
PHYSICS COMPUTING

INTRODUCTION

Computing is the third mode of research in physics, which
bridges the gap between analytical theory and laboratory
experiment (1). Experiments search for patterns in com-
plex natural phenomena. Theories encode the discovered
patterns into mathematical equations that provide predic-
tive laws for the behavior of nature. Computer simulations
solve these equations numerically in their full complex-
ity, where analytical solutions are prohibitive because of a
large number of degrees of freedom, nonlinearity, or lack
of symmetry. In computer simulations, environments are
controlled perfectly and extreme conditions are accessible
beyond the scope of laboratory experiments.

Setting up a computer simulation involves several de-
sign steps (2): 1) Formulate a mathematical model to de-
scribe the physical phenomenon of interest; 2) discretize
the model, which often consists of continuous differential
or integral equations (i.e., calculus), into algebraic forms in
order to allow for a numerical solution on digital comput-
ers; 3) select numerical algorithms to solve the algebraic
equations efficiently; 4) translate the algorithms into a set
of instructions, which constitute a computer program; and
5) perform a computer experiment by executing the pro-
gram on a computer. Parallel computing has become an
essential part of high-performance computer simulations
that require massive computations. Basic ingredients of
physics computing thus include mathematical models, nu-
merical algorithms, and parallel computing.

MATHEMATICAL MODELS IN PHYSICS

Particle Versus Field Models

Mathematical models in physics are either the particle
type or the field type (2). Particle models trace the motion of
many interacting particles (Fig. 1). An example is Newton’s
second law of motion in classic mechanics, where a physi-
cal system consisting of N particles is represented by a set
of coordinates rk = (xk , yk , zk )|k = 1,. . . , N (2–4). This law
is formulated as coupled ordinary differential equations
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∂rk
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where mk is the mass of the kth particle, rN =
(r1, r2, . . . , rN ), and V is the interparticle potential energy.
Molecular dynamics (MD) simulations (2–4) follow the par-
ticle trajectories rk (t) by integrating equation 1 numeri-
cally with respect to time t.

Field models deal with functions extending over the
space. For example, the above classic mechanical law is
not valid on the atomic scale and must be replaced by the
quantum mechanical law. The dynamics of N quantum-
mechanical particles is described by a parabolic partial dif-

Figure 1. A particle model. The spheres represent silicon and
oxygen atoms in a porous silicon dioxide material. The planes rep-
resent partition boundaries used to map the physical system onto
processors in a parallel computer.

ferential equation called the Schrödinger equation (5,6)
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where i = √−1,= 1.05× 10−34 Js is the Plank constant,
∇2
k = ∂2/∂x2

k + ∂2/∂y2
k + ∂2/∂z2

k is the Laplacian operator,
and ψ(rN, t) is a complex-valued wave function. The square
|ψ(rN, t)|2 of the wave function is proportional to the prob-
ability to find the N particles at positions r1, r2, . . . , rN .
Quantum dynamical (QD) simulations integrate equation
2 numerically with respect to t (5, 6).

Another example of a field model is Maxwell equations,
which describe the behavior of electromagnetic fields (see
MAXWELL EQUATIONS). With a time-independent charge dis-
tribution ρ(r), Maxwell equations are reduced to Poisson’s
equation (5,6)

∇2φ(r) = −ρ(r)
ε

(3)

for the electrostatic potential φ(r), where ε is the permittiv-
ity (see PERMITTIVITY). Other commonly used field models
in physics include those of elasticity and fluid mechanics.

