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Figure 1. Propagating fire front patterns, at different scales (from a
computer simulation).

that supports spontaneous activity of this kind is called an
excitable medium.

The activity we have seen is complex but chaotic. Can this
complexity be disciplined without postulating even more com-
plex agents? Let us consider passive fire walls. One can create
fire corridors with two parallel walls a few hundred feet apart
and extending for hundreds of miles. From a distance, the fire
front propagating along a corridor will look like a localized
pulse traveling along a wire at a well-characterized speed. If
this wire makes a closed loop, a pulse will recirculate indefi-
nitely. On a T-junction between wires, a signal coming along
one branch will fan out along the other two branches. Thus,
a loop with a tap (a �-shaped circuit) will, once primed, act as
a clock, sending out pulses at regular intervals.

It is not hard to make a wire constriction that will let fire
go through in only one direction—a ‘‘rectifier.’’ Moreover, a
signal will not propagate through a section of wire that has
recently been visited by another signal; thus, a signal sent
with appropriate timing can inhibit or ‘‘lock out’’ another sig-
nal. Indeed, using just prairie fire and passive walls, one can
construct on a majestic scale a fairly close approximation of a
network of neurons and axons, or even a digital computer.

NONCONVENTIONAL COMPUTERS In principle, all that is needed to make a computer is an
excitable medium and a way to channel the propagation of

Today, a ‘‘computer,’’ without further qualifications, denotes activity in it-the rest is detail. Here we shall examine signifi-
a rather well-specified kind of object; we will consider a com- cantly and often strikingly different ways to fill in this ‘‘de-
puter ‘‘nonconventional’’ if its physical substrate or its organi- tail.’’ Besides providing an instructive record of past evolu-
zation significantly departs from this de facto norm. Thus, the tionary struggles, nonconventional schemes of computation
thousands of literate Greeks that ended up in Rome as secre- contribute to that rich reservoir of genetic variability that has
taries and accountants after the ‘‘liberation’’ of Greece in the put computers at the forefront of evolution.
second century B.C. would be viewed today as nonconventional The proceedings volume (1a) provides a representative
computers, even though at that time one certainly couldn’t sample of recent ideas in this area.
imagine a more ordinary kind of personal computer.

Furthermore, we will be more concerned with features that
BASIC SETTING

ultimately have to be answerable to physics (the mechanisms
by which the logic elements operate, the geometry of intercon-

Computation Universality
nection, the overall flow of energy and information) than with
architectural variants of a ‘‘firmware’’ nature (reduced in- The essence of computation is that a mechanism displaying

arbitrarily complex behavior can be constructed without mak-struction set, speculative execution of program branches,
etc.). ing recourse to ever more complex components: We just need

to increase the number of parts, not the complexity of the indi-Think of an indefinitely extended prairie. If you drop a
match, fire will spread outwards in a roughly circular front. vidual parts. Minsky (1) provides a solid and widely accessible

introduction to these concepts.Owing to random irregularities in propagation speed (because
of varying grass thickness, flammability, etc.) the shape of the Consider a catalog of building blocks, or elements, each ca-

pable of computing some simple function, and such that anyburning front will eventually become fairly irregular. Since
the grass is quickly consumed, fire cannot linger or come back output of one element can be used as an input by any other.

(For instance, in the heyday of analog computers the usualthe way it came: It must move on. However, under the steady
pumping of solar energy, in a few weeks grass will regrow convention was that outputs should produce voltages in the

"10 V range and inputs should accept any voltage in thatand fire will be able to return to an already visited region;
Fig. 1 shows characteristic propagation patterns. A substrate range.) Provided that the catalog assortment satisfies certain

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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minimum prerequisites, any function that can be computed
by a mechanism no matter how complex can also be achieved
merely by composing elements chosen from that catalog. (In
the case of analog mechanisms, ‘‘achieved’’ is understood to
mean ‘‘to any desired degree of approximation’’). For example,
if the catalog lists just the logic functions (or logic ‘‘gates’’)
AND, OR, and NOT (Fig. 2), then it can be proved that any

Figure 3. Analog adder. By using resistors of different values, thelogic function with a finite number of inputs can be put to-
terms of the sum can be given different weights. The summing stagegether from items picked from that catalog. In this sense, we
is completed by a voltage buffer for isolation.say that these three elements constitute a universal set of logic

primitives. (At the cost of slightly more cumbersome construc-
tions, one can make do with an even more restricted catalog,

weighted sum of several real variables (Fig. 3); what’s more
containing as a single element the NAND gate, also shown in

impressive, a matched transistor pair can be used to accu-
Fig. 2.)

rately compute logarithms or exponents with a 108 dynamic
A related but more general concept, which arises when we

range! (In either case, the processing stage must be followed
are dealing with indefinitely extended computing tasks, is

by an isolation amplifier.) In fact, analog circuitry seriously
that of computation universality. Not only can we do arbi-

vied with digital circuitry in the early days of scientific com-
trarily complex computation using only simple logic elements,

puting. Today, analog circuitry is still competitive in certain
but we do not even need an arbitrarily large assembly of

specialized real-time tasks such as TV signal processing.
them, because that can be simulated by a Turing machine

Even there, though, it is gradually being taken over by digital
consisting of

signal processors—small computers that specialize in fast nu-
merical computation.

• A finite assembly of active elements, given once and for
A digital element handles binary variables. If, using com-

all (the ‘‘head’’).
parable physical resources, an analog element can handle

• An indefinitely-extended, passive storage medium (the real-valued variables, doesn’t it have, in a sense, ‘‘infinitely
‘‘tape’’). more’’ computing power? There is no doubt that an analog

• A finite description of the (possibly infinite) machine we simulation of a continuous system may in certain cases out-
have in mind (the ‘‘program’’). This may reside on the perform a digital simulation of it (e.g., one done by a floating-
tape. point processor). This point has been well-argued by Mead (2).

