
J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering
Copyright c© 1999 John Wiley & Sons, Inc.

PROGRAM COMPILERS

A compiler is special software for taking a program (called the source program) written in a particular (pro-
gramming) language as input and producing a program (called the target program) in another language as
output. For example, a Pascal compiler translates a Pascal program into assembler (or machine) code, and a
Java compiler translates a Java program into Java bytecodes. The output of a compiler has to be semantically
equivalent to its input, that is, if the source program and the target program are executed on the same data,
then they deliver exactly the same results. The compilation process can be executed in one or more successive
stages (passes).

Application Fields

The area of compiler construction is one of the best-known disciplines of computer science. Compiler techniques
are strongly influenced by results of programming language theory (1) and formal language (and automata)
theory (2); see also AUTOMATA THEORY. The classical compiler application field is the translation of programming
languages like Fortran, C, C++, and Pascal into machine code of a certain processor. Nowadays we can find
further examples:

• Document description languages like TEX, LATEX, HTML, SGML, XML
• Database languages to formulate requests, for example, a sequence of SQL statements implemented as

stored procedures
• Design languages for very large scale integration (VLSI) to describe a chip layout
• Natural-language processing
• Protocol languages in distributed systems—for example, execution of remote procedure calls requiring the

translation (marshalling) of the call into a representation that can be transmitted over a given network

All these areas profit from compiler techniques.

Structure of a Compiler

A compiler is a complex program, which can be divided up into consecutive phases (modules). Each phase
transforms semantically equivalent a program representation into another one (see Fig. 1). Fitting together all
parts, we obtain the whole compiler, translating a program written in a particular programming language into
machine-executable code. In practice, some phases are executed in parallel or pipelined form, but for better
understanding we will describe each phase separately as a single unit.

1

2 PROGRAM COMPILERS

Fig. 1. The phases of a compiler.

Fig. 2. Lexical analysis, part 1: Translating a program statement into a token stream.

Lexical Analysis. A program written in a particular language is usually stored in a file as a sequence
of characters. The character stream necessarily hides the syntactical structure, which must be reconstructed
by the lexical and syntactic analysis.

The task of the lexical analysis is to

• Inspect the character stream to see that only well-defined characters are used
• Decompose the character stream into a sequence of lexical units belonging semantically together, called

tokens
• Delete all irrelevant characters and sequences of characters
• Create a symbol table to handle the identifier names of the token

The module processing the lexical analysis is called the scanner. Let us consider the lexical analysis in
more detail. First the character stream is transformed into a sequence of symbols (tokens); a simple example
is given in Fig. 2.

PROGRAM COMPILERS 3

The symbol sequence can again be refined so that the class of identifiers is subdivided into separate
classes of user-defined identifiers and predefined identifiers (reserved words or keywords) of the language.
Furthermore, separator and comment symbols are deleted. Then a symbol table is created where all identifier
names are stored. The various occurrences of a token representing a user-defined identifier are numbered and
referenced in the output token stream by an index to the symbol table where the concrete name is stored.
Usually we have a fixed number of distinguished token classes, e.g., see Table 1.

Figure 3 illustrates the translations process based on the defined token classes. The structure of a token
can formally defined by regular expressions (3,4,5,6). For example, each user-defined identifier of a programming
language has to be a character string in which the first character is a letter and the following ones are letters
or digits. Formally that can be defined by

where | represents OR and {x} the set of finite sequences of symbol x.
In the implementation of the lexical analysis the model of deterministic finite automata (2,3,4,7) will be

used to process the pattern matching of the token; see also AUTOMATA THEORY.
Syntactic Analysis. The structure of expressions, statements, or declarations cannot be determined

by the lexical analysis. Hence a more powerful analysis is required: syntax analysis or syntactic analysis. The
module processing it is called the parser. The task of a parser consists of

• Evaluating the syntactic structure (in the form of an abstract syntax tree) of a program
• Recognizing and locating syntactical errors
• Sending detailed error messages to the programmer

A program (in token stream representation) can be considered as a word of an appropriately defined
context-free language. By techniques of formal language theory the correctness of the program structure can
be proven, and for output an abstract syntax tree is evaluated. To go into more detail we need the definition
of context-free grammars, context-free languages, derivation trees, and abstract syntax trees. We repeat some
definitions given in the article AUTOMATA THEORY. The reader familiar with formal language theory or the
reader only interested in getting a general idea of compilers can skip the formal definitions.

