more or less straightforward. Recall that a statement of the form {P} means
that the assertion P holds in all states. So, the first axiom, for instance, says that in any state in which the
queue holds the list of elements xs, the boolean expressions q.isempty and xs = [] have the same values. Note
that we specify the action of the insert method by its effect on the contains predicate: q.insert(x) changes the
state of the queue in such a way that it contains an additional element x at the end.

Consider the queue class shown in Fig. 21 which represents queues by circular arrays. The representation
consists of an array of size n + 1 (with indices ranging from 0 to n) and two variables f and r to point to the front
and rear of the queue, respectively. As a matter of fact, f points not to the front element, but to the position
before the front element. The array cell at position f is always unused (called a dummy cell).

The methods of a queue object are defined recursively using the operator rec discussed under the heading
General Recursion. The recursive definition allows the insert and delete methods to refer to isempty and isfull.
To prove that the recursively defined object satisfies its specification, we can use the fixed-point induction
principle. However, it is simpler to eliminate the recursion by unfolding the recursive definition once. (This
technique works because the recursion used in this definition is benign. It requires only a fixed number of
unfoldings.)

To prove that this class meets the specification, we must find a simulation predicate. Let i . . . j denote the
sequence of integers i, next(i), next2(i), . . ., j. Use the notation a[i . . . j] to denote the list of array elements at
positions i . . . j. The simulation predicate can then be defined as follows:
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Fig. 21. Queue class using a circular array representation.

contains(xs) ⇐⇒
(f = r ∧ xs = []) ∨
(f �= r ∧ xs = a[next(f) . . . r])

The idea is that the empty queue is represented by the state where f and r are equal (with f pointing to a
dummy cell). All other states represent nonempty queues whose elements consist of the elements at positions
next(f).. . ., r. It is now straightforward to verify all the axioms of queues. We show a sample:

• {contains(xs) → q.isempty = (xs = [])}. If contains(xs) is true in a state, then xs = [] iff f = r, and q.isempty
is precisely this condition.

• {contains(xs) → q.isfull = (length(xs) = n)}. Suppose contains(xs) is true in a state. If f = r and xs = [], then
next(r) = (r + 1) mod (n + 1). Since n ≥ 1, next(r) �= r. Hence, both isfull and length(xs) = n are false. If f �= r
and xs = a[next(f). . . r], then lengths(xs) is the same as the number of integers in next(f) . . . r. This is equal
to n if and only if next(r) = f, which is nothing but the definition of isfull.

• {not(q.isfull) ∧ contains(xs)} q.insert(x) {contains(xs ++ [x])}. We need to show that {f �= next(r) ∧ con-
tains(xs)} r := next(r); a[r] := x {contains(xs ++ [x])}, which amounts to showing that f �= next(r) ∧
contains(xs) implies

(f = next(r) ∧ xs = []) ∨
(f �= next(r) ∧ xs = a[next(r) → x][next(f) . . . next(r)]

The first disjunct is impossible. The second follows from the hypothesis.

As in the functional ADTs, the simulation relation for a class is often a function. In that case, we can use
an expression instead of a parametrized assertion to model the correspondence with an abstract representation.
For example, the following expression for the circular array representation captures the list of queue elements:
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abs:Exp [Int]
abs = if f = r then [] else a[next(f) . . . r]

For other representations, there may also be a representation invariant assertion that specifies which
states form valid representations. It is not hard to adapt the axiomatic specification of Fig. 20 to use the
invariant and abstraction expression instead.

A good source for the discussion of the abstraction function method is Jones (34). Reynolds (26) and Morgan
(36) use the relational method. None of these books deals with objects explicitly. For objects, the articles (39,40)
are helpful. They also discuss the issues of subtyping for object-oriented programs.

Conclusion

In this article, we have addressed the subject of programming theory from the viewpoint of ensuring functional
correctness of program components. Other major aspects of the subject include programming language seman-
tics, which studies general principles of programming language design, the theory of program specifications,
which studies the specification of large-scale systems, the theory of concurrency, which studies techniques for
building concurrent and distributed systems, and numerous other theoretical disciplines.

Returning to the issue of functional correctness, we see that there are two major approaches. One is
the semantic approach, where we use mathematical abstractions to capture the behavior of programs and
use them to reason about program behavior. The second is an axiomatic or formal approach where we use
rigorously stated rules to reason about program properties. The two approaches are complementary and the
best application of programming theory can benefit from both. The semantic approach better lends itself to
intuition and allows one to take large leaps in reasoning. The formal approach generates greater confidence
in reasoning, at least if all the steps are carefully followed through. The semantic approach may involve
sophisticated mathematical concepts that may be inaccessible without significant effort. On the other hand
formal approaches can be applied purely by symbolic manipulations.

The practical application of these theoretical techniques to program development varies widely. In some
areas such as protocol design, correctness concerns have a high interest, and systems of small size are even
mechanically verified. In some other areas, systems are formally specified using specification languages like Z
and VDM. In normal programming, conscientious programmers often document representation invariants for
data types so as to aid future modifications. Functional and logic programming languages, whose correctness
concerns are simpler than those of imperative languages, have been used for many applications where improved
reliability and reduced diff costs have been reported. We anticipate that, in time, theoretical techniques will
find wider usage in applications where correctness concerns are critical.
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