What should be clear, however, is that the two approaches
Intuitively, the head can be ‘‘time-shared’’ so as to perform are equivalent in terms of computing power; that is, either
under the guidance of the program all the functions of the approach can simulate the other to within a constant factor
target machine, using the tape to keep track of ‘‘who was do- in terms of storage capacity and processing speed. In fact, be-
ing what to whom.’’ It turns out that extremely simple head- cause of thermal noise and fabrication tolerances, the nomi-
and-tape structures [i.e., with few states for the head and few nally continuous range of an analog variable is actually equiv-
symbols for the tape alphabet (1)] are already capable of do- alent to a modest number of distinguishable states. Moreover,
ing, in this fashion, anything that can be done by more com- when one changes one of the inputs in Fig. 3, the new voltage
plex structures. Given that computation universality is so at the summing node is approached exponentially with a time
easy to attain, when we say ‘‘computer’’ without further quali- constant �analog; to achieve a precision of k significant digits,
fications we shall mean machinery that does have this one must wait for a time � k�analog. If the same input data
property. were encoded as binary strings and processed by a serial digi-

tal adder with a clock period �digital, one would get k digits in a
Digital Versus Analog Devices time � k�digital. Thus, contrary to claims that are occasionally

made, analog computers do not hold the key to capabilitiesWhen active devices (e.g., tubes or transistors) were an expen-
that transcend those of digital computers. (But see the sectionsive resource, it appeared wasteful to devote a few of them
entitled ‘‘Quantum Computation’’ for a remarkably novel ap-just to making a simple logic element such as a gate or a flip-
proach to this issue.)flop when they could be used for more sophisticated mathe-

For the rest of this article we shall restrict our attentionmatical functions. For instance, by bringing together to a
to digital computation unless explicitly noted.summing node a number of resistors one can compute the

Serial Versus Parallel Processing

A computer must be able to deal with indefinitely large
amounts of information. Conventional computers process this
information serially, in the sense that there is a single, local-
ized, active piece of machinery through which data must se-
quentially stream in order to interact and be transformed: In

AND OR NOT NAND

in out in out in out in out

00 0 00 0 0 1 00 1
01 0 01 1 1 0 01 1
10 0 10 1 10 1
11 1 11 1 11 0 the Turing machine, the head moves back and forth along the

tape, reading data from it and writing new data back to it. InFigure 2. The AND, OR, NOT, and NAND logic elements (or logic
ordinary computers, the active unit, or central processing unit‘‘gates’’); the symbols 0 and 1 represent the logic values ‘‘false’’ and
(CPU), is stationary, and it is the data that do the moving. In‘‘true.’’ The first three elements make up a universal set of logic primi-

tives; the fourth element by itself constitutes such a set. practice, a sizable amount of data is kept in a random access
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memory (RAM) array that is optimized for fast random ac- ventional processors (3); in the latter case, the connectivity is
cess; to access a RAM location the CPU specifies its address, often provided by having all processors share a single mem-
and some ancillary active circuitry transports the correspond- ory. In either case, each node ‘‘feels,’’ at least in the short
ing data; this is the essence of the von Neumann architecture term, much like a conventional von Neumann machine—with
(the Harvard architecture is similar, but keeps separate a sizable processor running a large instruction set and having
memory banks for program and data). Larger amounts of data access to a large expanse of data.
are kept on storage media, such as magnetic disk or tape, In an attempt to achieve a better match either with the
that are served by more rudimentary transport resources and nature of a problem or with the physics underlying the hard-
typically allow only sequential access to the data. ware, many nonconventional schemes of computation adopt a

In many circumstances it is desirable to have a number of much more finely subdivided architecture, where the number
related data-processing operation take place concur- of processors is large but each has a limited scope. In such
rently—an approach that is loosely termed parallel compu- fine-grained architectures, task coordination between the pro-
tation. cessors may explictly be achieved by some centralized form of

control or, more implicitly, by prearranging the individual
1. As one comes close to the limits of a technology, the nodes’ nature and their interconnection pattern so that this

cost of faster machinery grows out of proportion to the pattern itself constitutes the program (4). One may even em-
attendant speed gain. For demanding computational ploy identical nodes and uniform (or uniformly random) inter-
tasks, it may be more cost-effective to use a ‘‘fleet’’ of connection, with no external control, and effectively encode
slower processors rather than a single ultra-high-speed the program in the pattern of initial data; this approach, used
unit. in programmable-logic arrays and field-programmable gate

2. Certain computational tasks, such as the simulation of arrays, is commercially viable and is gaining popularity.
spatially extended physical systems (weather forecast- An intermediate approach is configurable computing (5),
ing, materials science, brain modeling), are intrinsically where the interconnection between small but self-contained
parallel. The evolution of a site is immediately affected functional blocks can be reconfigured in real time, so as to
only by its neighbors, that is, the sites directly con- have ‘‘just in time’’ hardware.
nected to it; therefore, in the short term, distant sites
can be updated at the same time without reference to Microscopic Law Versus Emergent Behavior
one another, and thus by separate processors.

An even more extreme form of ‘‘laissez faire’’ is when not only3. Time-sharing a single processor between a number of
the network is fine-grained and uniform, but the initial datasites may entail substantial overhead. Data from a
are random (at least on a short scale). In this case, the behav-site’s neighborhood are typically copied into the pro-
ior that emerges can only be the macroscopic expression of thecessor’s internal registers for efficiency in processing.
microscopic law built into the node—that is, is an attractor ofWhen the processor’s focus is moved from one site to
the the dynamics (6). Though the attractors are in principleanother, these data have to be saved and new data
completely determined by the microscopic dynamics, theirloaded. Using a dedicated processor for each site elimi-
specific form is not easibly deducible from it; the whole pointnates this overhead.
of the computation is to make the attractors manifest (see4. In a finite-difference scheme (as may arise from discret-
section entitled ‘‘Associative Networks’’ and Fig. 11).izing a differential equation) a site typically contains

In terms of applications, emergent computation is relevantseveral floating-point variables, and its updating entails
to statistical mechanics, materials science, economics, votinga number of algebraic, transcendental, and address-ma-
theory, epidemiology, biochemistry, and the behavior of social,nipulation operations. In finer-grained models such as
swarming, and schooling species (7–9).lattice gases, the number of sites may be several orders

of magnitude larger, while the updating of a site may
Polynomial Versus Exponential Connectivityinvolve just a few logic operations on a few bits. On this

kind of task, most of the resources of a conventional pro- Many common problems are of exponential complexity, in the
cessor would be wasted. For the same amount of re- sense that the computational resources needed to solve the
sources, a better approach is to use an array of thou- problem grow exponentially with the size of the input data.
sands of microscopic site processors. This can be easily seen as follows. To determine the fitness of