Discretization

The above mathematical models are formulated as differ-
ential equations, where physical variables have continuous
values. To perform computer simulations, these continuous
laws must be cast into discrete algebraic forms, which are
amenable to numerical solution on a digital computer. In
a particle simulation, only the time variable must be dis-
cretized, so that the physical system is sampled at times
tn = n �t(n = 1, 2, 3, . . . ). For example, the most common
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Figure 2. Finite-difference discretization of a field model. An electron wave function in a two-dimensional strip is sampled on regular
grids

discretized form (2–4) of equation 1 is

mk

rk(tn+1)− 2rk(tn)+ rk(tn−1)
�t2

= Fk(rN (tn)) (4)

where Fk = −∂V/∂rk is the force acting on the kth particle.
In field simulations, spatial variables are also dis-

cretized, so that field values are sampled on a finite set of
points. In the finite difference method (2), the continuum of
space is replaced with a grid of points that are separated
by spatial distances �x, �y, and �z in the x, y, and z di-
rections, respectively (Fig. 2). The continuous derivatives
in the equations are then replaced with algebraic expres-
sions involving the finite quantities, �x, �y, �z, and �t.
However, many physical problems do not allow the use of
a regular grid because of complex geometry. These prob-
lems are better discretized by the finite element method
(7), in which a complex domain is divided into a mesh of ge-
ometrically simple subdomains called finite elements (Fig.
3). The original equations, expressed in terms of deriva-
tives, are transformed into algebraic equations in each ele-
ment. These discrete element equations are then combined
to form a system equation for the entire domain.

Deterministic Versus Stochastic Simulations

Computer simulations are either deterministic or stochas-
tic. Deterministic simulations usually deal with mathe-
matical initial value problems; i.e., differential equations
such as equations 1 and 2 are integrated forward in time
starting with some initial configuration. Stochastic simu-
lations use random numbers to provide approximate solu-
tions to large-scale problems, whereas deterministic solu-
tions are intractable.

Stochastic approaches are often used to compute the
equilibrium properties of matter based on the law of statis-
tical mechanics. For a classic N-particle system described
by equation 1, the thermal average of any physical quantity
A(rN ) is given by a multidimensional quadrature (3–5)

〈A〉 =
∫
drNP(rN )A(rN ) (5)

where

P(rN ) = exp(−V (rN )/kBT )∫
drNexp(−V (rN )/kBT )

(6)

is a probability function. In equation 6, kB = 1.38 × 10−23

JK−1 is Boltzmann’s constant and T is the temperature. Di-
rect numerical quadrature of equation 5 requires computa-
tions that scale exponentially with N, and it is intractable

Figure 3. Finite-element discretization of a field model. A shear
stress field in a two-dimensional strip with a crack is sampled
using finite elements.

for large N. Monte Carlo (MC) method uses random sam-
pling of abscissas to evaluate equation 5 approximately
(3–5). In the Metropolis algorithm, a Markov chain (see
MARKOV PROCESSES) is used to achieve an importance sam-
pling, i.e., generating a sequence of random states such
that each state occurs with the probability P(rN).

Stochastic approaches are also used to study the ground
state of a quantum many-particle system. The ground state
is a stationary solutionψ(rN, t) = ψ(rN )exp(−iEt/�) of equa-
tion 2 with the lowest energy E, and it can be projected
out by integrating equation 2 for long imaginary time τ
= it (3). The diffusion MC approach solves the imaginary-
time Schrödinger equation by generating a random walk
(3). The wave function is represented by an ensemble of
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randomly generated configurations rN. Each configuration
rN is displaced randomly according to the diffusion law
and is duplicated or deleted according to its weight. Quan-
tum problems are alternatively solved by another stochas-
tic method called Green’s function MC (8).

Another quantum MC method called path-integral
MC calculates the thermal properties of a quantum-
mechanical system. Using the path-integral formulation of
the thermal density matrix, the simulation of a quantum-
mechanical N-particle system is reduced to that of a clas-
sic N-molecule system with each molecule consisting of
S atoms (3). The classic MC to solve equation 5 is then
used to simulate the quantum system. This formulation
becomes exact when the number of discretization points S
approaches infinity.

The above examples manifest the quantum mechanical
law of nature that a single quantum state is equivalent to
an ensemble of classic states,which has a deep consequence
in computer science. Although the positions and velocities
of a classic N-particle system are encoded with 6N num-
bers, the amount of information contained in a quantum
N-particle system ψ(rN ) grows exponentially with N. Con-
sequently, although a classic computer can only encode a 0
or 1, a quantum computer can encode a weighted superpo-
sition of 0 and 1 using a single information unit called qubit
(9). Therefore, a quantum computer working on an n-qubit
register can perform 2n calculations with one operation.
This “quantum parallelism” allows a quantum computer to
solve certain hard computational problems exponentially
faster than any classic computers (9).

