
146 ONLINE OPERATION

ONLINE OPERATION

A computational problem is said to be online when irrevocable
decisions have to be made about the output without having
complete information about the input. In other words, the in-
put data are processed as they become available, and the out-
put data are produced in an ongoing manner depending on
the input data processed so far. The output is immediately
produced ‘‘without seeing the future,’’ that is, with no knowl-
edge of the entire input. Once produced, the output cannot
be altered.

The question of making good but irrevocable decisions
based on partial information often arises in the fields of com-
puter science and engineering, especially when certain pro-
cesses or systems are being controlled directly by a computer.
For example, online problems have application in investment
analysis, bin packing, resource allocation, processor schedul-
ing, network routing, storage allocation, cache management,
maintenance of data structures and databases, robot motion
planning, file migration, facilities location, capacity expan-
sions of networks, and navigating on the World Wide Web. A
classical application of online problems arises in most inter-
active systems, where a human being and a computer inter-
change information between themselves in an almost conver-
sational manner. This explains why online systems are often
confused with interactive systems.

Online problems are the opposite of offline problems,
where the input data are not processed as they become avail-
able, but rather are collected and held until a convenient later
time for processing. Therefore, the whole output data are pro-
duced based on the whole input data.

Online problems are sometimes confused with real-time
problems. In a real-time problem, the correctness of the out-
put relies not only on its logical result, but also on the time
at which the result is available. In other words, there are crit-
ical time requirements on the output which must be met in
order to avoid catastrophic crashes (e.g., in nuclear plant con-
trol or space shuttle flight control). Of course, there are many

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

ONLINE OPERATION 147

real-time problems that are also online problems, and the the cost of the online algorithm with respect to the optimal
offline algorithm. From this point of view, the competitivenesstime aspects of the operations are not necessarily critical in

all online problems. For instance, in an airline seat reserva- concept is a pessimistic one, since it assumes that the input
sequence is chosen by an adversary knowing the future. In-tion, it matters little whether the response time for the output

be of a microsecond or of several seconds. deed, lower bounds on the competitiveness are usually proved
by employing adversary arguments, while upper bounds are
usually derived by analyzing online algorithms by means of

ONLINE ALGORITHMS proper analysis techniques.

There are many computational problems in computer science Amortized Analysis. In analyzing the competitiveness of
and engineering that are inherently online. Thus the design many online algorithms, an analysis technique called amor-
and analysis of online algorithms (1) has recently received an tized analysis (2,5) is often used. Amortized analysis was first
increasing attention from the scientific community. However, devised for analyzing the cost of a sequence of operations on
the classical worst-case time-complexity analysis (2) often fails data structures performed by offline algorithms. Later, it has
for analyzing the performance of online algorithms. Indeed, been applied also in conjunction with competitive analysis for
for most online problems, one can find an arbitrarily bad se- analyzing online algorithms. However, the use of one tech-
quence of input data for any online algorithm that forces the nique does not necessarily imply the use of the other tech-
algorithm to have an arbitrarily poor performance in the nique. Using an amortized analysis, the cost for performing a
worst case. There are two main techniques for analyzing the sequence of operations is averaged over all the operations in
performance of online algorithms. The first, earlier technique the sequence. Thus, the average cost per operation in the se-
consists of measuring the running time of the algorithm, as- quence can be proved to be small, even if the cost of a single
suming that the input sequence is generated according to operation in the sequence can be high in the worst case. It is
some fixed distribution (3), and selecting the algorithm that worth noting that no stochastic arguments are invoked, since
minimizes the expected cost incurred in processing the input an amortized analysis guarantees, over all sequences, the av-
sequence. In this way, however, the choice of a particular in- erage cost per operation in the worst case.
put sequence distribution instead of another distribution is A common method employed in amortized analysis makes
often arbitrary, while the choice among the online algorithms use of a potential function, which maintains the ‘‘potential en-
that solve the problem depends heavily on the choice of the ergy’’ of the system. This potential represents the prepaid
input distribution itself. The second, recently introduced tech- credit, accumulated by earlier overcharged operations, which
nique employs competitive analysis (4) as a way of doing can be used to compensate later undercharged operations.
meaningful worst-case analysis, by comparing an online algo- Formally, assume that a sequence of n operations has to be
rithm with an optimal offline algorithm that solves the same performed on the system. A potential function � maps each
problem, where an optimal offline algorithm is an algorithm system configuration to a real number. Let ti and �i be, re-
that for each input sequence minimizes the cost incurred for spectively, the actual cost of the ith operation and the value
processing the sequence. This technique does not assume any of the potential function after the ith operation is performed,
input distribution at all and allows a fair worst-case analysis for each i � 1, 2, . . ., n. The amortized cost ai of the ith
to be done, since for some inherently bad input sequences for operation is the actual cost of the operation plus the increase
which the online algorithm performs poorly also the optimal in potential due to the operation:
offline algorithm performs poorly.