5. Finally, a world consisting of a finite active head and an ‘‘organism’’ in a given environment, the general method is
an indefinitely extended passive tape is only an approxi- to run a simulation of the entire system and in this way di-
mation. In real life, most of the data that a processor rectly evaluate the desired fitness function (number of off-
will see during a computation are not actually present spring, market share, etc.). If the organism consists of n
in a storage medium at the beginning of the computa- parts, the cost of one simulation run will typically be polyno-
tion, but will be deposited there by other agents as the mial in n, because both the size of the simulation (number of
computation progresses (think of an airline reservation variables) and its length (number of time steps) will grow in
system). A collection of loosely interconnected pro- proportion to n. Suppose now that several variants are avail-
cessors provides a better paradigm for this ar- able for each of the parts (in a gene, for instance, there are
rangement. four choices for each base pair). To find the best combination

of parts, the general procedure is to determine, by simulation,
Fine Grain versus Coarse Grain the fitness of all the possible combinations; the number of

these is exponential in n. Thus, while simulation is typicallyMuch parallelism in computation is achieved today by loosely
networking or more tightly coupling a modest number of con- a polynomial task, optimization is typically exponential.
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node) and communication time (travel between logically adja-
cent nodes). When this ratio is high, the actual geometry has
little relevance; this is the case of intranet architectures (col-
lections of workstations connected by a local-area network)
and, to a great extent, of the Internet itself. In fact, we are
witnessing the birth of a commodity market for large packets
of CPU cycles. For applications that are computation rather
than communication-intensive, it matters little where these(b)(a)
packets are executed; thousands of disparate computers scat-

Figure 4. (a) In this tree network, the number of nodes reachable in tered all over the world may be successfully harnessed to
n steps grows as 2n (exponential growth). (b) In this mesh network, it work on a single task (12).grows as n2 (polynomial growth).

Conversely, intersite communication looms large in fine-
grained computational tasks, where data go through a node
almost instantaneously. Here, the most efficient architectures

A naive way to satisfy exponential computing demands is tend to directly reflect the polynomial interconnectivity of
to design a parallel computer with exponential interconnec- physical spacetime, and ideally one has a polynomial-growth
tion—that is, a computing network in which the number of network, or mesh, directly embedded in physical space, as in
sites that can be reached from a given site in n steps grows Fig. 4(b). (As stressed in the section entitled ‘‘Cellular Autom-
exponentially with n [for instance, in the tree of Fig. 4(a) the ata Machines’’ there are other practical factors besides inter-
number of new sites one can reach starting from any site dou- connection geometry that one must take into account in the
bles with each step]. Such a network, however, cannot be con- design of a viable fine-grained multiprocessor.)
formally embedded in three-dimensional physical space. Even
if one could actually provide an exponential number of pro- MIMD Versus SIMD Architectures
cessors, the interconnection geometry must be drastically de-

A basic dichotomy in conventional parallel computers is be-formed to fit into three-dimensional space; nodes that logi-
tween MIMD architectures (multiple instruction stream, mul-cally are separated by a single link will have to be spaced
tiple data stream) and SIMD (single instruction, multiplefurther and further apart, and communications will slow
data), according to a classification proposed by Flynn (13). Andown accordingly.
extreme case of MIMD is a network of ordinary computersOf course, in order to simplify high-level programming it
running different programs related to the same task, withis often convenient to simulate an exponential architecture on
just enough synchronization to ensure that subtasks are car-a conventional computer; this is essentially the route offered
ried out in the appropriate order. A typical example of SIMDby the LISP programming language (10). In the 1980s, an
is a vector processor, where all elements of a ‘‘vector’’ (an arrayarchitecture optimized for this kind of deception—the LISP
of numbers, a pixelized image) are subjected in parallel to onemachine—enjoyed brief popularity in the Artificial Intelli-
processing step after another.gence milieu.

The distinction between SIMD and MIMD does not prop-A related multiprocessor arrangement is the hypercube—a
erly apply to structures like neural networks or cellular au-network whose growth is exponential in the short term but
tomata (see below), where the atomic processors are not gov-then tapers down and actually converges to a finite size. In a
erned by an instruction stream, but each continually appliesd-dimensional hypercube a node has d first neighbors, about
a fixed, built-in transition function or transfer function to thed/2 second neighbors, and, in general,
incoming data. (In a cellular automaton this function is the
same for all cells, while in a neural network each node may
have been programmed with a different set of input weights

�
d
n

�
and, typically, with a different interconnection pattern).

nth neighbors. Since the hypercube’s vertices are in a natural
one-to-one correspondence with all the possible states of a bi- NEURAL NETWORKS
nary string of length d, a hypercube is a good architecture for
problems of combinatorial optimization. Even though ordi- Neural networks (14) are circuits consisting of a large number

of simple elements, and designed in such a way as to signifi-nary space has three dimensions, a 16-dimensional hyper-
cube, with 64K sites, can conceivably be ‘‘folded’’ onto a cantly exploit aspects of collective behavior—rather than rely

on the precise behavior of the individual element.printed-circuit board; in fact, hypercube ‘‘accelerator cards’’
enjoyed a brief success. However, one must bear in mind that, In spite of their enormous speed, conventional digital com-

puters compare poorly in many tasks with the nervous systemwhile going from a 16-bit microprocessor to a 32-bit one is a
comparatively modest increment, going from a 16-dimen- of animals. How much of the architecture of a nervous system

does one have to reproduce in order to capture the strongsional hypercube to a 32-dimensional one is a tall order, be-
cause the latter would have four billion sites and 64 billion points of its behavior? Historically, neural networks were pro-

posed as an alternative type of computing hardware, looselylinks! In this sense, the hypercube architecture is not
scalable. patterned (both in the nature of the circuit elements and in

the way they are interconnected) after the animal nervousVarious interconnection topologies are discussed in (11).
The extent to which the physical geometry of a network can system. Today, however, it is becoming clear that rather than

representing just another type of computing medium, neuralbe ignored in favor of its logical organization depends, of
course, on the ratio between processing time (activity at a networks represent a different conceptual approach to compu-
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tation, depending in an essential way on the use of statistical
concepts. In this sense, the theory of neural networks plays in
information processing a role analogous to that of statistical
mechanics in physics. We are no longer thinking so much in
terms of a distinguished kind of hardware as of a distin-
guished class of algorithms; as a matter of fact, many neural-
network applications are routinely and satisfactorily run on
ordinary digital computers.