4 PROGRAM COMPILERS

Fig. 3. Lexical analysis, part 2: Refining the token stream by using an identifier symbol table.

An alphabet is finite set � = {σ1,. . .,σn} of symbols. A finite sequence x1x2. . .xk of symbols (xi ∈ �, k∈ N) is
called a word of length k. We include the case k = 0 and say that there is a (unique) word of length 0, which will
be called the empty word and will be denoted by ε. The set of all finite words that can be formed with symbols
from �, including the empty word ε, will be denoted by �∗. Mathematically we may define �∗ = ∪kεN �k with
�0 = {ε}.

A grammar G = (N, T, S, P) is a structure where N and T are disjoint finite alphabets, S ∈ N is the initial
symbol, and P ⊆ (N ∪ T)∗ × (N ∪ T)∗ is a finite set of rules. The elements of N are called nonterminal and those
of T are called terminal symbols. The set of all symbols of the grammar G is denoted by V, that is, V=N ∪ T
and N ∩ T = Ø. The initial symbol S ∈ N is also called the start symbol of G.

We define the one-step derivation relation that relates pairs of V∗ as follows: x → y iff there is a rule (u,v)
∈ P such that y is the result of applying the rule (u,v) to x. We extend this relation to its so-called reflexive and
transitive closure →∗ ⊆ V∗ × V∗ by defining x →∗ y iff there is a finite sequence of one-step derivations x →
x(1)→ x(2)→ ···→ x(n) → y that transforms x into y or if x = y. The sequence x → x(1)→ x(2)→ ···→ x(n) → y is
called a derivation of y from x. A rule (u,v) ∈ P is also simply denoted as u → v.

A sequence x ∈ V∗ that can be derived from S is called a sentential form of G, and if the sentential form
only consists of terminal symbols (x ∈ T∗), then x belongs to the language defined by G. So G defines (generates)
the language LG = {x ∈ T∗ | S →∗ x}.

A grammar G = (N, T, S, P) is called context-free iff P ⊆ N × V∗. This means that the rules have just one
nonterminal symbol on the left hand side. A language L ⊆ T∗ is called context-free iff there exists a context-free
grammar G that generates L.

For a context-free grammar a derivation may also be represented by a tree where the nodes are labeled
with the symbols of the grammar. The root of the tree is labeled with the initial symbol, and if a node is labeled
with a nonterminal symbol X ∈ N and in one step X is replaced by the right-hand side of a rule X → v1v2 . . .vk,
then the node has exactly k successor nodes labeled with v1, v2, . . .,vk. A node labeled with a terminal symbol
has no successor. Such a tree is called a derivation tree or, in the case of programming languages, an abstract
syntax tree.

For our example we represent the translation of the token stream into its abstract syntax tree in Fig. 4. If
the evaluation proceeds correctly, then the program is syntactically correct; otherwise the evaluation process
breaks down with an error, that is, the derivation is not possible. This implies also that a more or less precise
incorrect program point is discovered.

PROGRAM COMPILERS 5

Fig. 4. Syntactic analysis: Translating the token stream into an abstract syntax tree.

In practice, the above-defined model of context-free grammars is too general to provide efficient syn-
tax analysis. More restricted forms of context-free grammars are used in real compilers. Properties like
unambiguity (for each member of the generated context-free language there exists exactly one derivation
tree) and run-time efficiency of the analysis are very important.