Hybrid Models

Often a single mathematical model is not sufficient to de-
scribe a physical phenomenon because of the wide range
of length and time scales involved in the phenomenon. Hy-
brid physical models introduce multiple levels of abstrac-
tion to capture the essential physics across the length and
time scales. For example, the quasi-continuum model uses
direct atomistic calculations based on the MD method to
provide inputs to the finite element analysis of continuum
mechanics (10). Molecular dynamics can also be combined
with first-principles electronic structure calculations to de-
scribe the breaking and formation of chemical bonds dur-
ing macroscopic material processes (11). Enormous sav-
ing in computing is achieved by treating only the reactive
portion of the system quantum mechanically and treating
the rest, the environment, classically (12). Furthermore,
hierarchical simulation models (13–15) seamlessly com-
bine finite-element method, MD simulations with chemi-
cally reactive and nonreactive interatomic potentials, and
quantum-mechanical simulation.

Numerical Algorithms

To write a simulation program, solutions to discretized al-
gebraic models must be translated to a sequence of com-
puter instructions based on some numerical algorithms.
For example, the commonly used velocity–Verlet algorithm
translates equation 4 into iterated operations of the follow-
ing time-stepping procedures (3):

Figure 4. Computation pattern involved in the one-dimensional
FFT.

1. Compute the forces Fk (tn ) as a function of rN (tn ).
2. Update the velocities vk←vk(tn)+Fk(tn)�t/2mk of

the particles.
3. Obtain the new particle positions rk(tn+1)← rk(tn)+
vk�t.

4. Compute the new forces Fk(tn+1) as a function of
rN (tn+1).

5. Obtain the new velocities vk(tn+1)←vk +
Fk(tn+1)�t/2mk.

Efficient algorithms are key to extending the scope of
physics computing to larger spatial and temporal scales
that are otherwise impossible to be simulated. As summa-
rized below, these algorithms often use multiresolutions in
both space and time.

Algorithms for Extending Spatial Scales

Solving Poisson’s equation (Eq. 3) using a spatial grid is re-
quired for the simulation of various systems such as plas-
mas (see PLASMA ELECTROMAGNETIC WAVE PROPAGATION) and
semiconductor devices. A primitive algorithm solves Pois-
son’s equation on M grid points using O(M2) operations.
In 1963, Hockney developed a fast direct solver for Pois-
son’s equation, which requires only O(M log M) operations
(2). This fast Poisson solver was based on the so-called fast
Fourier transform (FFT) algorithm (2, 6), and it immedi-
ately made multidimensional plasma simulations feasible.
The FFT in one spatial dimension consists of log2M com-
putation steps, with each step operating on M/2 pairs of
grid points (Fig. 4). Multidimensional FFT is achieved as
a successive application of one-dimensional FFT for each
spatial dimension (6).

The solution of Poisson’s equation has been further rev-
olutionized by the introduction of the multigrid method
(MGM) by Brandt (6, 16). The MGM is based on the sim-
ple idea that slowly varying long-wavelength components
of φ(r) can be accurately represented on a coarser grid. By
employing hierarchical grids with coarser spacings (Fig. 5),
the MGM solves Poisson’s equation with O(M) operations.