A typical application for neural networks is to help in mak-
ing decisions based on a large number of input data having
comparable a priori importance—for instance, identifying a
traffic sign (a few bits of information) from the millions of
pixels of a noisy, blurred, and distorted camera image. In gen-
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eral, the neural-network approach seems best suited to com- Figure 6. Two-layer perceptron. The black nodes denote external
putational problems of large width and moderate depth— inputs.
‘‘democratic’’ rather than hierarchical algorithms. Note that
segmentation of connected speech into words—which is a
hard task for conventional computers—is performed by our as ‘‘on’’ and ‘‘off,’’ or ‘‘true’’ and ‘‘false’’; this state appears at
brain with a latency of just a fraction of a second, and thus the neuron’s output. The inputs may come from other neurons
cannot involve more than a few levels of neurons. or from external stimuli. State updating may be synchronous

Neural-network design and analysis typically assume a re- (all neurons are updated simultaneously at times t � 0, 1, 2,
gime of high hardware redundancy: It then becomes both pos- . . .) or asynchronous (each neuron is updated at random
sible and desirable to program a network for a given task by times with a given probability per unit time). The new state
indirect methods (training by example, successive approxima- of the neuron is determined by the inputs as follows. Input
tions, simulated annealing, etc.). Indeed, the metaphor of a xj is multiplied by a weight wj, representing the strength of
network ‘‘learning’’ its task instead of being ‘‘programmed’’ for the corresponding synaptic connection (positive weights corre-
it is one of the most appealing—and elusive—aspects of this spond to excitatory synapses, negative weights correspond to
discipline. By empirical means, it is not hard to come up with inhibitory ones). The contributions from all inputs are added
a neural-network design that works for a certain toy problem; and compared with a threshold �; the neuron turns on if the
it is much harder to prove the correctness of the design and threshold is exceeded.
rationally determine its potential and limitations. The impor- The McCulloch–Pitts neuron is a universal logic primitive
tance of theoretical work in this context cannot be overstated. (1); for instance, with a two-input neuron, weights of �1 for

each input, and a threshold of �1/2, the neuron will continu-
Abstract Neurons ally fire unless at least one of the inputs is turned on, thus

yielding the NAND function. But why, then, not use ordinaryThe human brain consists of about 1011 neurons of various
logic elements to begin with? The answer is that the neurontypes; each neuron typically connects, via an axon that even-
is optimized for a different kind of architecture, where a sin-tually branches out into strands and substrands, to many
gle node may have thousands of inputs (as in the humanthousand neurons. The firing of a neuron is mostly an all-or-
brain) rather than just a few. An arbitrary logic function ofnothing business; this discrete character is retained as the
that many inputs would consist of lookup table of astronomi-pulse travels down an axon. However, upon arrival to a desti-
cal size (i.e., exponential in the number of inputs); to have annation neuron the pulse is handled by a synaptic interface
element that responds in a nontrivial way to all of its inputs,characterized by an analog parameter (typically, an excita-
but whose complexity grows only proportionally to the num-tion or inhibition weight) whose value may be to some extent
ber of inputs, one must drastically restrict the nature of thehistory-dependent. The complete physiological picture is
interaction. In the neuron this is achieved by the two-stagerather complex.
design of Fig. 5, namely, a summation node followed by aA drastically simplified model of a neuron, proposed by
transfer function. The first stage deals with all the inputs,McCulloch and Pitts (15), is shown in Fig. 5. The neuron can
but only in an additive way; while the second stage, whichbe in one of two states, 
1 and �1, which may be thought of
has only one argument, contributes the nonlinear response
which is essential for computation universality.

Developments

As we’ve seen, neural networks started out as an exercise in
mathematical biology. The first networks to systematically
use many-input neurons were the perceptrons (16), in which
neurons are arranged in regular layers, with no feedback
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from a layer to previous ones, as in Fig. 6. (Early on it was
realized that the behavioral range of one-layer perceptrons isFigure 5. McCulloch–Pitts neuron. The summation node constructs
severely limited; this inhibited for a while the study of per-the weighted sum (with coefficients w1, w2, . . .) of the inputs. De-
ceptrons. It was eventually realized that multilayer per-pending on whether or not this sum exceeds a threshold �, an output

of 
1 or �1 is returned by the transfer function. ceptrons have fully general computing capabilities.) Interest
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in neural networks remained sparse for 20 years, with occa-
sional contributions from physiologists and physicists. The
1980s saw a sweeping revival, with new ideas from statistical
mechanics and dynamical systems, such as energy function
and stable attractors (17); new programming techniques, such
as the back-propagation learning algorithm (18); and, of
course, the availability of computing machinery of ever-in-
creasing performance.

Today, neural networks are used routinely in many spe-
cialized applications, chiefly in low-level image and speech

a

c

b

e

d

processing, and sensors/actuator integration in motor control;
they are also widely used for a variety of noncritical tasks Figure 7. Basins of attraction. Here attractor c is a short cycle
where adequate training by example can be imparted rapidly rather than a point.
and economically by nonspecialists: data presorting, screen-
ing of applications, poll analysis, quality control. On the theo-

Given specified ideograms � 1, . . ., � p, how do we constructretical side, much of the initiative and of the conceptual ma-
a network that will have these ideograms as attractors? Inchinery for fresh developments has been coming from the
analogy with plausible neurological mechanisms, in the Hop-statistical-mechanics community. On the architectural side,
field model (17) the weights are chosen by the Hebb rulearguments favoring elements that are simpler, more numer-

ous, and more heavily interconnected than in traditional ar-
chitectures (see section entitled ‘‘Connection Machines’’) have wi j = 1

N

p∑
µ=1

ξµ

i ξµ

j (1)
to vie with the pressure of technological expediency, which
favors uniform and local interconnections and limited fanout where � �

i denotes the value of ideogram � � at the i neuron
of signals (see section entitled ‘‘Cellular Automata and Lat- position or pixel, and wi j denotes the weight with which the
tice Gases’’). output of neuron j enters in neuron i. It turns out that this

In the mean time, neural networks have matured enough assignment substantially achieves the goal, provided that the
to provide substantial conceptual and practical contributions entries are sufficiently distant from one another. The pat-
to the study of the brain itself. This is the domain of computa- terns � 1, . . ., � p that define the weights are effectively
tional neuroscience. ‘‘stored’’ in the network, and the evolution will retrieve one of

the stored values. In general, the network will have addi-
tional attractors besides the specified ones; these are spuriousAssociative Networks
entries, and they can be viewed as a way for the network

One use for neural networks is pattern classification. Suppose to say ‘‘no match’’ to a key that does not have an obviously
we want to sort a collection of transparencies into ‘‘faces,’’ matching entry.
‘‘landscapes,’’ and so on, and possibly ‘‘other.’’ To this purpose, A refinement of the above approach, called simulated an-
we line the two-dimensional projection screen with a collec- nealing (19), aims to reduce the number of spurious re-
tion of neurons like that of Fig. 5; each neuron position de- sponses. Note that the output from the summation node in
fines a pixel (picture element). For simplicity, we’ll assume Fig. 5 represents the ‘‘tendency’’ for the neuron to fire; how-
that a transparency has only two levels (black and white), so ever, the neuron will fire if and only if this tendency is above
that to each image one can associate a neuron firing pattern the threshold; The response is all-or-nothing and determinis-
(
1 for white and �1 for black), and conversely every firing tic, and clearly some of the information available by the neu-
pattern can be viewed as an image. ron is not made use of. Simulated annealing replaces this de-