ai = ti + �i − �i−1 (2)
Competitive Analysis

The overall amortized cost of the sequence of n operations is,Competitive analysis was devised by Sleator and Tarjan (4)
by Eq. (2):for analyzing online algorithms performing a sequence of op-

erations on dynamic data structures. Let A be an online algo-
rithm and S an input sequence. Let A(S) denote the cost paid

∑
i ai =∑i(ti + �i − �i−1) =∑i ti + �n − �0 (3)

by algorithm A in processing the input sequence S, and let
where �n and �0 are the potential of the final and initial con-OPT(S) denote the cost paid by an optimal offline algorithm
figuration, respectively. If �n � �0 � 0, then the overall amor-on the same input S. Algorithm A is said to be c-competitive
tized cost of the sequence upper bounds the overall actual costif, for all S,
of the sequence. Observe that, if �i � �0 � 0 for all i, then
one is guaranteed to always pay in advance the cost of eachA(S) − c · OPT(S) (1)
operation.

is bounded by a constant. The infimum of c for which A re-
mains c-competitive is called competitiveness of A. In practice, An Example. As an example of application of competitive

analysis in conjunction with amortized analysis, consider thean online algorithm is compared in an input-by-input manner
with the best algorithm which can see the whole input se- list update problem (4). In this problem, the input is a se-

quence of operations that have to be performed on an unor-quence in advance, and the extra cost due by processing the
input sequence online is evaluated. The concept of competi- dered list of elements. Each operation consists in accessing,

inserting, or deleting an element. To access an element, onetiveness is related to the concept of regret in game theory.
Indeed, one can see the scenario as a game between an online must linearly scan the list from the front. Thus the cost for

accessing an element is equal to one plus the number of ele-player, who wants to select the online algorithm, and an ad-
versary, who chooses the input sequence so as to maximize ments that precede the accessed element. While scanning the

148 ONLINE OPERATION

list, one can maintain a pointer to the place where the ele- Task Systems
ment has to be eventually moved as soon as it is found. Thus,

A task system is described by a set of m states and an m � m
once an element is accessed, it can be moved nearer to the

distance matrix d. The distance dij represents the cost in-
front of the list in constant time. An element can also be curred for a transition from state i to state j, where it is as-
moved anywhere at any time, and the cost is equal to the sumed that dij � 0 for all i and j, dii � 0 for all i, and dij �
distance between the old place and the new place of the ele- djk � dik for all i, j, k. The input of the problem is a sequence
ment in the list. Moreover, any old element can be deleted T1, T2, . . ., Tn of n tasks, where each task Tj is a vector of m
from the list, and any new element can be inserted into the components such that the ith component Tji represents the
list. The cost for a deletion/insertion of an element is also cost of executing the task Tj in state i. The objective is to find
equal to one plus the number of elements that precede the a schedule for the sequence of tasks, namely, a state s(j) in
deleted/inserted element. which to execute task Tj, for j � 1, 2, . . ., n, so as to mini-

Sleator and Tarjan have proposed the move-to-front (MF) mize the overall cost due to the state transitions and task
online algorithm for the list update problem. The algorithm executions:
consists in moving the accessed element to the front of the
list as soon as the element is accessed. Sleator and Tarjan ∑

j ds(j−1)s(j) +∑ j TTT js(j) (5)
proved that MF is a 2-competitive online algorithm, by means
of a useful potential function. Assume that both MF and OPT, where s(0) is the initial state of the system. An on-line algo-
the optimal offline algorithm, while processing the input oper- rithm receives each task Tj one at a time, and must determine
ations, maintain their lists of elements. Whenever the two the state s(j) in which to execute the task depending its deci-
lists are identical, any operation will cause both MF and OPT sions on the past tasks T1, . . ., Tj�1 only, but not on the fu-
to have the same cost. Therefore, OPT has the potential to ture tasks Tj�1, . . ., Tn. When the distance matrix is symmet-
outperform MF only when the two lists are different. This ric, that is, dij � dji for all i and j, a metric space arises. In
suggests to define a potential function which gives the num- this case, Borodin, Linial, and Saks (6) devised an optimal
ber of inverted pairs of elements, where two elements are in- 2m � 1 competitive online algorithm. The next problem is a
verted if the order in which they appear in the list produced special case of the task system problem having the nice prop-
by MF is different from the order in which they appear in the erty that a competitiveness independent of the number m of
list produced by OPT. Using this potential function, it is pos- states can be achieved.
sible to show that for each operation (i.e., access, insertion,
and deletion) the amortized cost of MF is no more than twice k-Servers
the cost of OPT. By definition, the potential function is non-