Another computationally intensive problem is the cal-
culation of the electrostatic energy for N charged particles

V (rN ) =
N−1∑
j=1

N∑
k= j+1

ZjZk

‖r j − rk‖ (7)
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Figure 5. Hierarchical grids used in the MGM. A grid at the lth
level is generated by decimating even rows and columns from the
finer grid at the (l + 1)th level.

where Zj is the charge of the jth particle. Equation 7
also describes the gravitational energy of N point masses,
where Zj denotes the mass of the jth particle. Direct eval-
uation of equation 7 requires O(N2) operations. In 1987,
Greengard and Rokhlin discovered an O(N) algorithm
called the fast multipole method (FMM) (17). This algo-
rithm enabled million-to-billion particle astrophysical (18)
and materials (15, 19) simulations. The FMM groups dis-
tant particles together and treats them collectively. Hier-
archical grouping is facilitated by recursively dividing the
physical system into smaller cells, generating a tree data
structure (17). The root of the tree is at level 0, and it corre-
sponds to the entire simulation box. A parent cell at level l
is decomposed into 2× 2× 2 children cells of equal volume
at level l + 1.The FMM uses the truncated multipole expan-
sion (20) and the local Taylor expansion of the electrostatic
potential field. By computing both expansions recursively
for the hierarchy of cells (Fig. 6), the Coulomb potential is
computed with O(N) operations.

In simulations of bulk materials, periodic boundary con-
ditions are often imposed, in which images of the simu-
lation system are repeated infinitely to avoid the surface
effects (3, 4). The conditionally convergent sum of the elec-
trostatic energy caused by all the image charges is conven-

Figure 6. Hierarchical tree structure in the FMM for a two-
dimensional system. A parent cell at the lth level is composed of
four children cells at the (l + 1)th level. The parent–child relation
is illustrated by dashed lines. Particles are represented by circles.

tionally carried out by the Ewald summation technique (3,
21). This technique splits equation 7 into two convergent
sums in the real and Fourier spaces, and computes both
with O(N3/2) operations. Various approaches have been
proposed to incorporate periodic boundary conditions to
the O(N) FMM (22) as well as to compute various phys-
ical quantities such as stress tensor using the FMM (23).

Computationally more demanding is the exponentially
complex quantum many-body problem, for which several
algorithms have been designed to provide approximate so-
lutions. The density functional theory (DFT) reduces the
complexity by solving many one-electron problems self-
consistently, instead of one many-electron problem (24).
The DFT problem can be formulated as the minimization of
an energy functional V(rN,ψNel), with respect to electronic
wave functions (or Kohn–Sham orbitals) ψNel(r) = ψn (r)|n
= 1,. . . ,Nel, subject to orthonormality constraints (Nel is the
number of wave functions on the order of N) (25). Based on
a data-locality principle called quantum nearsightedness
(26), several O(N) DFT algorithms have been designed, for
which the computational cost scales linearly with the num-
ber of electrons (27). An example is a divide-and-conquer
DFT algorithm (28), which has attained controlled error
bounds, robust convergence properties, and energy conser-
vation during MD simulation, to make large DFT-based
MD simulation practical (29).

Algorithms for Extending Time Scales

The discrete time step �t in MD simulations must be cho-
sen sufficiently small such that the fastest characteristic
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oscillations of the simulated system are accurately repre-
sented. However, many important physical processes are
slow and are characterized by time scales that are many
orders-of-magnitude larger than the �t thus determined.
Dynamic systems involving a wide range of time scales are
called “stiff” (6). Molecular dynamics simulations of stiff
systems require many iteration steps, and this severely re-
stricts the applicability of the simulation.

Various approaches have been developed for long-time
MD simulations of stiff systems. One approach introduces
constraints to freeze high-frequency modes. This enables
the use of a larger �t, assuming that the high-frequency
modes are unimportant for global conformational changes
(30). In the subspace dynamics approach, low-frequency
modes are systematically selected by diagonalizing the dy-
namical matrix of the system (31). Another approach called
the multiple time scale (MTS) method uses different�t for
different force components to reduce the number of force
evaluations (32, 33). Ordinary differential equations can be
integrated using a large�t by implicit-integration schemes
(34). For example, the implicit Euler integrator is a low-
pass filter that selects motions with eigenfrequencies less
than 1/�t. The frozen fast motions can be integrated sep-
arately by normal-mode analysis (35, 36). Recently, more
accurate implicit integrators have been proposed, which
are symplectic (34). Symplectic integrators conserve the
phase-space volume, and this symplecticness is essential
for the long-time stability of orbitals (34).