The neurons will be interconnected as an autonomous net- terministic response by a stochastic one based on an energy
work; that is, all neuron inputs come from outputs of other function to be minimized (this function is typically derived
neurons rather than from the outside world. The dynamics is from the above Hebbian weights) and a temperature parame-
specified by assigning the neuron weights as we shall see in ter. This approach has three advantages: (1) While retaining
a moment. The initial state of the network is specified by an all-or-nothing firing behavior, one can still grade the neu-
making the neuron firing pattern be a copy of the submitted ron’s response in a continuous fashion by giving a greater fir-
image. Started from this pattern and left to its own evolution, ing probability to neurons that would have a greater tendency
the network will describe a trajectory through the space of all to fire. (2) The stochastic dynamics corresponds to a random

walk (with some bias toward lower energies); this makes itpossible patterns, as indicated in Fig. 7. Each basin of at-
possible to backtrack and avoid getting stuck in shallow rela-traction can be thought of as a ‘‘concept,’’ and its attractor
tive minima. (3) By starting at a high temperature, the search(which is itself a two-dimensional image) can be thought of as
for a significant local minimum is initially coarse and fast; byan ‘‘exemplar’’ or ‘‘ideogram’’ for this concept. The network
gradually lowering the temperature, the search becomeswill then behave as an associative memory: Confronted with
slower but more refined; different ‘‘annealing’’ schedules arean arbitrary image used as a key, it will eventually respond
appropriate for different kinds of problems.to this key with the corresponding entry—that is, the at-

tractor of the basin of attraction in which the key happens
Learningto lie. In this way, the classification of points into basins of

attraction, which is implicit in the assignment of weights, is In the subsection entitled ‘‘Associative Networks,’’ the net-
work weights were given. Are there ways to make a networkmade manifest by the operation of the network.



NONCONVENTIONAL COMPUTERS 461

names and within different disciplines; the canonical attribu-
tion is to Ulam and von Neuman, circa 1950; much early ma-
terial is collected in Ref. 20.

In the 13th century, Thomas Aquinas postulated that
plants are not reducible to inanimate matter: they need an
extra ingredient—a ‘‘vegetative soul.’’ To have an animal, you
needed a further ingredient—a ‘‘sensitive soul.’’ Even that

+1

–1

g(x)

x
β = 1

2
4

was not enough to make a human; one had to postulate one
Figure 8. Sigmoid transfer functions are often used in analog net- more ingredient—a ‘‘rational soul,’’ William of Occam had re-
works as an alternative to a step function. plied, Do we really need to put all these souls in our catalog?

Might not we be able to make do with less?
An important step toward an answer was taken by Turing‘‘learn’’ by itself the weights appropriate for a certain classifi-

in his foundation of logical thought. As we’ve seen, he showedcation? Can we ‘‘show’’ the network a number of pattern tem-
that, no matter how complex a computation, it can always beplates, and ask the network to figure out the weights that will
reduced to a sequence of elementary operations chosen fromproduce basins having these templates as attractors?
a fixed catalog. In this sense, Turing had reduced thought toMajor progress in this direction was the discovery of the
simple, well-understood operations.backpropagation algorithm (18). Basically, one starts with a

Von Neumann was interested in doing for life what Turingperceptron (Fig. 6) and replaces the step function (see Fig. 5)
had done for thought. Conventional models of computationwith a continuous, differentiable transfer function having a
make a distinction between the structural part of a computerstep slope in the vicinity of �, such as the sigmoid:
(which is fixed) and the data on which the computer operates
(which are variable). The computer cannot operate on its own
matter; it cannot extend or modify itself, or build other com-g(x) = tanh(βx) ≡ eβx − e−βx

eβx + e−βx
(2)

puters. In a cellular automation, by contrast, objects that may
be interpreted as passive data and objects that may be inter-where 
 is an adjustable parameter (see Fig. 8). In this way,
preted as computing devices are both assembled out of thethe outputs are differentiable functions of the inputs.
same kind of structural elements and subject to the sameLet x� denote an input pattern (� � 1, . . ., p), y� the corre-
fine-grained laws; computation and construction are just twosponding output pattern for a given set of weights, and y� the
possible modes of activity. Von Neumann was able to showdesired output pattern for that input. The overall error be-
that movement, growth according to a plan, self-reproduction,tween actual and desired response will be measured by the
evolution—life, in brief—can be achieved within a cellularfollowing error function (sum of squares):
automation—a toy world governed by simple discrete rules
(21); in that world at least, life is in principle reducible to
well-understood mechanisms given once and for all. Remark-E = 1

2

∑
i j

(yµ

i − yµ

i )2 (3)

ably, the strategy developed by von Neumann for achieving
self-reproduction within a cellular automation is, in its essen-

It can be shown that, in the present context, E is a differenti- tial lines, the same which a few years later Watson and Crick
able function of the individual neuron weights as well as of found being employed by natural genetics.
the inputs. Proceeding backwards from the outputs, one can In a cellular automation, space is represented by a uniform
adjust the weights one layer at a time so as to minimize the array. To each site of the array, or cell (whence the name
error E at each stage, using the derivatives to determine the ‘‘cellular’’), there is associated a state variable ranging over a
direction and rate of correction. This algorithm, which is not finite set—typically just a few bits’ worth of data. Time ad-
very demanding (if n is the number of synapses, one only vances in discrete steps, and the dynamics is given by an ex-
needs to calculate order n derivatives, while minimization of plicit rule—say, a lookup table—through which at every step
E by simultaneously adjusting all the weights requires order each cell determines its new state from the current state of
n2), is supported both by theoretical considerations and empir- its neighbors (Fig. 9). Thus, the system’s laws are local (no
ical results. action-at-a-distance) and uniform (the same rule applies to

A more ambitious endeavor is unsupervised learning. In all sites); in this respect, they reflect fundamental aspects of
the training mode, the network is expected to identify and physics. Moreover, they are finitary: Even though one may be
extract significant features of the input stream and build ap- dealing with an indefinitely extended array, the evolution
propriate weights; these weights are then used during the over a finite time of a finite portion of the system can be com-
normal mode of operation to classify further input patterns. puted exactly by finite means.