Usually grammars generating deterministic context-free languages are employed, because the correspond-
ing parser can be generated automatically and is easier to implement. In addition, the run-time efficiency of
the generated parser is pretty good. Linear run-time complexity of such a parser can be obtained (3,7,8). Syntax
analysis can be divided into two classes: top-down and bottom-up. Both of them can analyze the program from
left to right and construct an abstract syntax tree.

Top-down Syntax Analysis. The parser begins its work with the start symbol of the grammar (see Fig. 5).
Let the program be of the form t1t2 . . .tn, the first (leftmost) symbol (t1) of the program (in token-stream form)
be the so-called actual token acttok, and the start symbol be the so-called actual grammar symbol actgra.

(1) The parser predicts a grammar rule to be applied with actgra as left-side nonterminal. Let actgra → v1v2
. . .vk be the selected rule. The actual grammar symbol actgra is now v1.

(2) The parser compares the actual token acttok and the actual grammar symbol actgra.

a. If they are equal, then the selected rule is deemed to be the right one and the actual token will be
accepted. The token following the actual one will become the actual token, and the following grammar
symbol will become the actual grammar symbol.

6 PROGRAM COMPILERS

Fig. 5. Top-down syntax analysis: Constructing a derivation in top-down manner.

b. If the actual grammar symbol actgra is a nonterminal and a corresponding rule with actgra as left-side
nonterminal exists, then again a rule will be selected. Let actgra → w1w2 . . .wm be the selected rule. The
actual grammar symbol actgra changes now to w1. Continue with the comparison.

c. If the actual grammar symbol actgra is a nonterminal and no corresponding rule exists, then the previous
selection of a grammar rule was incorrect. Select another one, and continue with the comparison. If all
alternatives of the previous rule selection are exhausted, then one of the earlier rule predictions was
wrong. The parser then performs the process of rule prediction backwards (also called backtracking)
until it finds an alternative grammar rule still to be investigated, and goes on.

d. If no possible rule prediction can lead to a correct derivation tree, then the parser reports an error.

To illustrate the algorithm consider the following example. Let G=({E, T, F}, {(,+,∗,),id}, P, E} with P={

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id }

describing arithmetic expressions. Deriving the abstract syntax tree for id+id∗id leads to the steps given
in Fig. 6, resulting in a wrong derivation tree. The second application of rule 1 is the obstacle to generating a
correct derivation. Hence the derivation must be reset to the situation before the second application of rule 1
has taken place. Figure 7 depicts the correct derivation tree.

A parser working like the above-described model is quite easy to implement, but has unacceptable run-
time efficiency. But more sophisticated analysis algorithms (3,4,8) hav been developed to overcome the ineffi-
cient reset (backtracking) situation. LL(k) grammars (a special form of deterministic context-free grammars)
allow us to construct a parser that determines the grammar rules in a unique (deterministic) manner. By a
so-called lookahead (examining the following k symbols of the actual grammar symbol), the reset situation can
be avoided.

Bottom-up Syntax Analysis. Similarly to top-down syntax analysis, a bottom-up parser analyzes the
program from left to right, but the construction of the derivation tree happens in another way: by using an

PROGRAM COMPILERS 7

Fig. 6. A wrong derivation for the expression id+id∗id.

Fig. 7. A correct derivation for the expression id+id∗id.

additional (pushdown) store in which symbols (nonterminals and terminals) are stored until the right side of
a grammar rule is being generated. The parser essentially processes two operations:

• Shifting the next program symbol to the store
• Finding a grammar rule with right side corresponding to the stored symbols or to the right part of them,

and then reducing (i.e., replacing) the corresponding symbols by the nonterminal of the left side of the
grammar rule

The parsing process starts with a shift of the first program token to the store. Next, a further shift or a
reduce operation takes place.