In the k-server problem, there are a metric space and k-negative. Moreover, the potential is initially 0 whenever both
servers which are free to move in the space. The servers areMF and OPT start with the same list. Consider, for instance,
initially located at given points in the space. The input of thean access operation. Assume that the accessed element ap-
problem consists in a sequence of requests, that is, of pointspears as the jth element in the OPT list after the access.
in the space to be served. Of course, a server remains station-Therefore, the cost of the optimal offline algorithm is at least
ary unless it is selected to move to a request point. The objec-j. Let the accessed element appear as the hth element in the
tive is to serve each request by sending any server to eachMF list before the access. Finally, let m be the number of
requested point so as to minimize the overall distance trav-elements that precede the accessed element in the MF list but
eled by the servers. The k-server problem is perhaps the mostfollow it in the OPT list. Thus, the number of elements that
studied of all online problems. In spite of its apparent simplic-precede the accessed element in both lists is h � 1 � m. When
ity, it is not easy to achieve a good competitiveness for the k-the accessed element is moved to the front by MF, h � 1 � m
server problem. For instance, a simple greedy algorithm,inversions are added and m inversions are eliminated. Thus
which moves the closest server to each request point, can bethe amortized cost of MF for an access operation is
readily devised to solve the problem. However, such a greedy
algorithm performs poorly when the requests are alternatedh + (h − 1 − m) − m = 2(h − m) − 1 ≤ 2 j − 1 (4)
between two sufficiently close points. The greedy algorithm
will serve the two points by moving the same server forth and

Indeed, h � m � j, since of the h � 1 elements preceding the back forever, thus achieving an unbounded cost, while in the
accessed element in the MF list only j � 1 elements precede same situation an optimal offline algorithm would maintain
it in the OPT list. Therefore, no more than twice the cost of two stationary servers at the two points.
the optimal offline algorithm is paid by the MF online algo- Manasse, McGeoch, and Sleator (7) proved that if the met-
rithm. ric space has at least k � 1 points, then the competitiveness

of an online algorithm is at least k, and devised optimal n �
1 and 2-competitive algorithms when k is equal to n � 1 and

RELEVANT ONLINE APPLICATIONS 2, respectively, where n � 1 is the number of points in the
space. The k-server problem has been extensively studied and

Some of the most relevant application areas in computer sci- a very good performance for a very simple online algorithm,
ence and engineering are presented here for the study of on- called harmonic algorithm, was proved by Grove (8). The har-
line algorithms. Five selected computational problems are monic algorithm is a randomized algorithm, that is, one
considered: (1) task systems, (2) k-servers, (3) paging, (4) which tosses a coin during its execution. The impredictability
graph coloring, and (5) real-time scheduling. Other problems due to randomization often makes it more difficult for an ad-

versary to construct bad input sequences. Indeed, the har-can be found in (1).

ONLINE OPERATION 149

monic algorithm tends to favor servers that are close to the tion to channel assignment in wireless/mobile telecommuni-
cations.request points, but eliminates the predictability of the simple

greedy algorithm. The main property of the harmonic algo- Irani (9) considered the class of d-inductive graphs and an-
alyzed the performance ratio of the first-fit (FF) algorithm. Arithm is that, at each step, the probability that a given server

is the one to move is inversely proportional to the distance of d-inductive graph is a graph whose vertices can be numbered
so that each vertex has at most d higher numbered neighborthat server from the request point. The next problem is a spe-

cial case of the k-server problem that arises when the dis- vertices. The FF algorithm assigns to each vertex v the lowest
numbered color not already assigned to any neighbor vertextance between any pair of points is one.
of v. The performance ratio measures the number of colors
used by the online algorithm in comparison to the minimumPaging
number � of colors required by an offline algorithm. Irani