The ‘‘fire’’ simulation of Fig. 1 used a cellular automation
model. Let each cell have three states, namely, ready, firing,CELLULAR AUTOMATA AND LATTICE GASES
and recovering. At time t 
 1, a ready cell will fire with a
probability p close to 1 if any of the four adjacent cells (i.e., toCellular automata are dynamical systems that play in dis-

crete mathematics a role comparable to that partial differen- the North, South, East, and West) was firing at time t. After
firing, the cell will go into the recovering state, from which attial equations in the mathematics of the continuum. In terms

of structure as well as applications, they are the computer each step it has a probability q of returning to the ready state
(thus, for small q, the average recovery time is of the orderscientist’s counterpart to the physicist’s concept of a ‘‘field’’

governed by ‘‘field equations.’’ It is not surprising that they of 1/q steps). This yields excitation patterns that spread, die
out, and revive much like prairie fires; in this metaphor, phave been reinvented innumerable times under different
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(a) (b)

ƒ

Figure 9. Example of cellular-automaton format: (a) The new state
of a cell is computed from the current state of the 3  3 block centered
on it by the rule f , which has nine inputs and one output. (b) Informa-
tion flow between cells (only vertical and horizontal wires are shown;
diagonal ones were suppressed to avoid clutter). Note the feedback
loop from each node to itself.

represents the ‘‘flammability’’ and q the ‘‘rate of regrowth’’ of
grass (9). Another cellular automaton with a rich phenome- Figure 11. A stage in the cooling of an Ising spin system. Solid mat-

ter represents the spin-up phase. Three-dimensional rendering wasnology is Conway’s game of ‘‘life,’’ which spread as a campus
done by illumination simulated verbatim within the cellular au-cult in the 1970s (22).
tomaton.Cellular automata are ideal for modeling the emergence of

mesoscopic phenomena when the essence of the microscopic
dynamics can be captured by a ‘‘board game’’ of tokens on a

unit speed on a two-dimensional orthogonal lattice, in one ofmesh (23). This is the case, for example, of diffusion-limited
the four possible directions. (Particles are represented by bits;aggregation (Fig. 10) and Ising spin dynamics (Fig. 11)—a
to ‘‘move’’ a particle, you just erase a bit from one lattice sitesimple model of magnetic materials.
and write a bit in an adjacent site.) Isolated particles move
in straight lines. When two particles coming from oppositeFluid Dynamics
directions meet, the pair is ‘‘annihilated’’ and a new pair,

Experience has shown that in many applications it is more traveling at right angles to the original one, is ‘‘created’’ [Fig.
convenient to use, in place of the cellular automaton scheme 13(a)]. In all other cases—that is, when two particles cross
of Fig. 9, a slightly modified scheme called lattice gas. In this one another’s paths at right angles [Fig. 13(b)] or when more
scheme, the data are thought of as signals that travel from than two particles meet—all particles just continue straight
site to site, while the sites themselves represent energy, that on their paths.
is, places where signals interact as in Fig. 12. The lattice- As soon as the numbers involved become large enough for
gas scheme was arrived at independently, but in response to averages to be meaningful—say, averages over spacetime vol-
similar physical motivations, by a number of researchers (24).
It is widely used in fluid dynamics and materials science mod-
eling.

The idea behind lattice-gas hydrodynamics is to model a
fluid by a system of particles that move in discrete directions
at discrete speeds and undergo discrete interactions. In Po-
meau’s seminal HPP lattice gas, identical particles move at

t

y

x

ƒ

Figure 12. Example of lattice-gas format: Rule f has four inputs and
four outputs: from the state of the four arcs entering a node (current
state), it computes the state of the four arcs leaving the node (newFigure 10. Starting from a nucleation center, dendritic growth is fed

by diffusing particles; two- and three-dimensional realizations. state).
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(a) (b)

Figure 13. In the HPP gas, particles colliding head-on (a) are scat-
tered at right angles, while particles crossing one another’s paths (b) Figure 15. Flow past an obstacle. The tracing is done by injecting
go through unaffected. into the fluid a ‘‘scum’’ that is dragged by the fluid and whose texture

is a compromise between cohesive forces and disruption by shear and
thermal agitation. The scum is simulated by a second lattice-gas
model, coupled to the first, representing a fluid near the critical con-ume elements containing thousands of particles and involving
densation point—and thus poised between the gaseous and liquidthousands of collisions—a definite continuum dynamics
phases (30).emerges. And, in the present example, it is a rudimentary

fluid dynamics, with quantities recognizable as density, pres-
sure, flow velocity, viscosity, and so on. Figure 14 shows the
propagation of a sound wave in the HPP gas. Note that even strategy; namely, devices will have to be assembled from a
though individual particles move on an orthogonal lattice, the discrete catalog of parts offered by nature (atoms and elec-
wave propagates circularly; full rotational invariance has trons), and effects will have to be chosen from the natural
emerged on a macroscopic scale from the mere quarter-turn interactions between these discrete parts.
invariance of the microscopic cellular-automaton rule. The search is on for ways to achieve useful computation in

Seeing this fluid model running on an early cellular autom- this context. Biochemistry provides a working example. Spe-
ata machine (see subsection entitled ‘‘Cellular Automata Ma- cifically, DNA (with its RNA variants) is universally used by
chines’’) made Pomeau realize that what had been conceived life as an information-storage medium, and information and
primarily as a conceptual model could indeed be turned, by materials-processing subroutines are carried out by a stan-
using suitable hardware, into a computationally accessible dard set of protein-assisted reactions.
model; this stimulated interest in finding lattice-gas rules
which would provide better models of fluids. A landmark was

DNA Computingreached with the slightly more complicated FHP model (it
uses six rather than four particle directions), which gives, in An example of how DNA computing might be domesticated is
an appropriate macroscopic limit, a fluid obeying the well- provided by Adleman’s approach (31), which is based on DNA
known Navier–Stokes equation and is thus suitable for mod- splicing. The computational task he addressed, namely, the
eling actual hydrodynamics (see Ref. 25 for a tutorial). This traveling salesman’s problem, is of the following kind. The
model started off the burgeoning scientific business of lattice- domino game is played with oblong tiles carrying a numerical
gas hydrodynamics. Soon after, analogous results for three- label (1 through 6) at either end ([1 1], [1 2], . . ., [1 6], [2 1],
dimensional models were obtained by a number of research- [2 2], . . .). Tiles can be strung end-to-end, with the con-
ers (26,27). The approach is able to provide both conceptual straint that abutting labels match (e.g., [3 4][4 2][2 3]). Let
(28) and practical insight into more complex situations, such us consider an ensemble of domino pieces satisfying the condi-
as multiphase fluids and flow in porous media (29), and dy- tions that (a) all of the labels are represented, (b) some of the
namics that ‘‘ride’’ on the fluid flow, as in Fig. 15 (30). possible tiles (e.g., [3 2]) may be missing, and (c) if one tile is

present, then it appears in an unlimited number of copies. If
one thinks of the labels as ‘‘cities,’’ the problem is to deter-MOLECULAR COMPUTERS
mine whether there is a chain that starts and ends with city
1 and passes through all other cities exactly once.The smallest electronic devices of today, about 100 nm across,