Parsers working in this manner are also called shift–reduce parsers. The name bottom-up parser comes
from the direction of the derivation-tree construction. The crucial point in the shift–reduce parsing process is
again the selection of an appropriate grammar rule, i.e., the decision whether a shift or a reduce operation
should be processed next when both are possible. If a decision turns out to be wrong, then backtracking
(similar to the reset situation of the top-down parser described above) takes place to investigate an alternative
derivation tree. In Table 2 the parsing of the arithmetic expression id∗id, taken from Ref. 3, exemplifies crucial
situations.

LR(k) grammars (3,4,8) are certain forms of context-free grammars. The corresponding parser can decide
in a unique (deterministic) manner if a shift or a reduce operation must take place. The decision is based on
the next k symbols to be analyzed. In contrast to LL(k)-grammar-based analysis, the LR(k) parsing algorithm
analyzes all possible derivations in parallel so long as both shift and reduce are possible. The construction

8 PROGRAM COMPILERS

of parsers corresponding to LR(k) grammars is complicated and expensive, but fortunately it is supported by
compiler generator tools like Yacc (9). The input of Yacc is an LALR(1) grammar [a simpler form of LR(1)
grammars (3,4,8)]. As output an appropriate parser will be evaluated.

Semantic Analysis. Context-free grammars are not powerful enough to extract certain (static) syn-
tactic properties of a program—for example, does a variable identifier occurring in a statement have a defining
statement? or are the variables a and b in the assignment a:=b be of the same type? The former property is
called identification of the identifier, and the latter is called type checking. The task of semantic analysis (also
called static semantics) is to investigate and to inspect static program properties like the above.

One technique used is to decorate the nodes of the abstract syntax tree with additional attributes. During
the analysis, the attribute values are evaluated by means of previously evaluated attribute values. The semantic
analysis can be implemented by using either symbol tables or attribute grammars. The second technique
frequently used is based on the context-freegrammar definition of the previous phase and defines additionally
functional dependences between the attributes of the grammar rules. To each grammar rule an equation is
associated showing how to evaluate the attribute value of the left side from attribute values on the right side.
A formal exposition is laborious; for details we refer to (3,10).

Intermediate-Code Generation. The attributed abstract syntax tree can be used to generate machine
executable code. But first a so-called intermediate code will be generated that is more abstract than machine
code and independent of the underlying real machine. The advantage of using intermediate code is that
machine-independent optimization can be applied to optimize the code, and portability to other hardware
platforms can be gained.

One possible form of intermediate code is the three-address code, where operations with three arguments
(addresses, registers) are definable, for example,

• x:=op(a,b)

PROGRAM COMPILERS 9

Fig. 8. Intermediate-code generation: Translating an abstract syntax tree into machine-independent code (three-address
code).

• x:=a
• if comp(a,b) goto L

with x,a,b,L are addresses in the store, op is an (arithmetical) operation {+,−,∗,. . .}, comp is a compare
operation {<,>,=,. . .}, and L is a jump address. The three-address code applied to our previous example is
illustrated in Fig. 8.

Machine-Independent Code Optimization. Examining Fig. 8 in detail, we find that the three-address
code sequence has room for improvement. Since t1, t2, t3 are integer values and not compound expressions, their
occurrences in the third and fifth statements can be replaced with their values (see Fig. 9). Code optimizations
denote program transformation to improve the storage or run-time efficiency of programs. By means of data-
flow analysis or abstract interpretation (3,11,12), program properties like the following can be computed and
used to transform programs into semantically equivalent ones:

10 PROGRAM COMPILERS

Fig. 9. Intermediate-code optimization: Refining the three-address code sequence by optimizations.

• Elimination of redundant evaluations. For example, in

the second a:=1; is superfluous.
• Elimination of dead code. For example, in

the statement c will never be computed and is therefore superfluous.
• Moving loop invariants from the loop body to outside the loop, implying that the invariant is only evaluated

once.

A lot of program transformation are well-known (3,11,12) but all are of heuristic nature. Optimization
(i.e., the best possible code) cannot be obtained and formally proven, that is, it is not possible to prove that the
generated code is optimal.