In the paging problem, there is a fast memory which may proved that FF uses O(d log n) colors, where n is the number
contain k pages, and a slow memory with unlimited page ca- of vertices, and that this upper bound is tight to within a
pacity, and the input consists in a sequence of n page re- constant factor. This result is strengthened for particular
quests. If a requested page does not reside in the fast mem- classes of d-inductive graphs, such as planar graphs and
ory, then one resident page has to be replaced by the chordal graphs, which are 5-inductive and �-inductive, re-
requested page. The objective is to serve all the page requests spectively. FF uses O(log n) colors for planar graphs and O(�
by minimizing the number of page replacements. Sleator and log n) colors for chordal graphs, which yield a tight O(log n)
Tarjan (4) showed a lower bound of k on the competitiveness upper bound on the performance ratio for both classes of
of any deterministic algorithm, that is, one not employing ran- graphs.
domization. Their proof is based on an adversary argument.
Assume there is a set of k � 1 pages to be maintained in the

Real-Time Scheduling
memory, with k pages resident in the fast memory and 1 page
in the slow memory. The adversary can produce a bad input In a real-time scheduling problem, a set of real-time tasks is

given, which has to be executed on one or more processors.sequence, which causes any deterministic algorithm to incur
in a page replacement after every request. In contrast, for any Tasks may range from periodic, that is, recurring infinitely

often according to a regular interarrival time, to irregular,input sequence, an optimal offline algorithm can see the en-
tire sequence and ensure that at least k requests occur be- that is, occurring only once at an unpredictable time, and may

have time deadlines, that is to say, their execution must between two consecutive page replacements by replacing the
page resident in the fast storage for which the next request completed before certain due dates. A task deadline can be

either a hard deadline, if it has to be definitively met andwill be the latest in the future. Sleator and Tarjan also proved
an upper bound of k on the competitiveness of a widely used missing it may lead to a catastrophic failure, or a soft dead-

line, if it is desiderable to meet it but missing it can occasion-online algorithm. Indeed, they showed that the least-recently-
used (LRU) algorithm, which consists in replacing the least ally be tolerated. The objective is to schedule all the tasks on

the processor(s) so as to meet the deadlines.recently requested page resident in the fast memory, is a k-
competitive algorithm. Since k is a lower bound on the com- The real-time scheduling problem has obvious applications

in time-critical system control and was widely studied in thepetitiveness of any deterministic online algorithm, as seen
above, the LRU algorithm is optimal with respect to the com- offline case. The scheduling algorithms used in practice are

priority-driven preemptive algorithms. Priorities are assignedpetitiveness measure. It is worth noting, however, that under
to tasks according to some policy. At each instant of time, thecertain restricted hypotheses, randomized online algorithms
highest priority task ready to run is executed, preempting, ifare more powerful than deterministic online algorithms for
necessary, a lower priority task. The preempted task is sus-the paging problem (1), since they can achieve a competitive-
pended, and its execution is resumed later from the point ofness slightly better than k. Moreover, it is important to ob-
preemption. Two priority-driven algorithms, which are widelyserve that the competitiveness of k for the LRU algorithm is
used when there is only one processor and all the tasks area worst-case bound. In practice, the LRU algorithm performs
periodic and have hard deadlines, are the earliest-deadline-very well and requires indeed much less than k times the op-
first (EDF) and rate-monotonic (RM) algorithms (10–12). EDFtimal number of replacements.
assigns hightest priority to the ready task with the nearest
deadline, while RM gives hightest priority to the task withGraph Coloring
the shortest period. When many processors are available, a
common practice consists in partitioning the tasks among theIn the graph coloring problem, there is an undirected graph
processors, that is, by means of a first-fit or next-fit heuristic,G � (V, E), with V being the set of vertices and E the set of
and then scheduling the tasks assigned to each single pro-edges (i.e., pairs of vertices), and a set of colors. Each vertex
cessor using the EDF or RM algorithm.v of the graph has to be assigned a color different from the

colors assigned to its neighbor vertices (i.e., all the vertices
joined to v by an edge). The objective is to color all the vertices
using the minimum number of colors. The input of the online DISCUSSION AND FUTURE DIRECTIONS
problem consists in a sequence of vertices given one at a time.
When a vertex v is given, all its edges to previously input The real-time scheduling problem just introduced represents
neighbor vertices are also given, and v has to be assigned a perhaps the most relevant online application (13) and has
color before the next vertex is given. Applications of online some peculiarities with respect to the previous four problems,

which are useful for discussing advantages and limitations ofgraph coloring range from register allocation during compila-

150 OPEN-LOOP OSCILLATORY CONTROL

3. G. S. Shedler and C. Tung, Locality in page reference strings,the present knowledge on the performance analysis of online
SIAM J. Comput., 1: 218–241, 1972.algorithms.