Adleman’s technique takes advantage of the fact that, inconsist of approximately 108 atoms; on this scale, a continuum
an appropriate chemical environment, complementary seg-of shapes can still be ‘‘machined’’ and a continuum of composi-
ments of DNA tend to bind together, with the pairing beingtions ‘‘brewed.’’ At the current rate of progress, in 20 years
more stable the longer the extent of the match. In Adleman’swe will reach atomic scale; on this scale, device engineering
experiment, tiles are represented by DNA strings of modestwill have to have made the transition to a different design
length, namely, 20 DNA bases; the first 10 bases encode the
left label (this encoding is unique but otherwise arbitrary),
the last 10 encode the right label according to the same code,
but using the complementary bases. Thus, if two DNA strings
carry labels that match according to the domino rules, then
the right-half of one string complements the left-half of the
other, and the two strings will tend to splice together. A fresh
batch of separate tiles will gradually develop a number of
bound complexes, with the great majority of them being legal
domino chains. This is a form of massively parallel processing;
as in a water solution containing 1013 tiles, the rate of chain
collisions (driven by thermal agitation) may be on the order
of 1015/s.Figure 14. Sound wave propagation in the HPP lattice gas.
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Besides this step that spontaneously generates random le- stantially more complex than molecules, such as small self-
propelled animals or artifacts, one speaks of swarm computa-gal chains, the procedure employs other steps (always carried

out by massively parallel chemical reactions), which help to tion. The study of the possibilities of this mode of computation
is still in its infancy. We can’t do better than refer the readerefficiently steer the search toward the problem’s solution.

Specifically, one uses techniques for (a) amplifying the num- to Ref. 7 for a popular but well-documented reportage on
this field.ber of partial chains which meet the problem’s requirements

and (b) weeding out those that don’t. If at the end of this
procedure there are any chains left, these represent solutions

SOME ACTUAL MACHINES
of the problem; otherwise, the problem has no solutions.

Thus, Adleman’s technique can solve the traveling sales-
Connection Machines

man’s problem for a small number of cities. Since this prob-
lem is NP-complete (this term denotes a well-characterized Connection Machines originated at the MIT Artificial Intelli-

gence Laboratory, and they reflect a tradition of artificial in-‘‘degree of intractability’’) and NP-complete problems are
widely believed (though not quite proved) to be of exponential telligence (AI) problems and LISP programming environment.

They were the standard bearers of ‘‘connectionism’’; this is acomplexity, speculation has arisen that life processes of this
kind could carry out tasks transcending the capabilities of computing philosophy that stresses (a) the use a large num-

ber of small processors and (b) giving the interconnection pat-conventional computers. The present approach provides no
support for this thesis. In fact, though the number of steps in tern as much importance as the instruction stream as a

means to program the structure for a particular task.the procedure increases only linearly with the number of
cities, the number of DNA molecules in a batch must grow In its original formulation (58), the connection machine

was intended to be an efficient digital-hardware platform forexponentially. In the end, the physical tradeoffs are of the
same general nature as with other parallel schemes. computations requiring fine grain and flexible connectivity.

Each element would communicate with any other by broad-
casting in a spherical wavefront a packet of information to-Molecular Nanotechnology
gether with the destination address, and it would be the re-

A number of activities related to molecular nanotechnology sponsibility of the recipient to recognize the address and
have found a rallying point in the Foresight Institute (32) intercept the packet. Eventually, for practical reasons, the ar-
Drexler’s manifesto (33) places specific emphasis on computa- chitecture evolved into something more like a cellular auto-
tional issues. In this sense, however, ‘‘nanotechnology’’ does mation, with two important differences: (1) The rule table was
not represent so much a well-defined discipline as a clearing sequentially broadcast from an external host, and thus could
house for a miscellanea of initiatives aimed at harnessing be changed from step to step under host program control; and
atomic-scale mechanisms to computation and fabrication (2) in addition to the cellular automaton’s hard-wired local-
goals. and-uniform interconnection pattern, a higher level of inter-

connection (point-to-point and software-handled) was pro-
Cellular Computers vided by a programmable router (34).

The embarassing lack of enthusiasm with which the AIDNA computing as previously discussed borrows techniques
community received the first connection machine (CM-1) hasand materials from biochemistry; the ‘‘program,’’ however is
been adduced as evidence that this architecture did not, aftera sequence of externally driven, in vitro reactions that are set
all, provide what AI had requested. More likely, the connec-up in a conventional laboratory by conventional macroscopic
tion machine was what AI people claimed they wanted; butmeans, much like photofinishing. We already know how to
in fact it called their bluff, because the AI community was notinduce bacteria to synthesize in commercial quantities ‘‘de-
ready yet to actually make full use a connectionistic archi-signer’s chemicals’’ specified by us. Can we program a cell to
tecture.carry out in vivo, within the cell itself, a sequence of micro-

As an afterthought, a small number of high-performancescopic biochemical steps that correspond to recognizable logic
floating-point processors had been interspersed through theoperations?
fine-grained array of the CM-1. These proved to be very usefulThis is an ambitious but not implausible undertaking. The
in a number of mundane problems like image processing andapproach suggested by Knight and Sussman (33a), for one,
lattice-gas hydrodynamics (see below). Instead of performingbuilds entirely on existing cellular mechanisms. A logic vari-
an ancillary function, the floating-point processors came toable is represented by the concentration (low versus high) of a
the forefront, and the underlying fine-grained texture wasparticular protein; different variables are encoded in different
more often than not used as a programmable ‘‘conveyor belt’’proteins. The idea is to use DNA-binding proteins, so that the
to feed these processors. This reality was reflected in the CM-protein that expresses one gene acts, according to the case, as
2 design, which for a time held its own among ‘‘scientific’’ (i.e.,a repressor or a promoter for the expression of another gene.
number crunching) supercomputers.This feedback loop provides the three basic effects—

Eventually the design evolved into an original but some-amplification, inversion, and gating—by which digital cir-
what more conventional architecture, the CM-5 (35), con-cuitry can be made to emerge from analog mechanisms.
sisting of a cluster of RISC processors (of the Sparc type) con-
nected by a fat-tree (36) network operating in packet-
switching mode. (This is a fractal network structure, and itSWARM COMPUTERS
represents an alternative way to embed a few levels of expo-
nential growth within polynomial spacetime.) Subsequent on-Phenomena involving diffusion and reactions of molecules are

well known in chemistry. When the entities involved are sub- slaught by commodity microprocessors and affordable, fast lo-
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cal-area networks gradually robbed this architecture of much Physically, CAM-8 is a three-dimensional mesh of modules
(a module is akin to a frame buffer with on-board processingof its competitiveness.
resources) operating in lockstep on pipelined data. This struc-
ture is dedicated to supporting a variety of virtual architec-Cellular Automata Machines
tures in which massively parallel, fine-grained computation