Generation of Machine-Dependent Code. The code generation of the last phase does not generate
real-machine executable code. Now two alternatives are provided:

• A mapping from the machinelike code to a code sequence of a certain (real) machine
• A so-called abstract (or virtual) machine implemented on a concrete machine that interprets the machinelike

code

Code Mapping. The machinelike code can again be improved by machine dependent optimizations (3):

PROGRAM COMPILERS 11

• A real machine has a number of registers dependent on a concrete processor, enabling very fast access.
Since only a restricted number of registers are available, skillful register allocation can enormously shorten
the overall runtime.

• Each real machine offers a set of instructions. The quality of the code mapping has much to do with a good
selection of the best (fastest) instruction sequence. The selection depends strongly on the concrete processor
architecture.

• If the real machine enables parallel processing at instruction level, then the mapping generates certain
instructions that can runin parallel. Additionally the mapping must guarantee the correctness of the
parallel instructions.

Today, programs written in high-level languages frequently use additional program libraries provided as
precompiled units (or machine executable code). Hence the generation of real-machine executable code can
still include linker and loader processes. The address management of the given program and of the used parts
of libraries must be linked together, and the occurring relative addresses must be translated into absolute
addresses. Finally the code has to be loaded into the main memory for execution under the control of the
operating system.

Abstract Machine. Another programming-language implementation technique is to translate a program
into intermediate code, which will be considered as executable code of a certain machine that is more abstract
than a concrete machine. That machine can be written in another programming language (e.g. in C or C++) or
in an assembler language, and is called an abstract machine. The instruction and operation set of an abstract
machine is defined independently of the underlying processor. Usually the abstract machine model is based
on the model of stack machines equipped with a stack acting as a store of arbitrary length. Two operations on
the stack are allowed. First, a new word can be pushed on top of the store, whereby the top element will be
deleted. Second, just the top element of a nonempty stack can be erased. In contrast to concrete machines, no
differentiation is made between the various store variants (such as register, main memory, cache, background
store).

A compiled program executed by an abstract machine running on hardware platform A can also be
executed on another hardware platform B provided an implementation of the abstract machine on B exists;
see Fig. 10.

The advantage of using abstract machines is that they are easier to implement and to improve on a
concrete machine than when one must modify the back end of a compiler. The abstract-machine technique
was used in the UCSD P-System (13), one of the first commercial Pascal implementations. Nowadays the
Java portability concept (14) is also based on abstract machines. The Java compiler generates bytecodes (i.e.,
intermediate code), which are executed on the Java virtual machine (i.e., an abstract machine) and can be
transmitted over the Internet. For each well-known hardware platform an appropriate implementation of the
Java virtual machine exists.

Interpreter

Having described the structure of a compiler, we briefly consider an alternative realization of program pro-
cessing. The separation of program translation and program execution can be abolished, so that both occur
simultaneously. That means the statements and expressions of a program will be evaluated (interpreted)
as they are parsed. The drawback of that procedure is that code optimization is nearly impossible. Another
drawback is inefficiency, because the source program must be parsed whenever it is executed. On the other
hand, the target code generated by a compiler need not always be parsed at execution time. An advantage of
using interpreters is their support of rapid prototyping in that an interpreter is easier to implement than a
corresponding compiler.

12 PROGRAM COMPILERS

Fig. 10. A compiled program is executed by an abstract machine, which can be implemented on various platforms.

A typical interpreted programming language is the functional language Lisp or the logic language Prolog.
To speed up the execution of Lisp and Prolog programs there exist compilers to generate more efficient target
code, which again will be interpreted by the Lisp or Prolog interpreter. Abstract machines can also be considered
as low-level machine-language interpreters.