Many long-time physical processes, such as thermally
activated diffusion of an atom in a solid, occur as a se-
quence of rare events. Such processes have traditionally
been treated with the transition state theory (37), which
assumes that successive events are uncorrelated. Various
schemes have been developed to accelerate the sampling of
rare events without invoking such an assumption (38).

PARALLEL COMPUTING

Parallel computing technology (39) has extended the scope
of computer simulations in terms of simulated system size
and has become an essential part of physics computing. To
perform parallel computer simulations efficiently, however,
algorithms developed for serial computers must often be
modified.

For example, let us consider the time-dependent
Schrödinger equation (Eq. 2), for one particle. This equa-
tion is formally solved as

ψ(r, t +�t) = exp(−iĤ�t/�)ψ(r, t) (8)

where the Hamiltonian operator is

Ĥ = − �
2

2m
∇2 + V (r) = K̂ + V̂ (9)

For a one-dimensional problem on M grid points, the
V̂ operator is a diagonal M × M matrix. On the other
hand, the K̂ matrix is tridiagonal (6). A conventional so-
lution to equation 2 on serial computers is based on the
split-operator approach (40), in which equation 8 is approx-
imated as

Figure 7. Schematic representation of the MTS scheme. The
force on a particle (solid circle) are due to the near (open circles
within the hatched area) and far (the other open circles) particles.

exp(−iĤ�t/�) = exp(−iV̂�t/2�)exp(−iK̂�t/�)exp(−iV̂�t/2�)
+O(�t3) (10)

The exp(−iV̂�t/2�) matrix is multiplied to the wave
function vector with O(M) operations because it is diag-
onal. On the other hand, the exp(−iK̂�t/�) matrix is diago-
nal in the Fourier space. The conventional spectral method
(SM) uses the FFT to transform the wave function alter-
nately between the real and the Fourier spaces, so that both
matrices are multiplied in a diagonal form (40). The SM re-
quires O(M log M) operations because it uses the FFT. On
a parallel computer, however, the SM is not an optimal al-
gorithm. By assigning the value of a wave function at each
grid point to a node in an array of M processors, the SM al-
gorithm requires O (log M) time to solve the problem. Also
the SM involves considerable communication because of
the butterfly communication pattern of the FFT algorithm
shown in Fig. 4.

An algorithm called the space-splitting method (SSM)
has been developed (41) to solve the time-dependent
Schrödinger equation efficiently on a parallel computer
(42). The SSM is based on the decomposition of the tridiag-
onal Ĥ matrix into direct sums of 2 × 2 matrices. This de-
composition provides an explicit scheme to propagate wave
functions in time with O(M) operations. On M parallel pro-
cessors, the execution time of the SSM algorithm is O(1).
In addition, the operations in the SSM are local, requir-
ing only nearest-neighbor grids points to be communicated
with little communication overhead (Fig. 8).

Spatial Decomposition

Parallel computing requires decomposing the computation
to subtasks and mapping them to processors. For MD sim-
ulations, the divide-and-conquer strategy based on spatial
decomposition is commonly used (19, 43). The total volume
of the system is divided into P subsystems of equal volume,
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Figure 8. Computation pattern involved in the one-dimensional
SSM.

and each subsystem is assigned to a node in an array of P
processors (Fig. 1). The data associated with particles of a
subsystem are assigned to the corresponding processor. To
calculate the force on a particle in a subsystem, the coor-
dinates of the particles in the boundaries of 26 neighbor
subsystems must be copied from the corresponding pro-
cessor. In the actual code, the message passing to the 26
neighbor nodes is completed in six steps by sending the
boundary-particle information to east, west, north, south,
and up and down neighbor nodes sequentially (19). The
corner and edge boundary particles are copied to proper
neighbor processors by forwarding some received bound-
ary particles to other neighbor nodes (19). After updating
the particle positions from the time stepping procedure,
some particle may move out of its subsystem. These parti-
cles, which moved out of a subsystem, are migrated to the
proper neighbor nodes. With the spatial decomposition, the
computation scales as N/P while communication scales as
(N/P)2/3.