4. D. D. Sleator and R. E. Tarjan, Amortized efficiency of list updateFirst, the most important measure of merit to evaluate a
and paging rules, Commun. ACM, 28: 202–208, 1985.real-time scheduling algorithm is predictability, namely, the

5. R. E. Tarjan, Amortized computational complexity, SIAM J. Al-ability to determine whether all the deadlines can be met.
gebr. Discrete Methods, 6: 306–318, 1985.Useful parameters for predictability are (1) the degree of pro-

6. A. Borodin, N. Linial, and M. Saks, An optimal on-line algorithmcessor loading below which deadlines are guaranteed, (2) the
for metrical task systems, Proc. Annu. ACM Symp. Theory Com-latency of the system in responding to external events, and
put., 19: 373–382, 1987.(3) the capability to meet the deadlines of the most critical

7. M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitivetasks when it is not possible to meet all the task deadlines.
algorithms for on-line problems, J. Algorithms, 11: 208–230,Thus, although fast algorithms are, of course, helpful in satis-
1990.fying the task deadlines, a predictability analysis is often

8. E. Grove, The harmonic on-line k-server algorithm is competitive,used in conjunction with a worst-case time-complexity analy-
Proc. Annu. ACM Symp. Theory Comput., 23: 260–266, 1991.sis. In this context, stochastic assumptions on the input dis-

9. S. Irani, Coloring inductive graphs on-line, Algorithmica, 11 (1):tribution, as well as randomization in the online algorithm
53–72, 1994.may be useless, since they cannot always guarantee that hard

10. A. A. Bertossi and A. Fusiello, Rate-monotonic scheduling fordeadlines are met.
hard-real-time systems, Eur. J. Oper. Res., 96: 429–443, 1997.Second, in order to meet time deadlines, an on-line sched-

11. M. H. Klein, J. P. Lehoczky, and R. Rajkumar, Rate-monotoniculing algorithm must make its decisions quickly and this
analysis for real-time industrial computing, Computer, 27 (1):

could degrade its competitiveness. Indeed, although most of 24–33, 1994.
the on-line algorithms are efficient, a higher competitiveness

12. J. A. Stankovic and K. Ramamritham, Hard-Real-Time Systems,
is sometimes achieved when no computational restrictions Los Alamitos, CA: IEEE Computer Society Press, 1988.
are imposed.

13. G. Koren and D. Shasha, Dover: an optimal online scheduling algo-
Third, although mainly studied in the off-line setting thus rithm for overloaded uniprocessor real-time systems, SIAM J.

far, most real-time scheduling problems are inherently on- Comput., 24: 318–339, 1995.
line problems. Indeed, tasks usually occur infinitely many
times and many of them are given one at a time. Moreover, ALAN A. BERTOSSI
since the purpose of real-time systems is to provide a time- University of Trento
critical control on its environment, a critical level of service
must be guaranteed, even in the presence of hardware or soft-
ware faults. Thus fault-detection and fault-recovery activities OODBMS. See OBJECT-ORIENTED DATABASES.must also be managed online in order to tolerate faults. How-

OP AMP INTEGRATOR. See INTEGRATING CIRCUITS.ever, since the fault-tolerant real-time scheduling problem is
OP AMPS. See OPERATIONAL AMPLIFIERS.inherently online, it could be better to directly compare online

algorithms among them, instead of comparing each online al-
gorithm to the best offline algorithm.

Fourth, as already pointed out also for the paging problem,
competitive analysis is a theoretical worst-case analysis,
which assumes that input sequences are generated by a
fiendish adversary having unlimited computational power
and complete knowledge of the future. In particular, this re-
quires that the adversary has a complete knowledge of the
algorithm to be defeated. Therefore, this kind of analysis can
yield a too pessimistic evaluation of the performance of an
algorithm with respect to its practical behavior.

From the above discussion, a trade-off arises involving (1)
predictability, (2) competitiveness, (3) time-complexity, and
(4) practical behavior of an online real-time scheduling algo-
rithm. Therefore, a challenge for the future is to devise new
measures for evaluating the performance of online algorithms
which could balance these four factors and overcome the
above-mentioned drawbacks.

BIBLIOGRAPHY

1. R. M. Karp, On-line algorithms versus off-line algorithms: How
much is it worth to know the future?, in J. van Leeuwen (ed.),
Algorithms, Software, Architectures—Information Processing 92,
Amsterdam: Elsevier, 1992, Vol. 1.

2. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms, New York: MIT Press/McGraw-Hill, 1990.