Front End and Back End

The entire compiler structure can be divided into two components: analysis or front end, and synthesis or
back end. The analysis part of a compiler consists of lexical analysis, syntactic analysis, semantic analysis,
intermediate-code generation, and optimization. The synthesis part includes the machine-dependent code
generation and optimization. The obvious advantage of this classification is that if a language L has compilers
for k platforms, then only one front end and k back ends are needed. And vice versa, for one back end a set
of various programming languages may exist, all translated into the same intermediate-representation form.
Altogether, for m programming languages and k target languages, only m front ends and k back ends are
necessary instead of m ∗ k different compilers (see Fig. 11).

Bootstrapping

Another way to implement a compiler is to implement first an unoptimized prototype version. Then, the
prototype compiler, frequently implemented as an interpreter, can be used to translate a compiler written in the
programming language itself into a compiler written in machine language. This process is called bootstrapping.
We now explain the procedure in more detail. Let S be the source language, T be the target language, and I be
the implementation language of the compiler, depicted as a so-called T diagram as in Fig. 12.

In a first step the compiler from S to T is written in the programming language S itself (see Fig. 13). To
get an real implementation it is necessary to write “by hand” a compiler implementation in an appropriate

PROGRAM COMPILERS 13

Fig. 11. Front end and back end.

Fig. 12. T diagram: A compiler translating source programs written in language S into target programs written in
language T, where the compiler is written in language I.

Fig. 13. Bootstrapping, part 1: A compiler from S to T written in S.

Fig. 14. Bootstrapping, part 2: Writing “by hand” a compiler in an appropriate language H.

language H, such as the programming language C (see Fig. 14). On most platforms a C compiler exists, which
translates C into machine code. Then we obtain a compiler implemented in the target language T. But of course
the generated implementation is highly inefficient and is unoptimized, because the “by hand” implementation
is a rapid prototype implementation. Fortunately, the inefficiency of the first bootstrapping step does not
propagate. Suppose the language S is extended by some new features or constructs. Let S’ be the extended
language based on S. Then a new compiler version can be generated in the following steps (see Fig. 15):

(1) Implementing the new features in S
(2) Using the new language features to reformulate (improve) the compiler implementation in S′

(3) Showing the correctness of the generated compiler by proving that the generated compiler translates the
original one into the generated one (i.e. itself).

14 PROGRAM COMPILERS

Fig. 15. Bootstrapping, part 3: Improving the compiler implementation, for example, by extending the features of language
S or by optimizing the compilation process.

The bootstrapping process can also be applied to improve implementations of the compiler, for example
by using a more sophisticated compilation algorithm.

Compiler Tools

Since compiler construction is a mature discipline, there exist tools for each compiler phase:

• Scanner generator
• Parser generators for LALR(1) or LL(1) grammars
• Abstract syntax tree generator
• Attribute grammar generator
• Code generator

The most famous compiler tools are Lex and Yacc (9), both originally implemented for the operating system
Unix. Lex is a scanner generator that evaluates a corresponding scanner to a specification based on regular
expressions. Yacc (Yet Another Compiler Compiler) is a powerful parser generator for LALR(1) grammars. Lex
and Yacc work together: see Fig. 16. For corresponding Java tools (Jlex, CUP) we refer to Ref. (15).

PROGRAM COMPILERS 15

Fig. 16. Compiler tools: Applying Lex and Yacc.

Parallelizing Compilers

To decompose a program into parallel-executable components is a great challenge, since the demands of the
resources (run time, store requirements, communication costs, etc.) are hard to approximate. Based on data
dependency analyses, it is sometimes possible to evaluate separable code sequences. The High Performance For-
tran system (12) is a programming language based on Fortran extended by some parallel language constructs
and includes an appropriate compiler.

Implementing Imperative, Functional, Logical, or Object-Oriented Languages

The implementation of the different programming paradigms (imperative, functional, logical, and object-
oriented) requires compiler techniques that vary in detail. Most of the differences concern the optimization
phase and the construction of the back end, since the optimizations and the design of an abstract machine are
very specific to the underlying programming paradigm. For reasons of space we refer to Refs. (3,4,16,17) where
many further references can be found.