The implementation of the FMM on parallel computers
has been studied extensively (18–23). Suppose the proces-
sors are logically organized as a three-dimensional array
of Px × Py × Pz . For deeper tree levels, l ≥ log2[max(Px , Py ,
Pz )], the calculation of the multipoles is local to each pro-
cessor, so that the computation scales with N/P. For lower
levels, however, the number of cells becomes smaller than
the number of processors. Consequently many processors
become idle or alternatively they duplicate the same com-
putation, and this computation overhead scales as log P.
By making decomposition to be coarse grained (N >> P),
this log P overhead can be made negligible.

Load Balancing

Many MD simulations are characterized by irregular
atomic distribution (Fig. 1). One practical problem in simu-
lating such irregular systems on parallel computers is that
of load imbalance. Suppose that we partition the simula-
tion system into subsystems of equal volume according to
the three-dimensional array of processors. Because of the
irregular distribution of atoms, this uniform spatial decom-
position results in unequal partition of workloads among
processors. As a result the parallel efficiency is degraded
significantly.

Various approaches have been developed for load bal-
ancing such dynamic irregular problems on parallel com-
puters (44). For example, recursive coordinate bisection is
one of the widely used methods (44). The load-balancing

Figure 9. Space-filling curve in two dimensions based on (a) the
Z curve and (b) the Hilbert curve.

problem can also be formulated in terms of the more
general graph-partitioning problem. Spectral partition-
ing methods use the lowest nontrivial eigenvectors of the
Laplacian matrix of a graph to produce a high-quality par-
tition (44, 45). Multilevel algorithms have been combined
with the spectral method to reduce the computational cost
(45, 46). By constructing successive coarse approximations
of the original graph, these multilevel spectral methods
solve static problems efficiently where the cost to perform
load balancing is tolerated.

In irregular dynamic simulations, the need for repeated
repartitioning necessitates low-overhead load balancers.
Most successful among dynamic load balancing schemes
are the methods based on spacefilling curves (47). These
methods map three-dimensional grid points to a recur-
sively defined self-similar curve, which conserves spatial
locality between successive points (Fig. 9). Particles are
sorted in a one-dimensional array according to their po-
sitions on this space-filling curve, and the array is parti-
tioned into consecutive subarrays of equal size. In a dy-
namic load-balancer, the partition can be refined incre-
mentally during a simulation based on the load-diffusion
concept (48). Another load-balancing scheme uses adap-
tive curvilinear coordinates to represent partition bound-
aries (49). Workloads are partitioned with a uniform three-
dimensional mesh in the curvilinear coordinate system,
which results in curved partition boundaries in the Eu-
clidean space (Fig. 10). The optimal coordinate system is
determined to minimize the load imbalance and communi-
cation costs. Wavelets allow compact representation of the
curved partition boundaries and accordingly speed up the
minimization procedure (49).

SUPPORTING TECHNOLOGIES

Although multiresolution algorithms and parallel com-
puting described above are the key enabling technolo-
gies for high-performance physics computing, other sup-
porting technologies are also essential for successful com-
puter simulations. These include the management of large
and distributed data sets, three-dimensional visualization
of multivariate data sets, and knowledge discovery from
these data sets (50, 51). For example, hierarchical spatial
data structures, a probabilistic approach, and parallel and
distributed computing technologies have been combined
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Figure 10. Curved partition boundaries in the Euclidean space
used in the curvilinear-coordinate load balancing scheme. Circles
represent particles in an MD simulation, and solid curves repre-
sent partition boundaries.

to visualize a billion-particle data set interactively in an
immersive three-dimensional visualization environment
(52). The massive visualization system has been integrated
with graph algorithms to automatically discover topologi-
cal patterns in million-to-billion atom chemical bond net-
works (53). Parallel and distributed computing technolo-
gies have been advanced, so that a Grid (54) of geograph-
ically distributed parallel computers can be used to solve
challenging scientific problems (55, 56). Valuable informa-
tion on these topics is found in journals specializing in
computational science and engineering techniques (see the
Further Reading section).
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