Just-In-Time Compilation

In conclusion, we take a look at a compilation technique used in Java (14) to speed up the run time. A Java
program is translated by the Java compiler into bytecodes that are intermediate machine code and platform-
independent. The Java virtual machine interprets the bytecodes. Bytecodes can be sent to and run on any
hardware platform on which an implementation of the Java virtual machine exists. During the execution of
a program, profiling of method calls has shown that only a few methods are frequently called. A compilation
of these methods into machine (native) code can speed up the program run time. Hence a second compiler,
called a just-in-time (JIT) compiler, processes this task. The JIT compiler is an integral part of the Java virtual
machine and therefore invisible to the user. The JIT compilation process takes place in parallel with the
execution (interpretation) of the bytecodes, and from then on, whenever a call of the JIT compiled method

16 PROGRAM COMPILERS

occurs, the machine code version will be executed. The JIT code does not always run faster than the interpreted
code, however. If the Java virtual machine does not spend its time interpreting bytecode, the JIT compilation
is superfluous. But in most cases these techniques also called on-the-fly or on-demand compilation), if applied
to the methods most frequently called, are very helpful.

BIBLIOGRAPHY

1. C. Ghezzi M. Jazayeri Programming Language Concepts, New York: Wiley, 1997.
2. J. E. Hopcroft J. D. Ullman Intoduction to Automata Theory, Languages and Computation, Reading, MA: Addison-

Wesley, 1979.
3. R. Wilhelm D. Maurer Compiler Design, Reading, MA: Addison-Wesley, 1995.
4. A. V. Aho R. Sethi J. D. Ullmann Principles of Compiler Design, Reading, MA: Addison-Wesley, 1986.
5. A. V. Aho J. D. Ullmann The Theory of Parsing Translation and Compiling, Vol. 1: Parsing, Upper Saddle River, NJ:

Prentice-Hall 1972.
6. A. V. Aho J. D. Ullmann The Theory of Parsing Translation and Compiling, Vol. 2: Compiling, Upper Saddle River, NJ:

Prentice-Hall 1973.
7. S. Sippu E. Soisalon-Soininen Parsing Theory, Vol. 1: Languages and Parsing, Monographs in Theoretical Computer

Science (EATCS Series), Vol. 15, Springer-Verlag, 1988.
8. S. Sippu E. Soisalon-Soininen Parsing Theory, Vol. 2: LR(k) and LL(k) Parsing, Monographs in Theoretical Computer

Science (EATCS Series), Vol. 20, Springer-Verlag, 1990.
9. J. R. Levine T. Mason D. Brown lex & yacc, 2nd ed., Sebastopol, CA: O’Reilly & Associates, 1992.

10. P. Deransart M. Jourdan B. Lorho Attribute Grammars—Definitions, Systems, and Bibliography, Lecture Notes of
Computer Science 323, New York: Springer-Verlag, 1988.

11. S. S. Muchnick N. D. Jones Program Flow Analysis, Theory and Applications, Prentice-Hall, Upper Saddle River, NJ:
1981.

12. H. Zima B. Chapman Supercompilers for Parallel and Vector Computers, ACM Press Frontier Series, Reading, MA:
Addison-Wesley, 1990.

13. N. Wirth Recollections about the development of Pascal, in T. J. Bergin and R. G. Gibson (eds.); History of Programming
Languages—II, New York, ACM Press, 1996.

14. K. Arnold J. Gosling The Java Programming Language, Java Series, Reading, MA: Addison-Wesley, 1997.
15. A. W. Appel Modern Compiler Implementation in Java, Cambridge, UK: Cambridge University Press, 1998.
16. S. L. Peyton-Jones The Implementation of Functional Programming Languages, Upper Saddle River, NJ: Prentice-Hall,

1987.
17. H. Ait-Kaci Warren’s Abstract Machine—A Tutorial Reconstruction, Cambridge, MA: MIT Press, 1991.

WOLFGANG GOLUBSKI
University of Siegen