We refer here to a lineage of machines that provide, rather takes place, using the lattice-gas scheme, on a mesh that may
than a specific cellular automaton, machinery for efficiently consist of billions of sites. The virtualization ratio—that is,
synthesizing a variety of cellular automata architectures in the ratio between the number of virtual processors and that
any reasonable number of dimensions. This approach, which of real processors—may be set from hundreds to millions.
combines flexibility with efficiency, has been termed ‘‘pro- To visualize the operation of CAM-8, consider a regular n-
grammable matter’’ (37). dimensional array of bits that extends indefinitely in all direc-

With current technology, one can build a memory chip tions (for concreteness, one may think of a two-dimensional
holding 64 Mbits for an indefinite amount of time at virtually array—a ‘‘bit-plane’’); we shall call such an array a layer. We
zero dissipation (just occasional refreshing) and allowing one shall now superpose, in good registration, a number p of lay-
to access bits at a gigahertz rate with a dissipation of about ers—so that at each site we have a pile of p bits. This entire
1 W. With the same technology, one could build a simple cel- collection of bits will be made to evolve by repeated applica-
lular-automaton cell on a 20 �m square and put 1 K  1 K tion of the following procedure, called a step, consisting of
cells on a chip. Since in this architecture each driver would two stages:
see a small fixed load at a small fixed distance, cells could in
principle be clocked at microwave rate (say, 10 GHz) for a • Data Convection. Each layer is independently shifted as
total of 1016 events/s. However, the whole chip would then a whole by an arbitrary number of positions in an arbi-
dissipate thousands of watts! trary direction. We still end up with a pile at each site,

For sake of comparison, let’s note that chips remarkably but with a new makeup.
similar to a cellular automaton are actually being made to-

• Data Interaction. We now take each pile and send it to a
day. These are field-programmable gate arrays (FPGAs), con- p-input, p-output lookup table; this table returns a new
sisting of a regular array of macrocells (each having a few bits pile, which we put in place of the original one.
of storage for state-variables, a lookup table for the dynamics,
and assorted routing circuitry). However, these cells are

Note that at the data interaction stage each pile is processedmeant to be sparsely interconnected on a chip-wide scale; the
independently, so that the order in which the piles are up-attendant propagation delays limit clocking rate to about 100
dated is irrelevant. One could even have several copies of theMHz, and at this rate the largest such chips dissipate a few
lookup table and do some (or all) of the processing concur-watts. That is, in an FPGA the event rate may be hundreds
rently. In CAM-8, the mesh is apportioned between the mod-of times lower than that of a cellular-automaton array, and
ules; each module works serially on its portion, and all thecorrespondingly the dissipation hundreds of times smaller.
modules operate in parallel.In sum, our capabilities to compute large numbers of

Also note that at the data convection stage, the shift per-events are limited not so much by how many cells we can
formed on each layer is a uniform and data-blind operationsqueeze in a chip or by how fast we can clock them, as by how
(each bit is moved by a fixed offset, independently of its ad-much energy an event dissipates! It is true that, as technology
dress and value). Thus, in a suitable implementation, it be-steadily progresses from ‘‘submicron’’ to ‘‘nanoscale,’’ the dis-
comes possible to replace this operation by one that shifts thesipation per event is likely to decrease. But devices will be
frame of reference (by incrementing a single pointer) rathersmaller and faster, and according to current scaling trends
than moving the data themselves. This is indeed the case inthe dissipation per unit area is likely to increase!
CAM-8, where, within a module, each layer is scanned seri-Thus, it may be preferable to optimize the event processor,
ally by a set of nested DO loops with each nesting level corre-where most of the dissipation lies, and multiplex it between
sponding to one spatial dimension. By adding an offset to themany memory sites. Accordingly, an earlier cellular automata
loop index of a given layer, one shifts by the same amount themachine designed at the MIT Laboratory for Computer Sci-
order of access of sites within that layer. The entire layer thenence (23) time-shared a single processor between hundreds of
will be accessed in the same order as if the data themselvesthousands of cells. The rule processor for CAM-PC was simply
had been shifted. Near the edges of a module, an addressa lookup table, consisting of a fast SRAM (static RAM); the
within the module may, after the offset, actually point to datacells were stored in a DRAM (dynamic RAM) chip. With a
outside the module. A lockstep data-passing arrangement en-minimum of glue logic to shuttle data between SRAM and
sures that data are brought in as required from adjacent mod-DRAM, and using the access pattern most natural to the
ules in a seamless fashion.DRAM memory, both SRAM and DRAM were used at full

To sum up, CAM-8 realizes a cellular automata architec-bandwidth. Since these are commodity chips, the combination
ture in which the following features (besides the rule tablewas very cost-effective; however, the cell interconnection pat-
itself) are programmable:tern was essentially given once and for all.

The CAM-8 design (37) allows one to seamlessly integrate
• The global geometry of the virtual mesh: the number ofan indefinite number of modules of this kind, each consisting

dimensions, the length along each dimension.of a SRAM processor shared between millions of DRAM cells,
• The number of lattice-gas signals involved at each site,and at the same time achieve, under software control, any

and the number of bits for each signal.desired cellular-automaton interconnection pattern, without
restricting access to just first neighbors. • The interconnection between sites and the interaction of
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data at a site. Interconnection and interaction may be
reassigned from step to step. This allows one to realize
time-dependent dynamics; it also allows one to synthe-
size complex interaction ‘‘macros’’ as sequences of sim-
pler interactions.

• The virtualization ratio, as mentioned above.

Machines like CAM-8 address an almost unexplored band of
the computational spectrum and rely on a different program-
ming approach than conventional computers. It is true that
on naturally fitting tasks they may yield a performance gain Figure 16. In a suitable two-dimensional magnetic material, serpen-
of two to three orders of magnitude; however, this gain is to tine domains of alternating magnetic orientation are spontaneously
a large extent offset by the economies of scale, in hardware formed (left). As an increasing external field is applied, domains
and software, enjoyed by the mass computer market. whose polarity oppose that of the field shrink (middle), until only

small cylindrical configurations, or bubbles, remain (right). (Adapted
from Ref. 40.)CONSERVATIVE LOGIC

All computers, including electronic and biological ones, run, and destroy. Is it possible to do general computation by mech-
of course, on physics. However, the essential point of compu- anisms that just steer bubbles (41)? A similar problem arises
tation is that the physics is segregated once and for all within in ordinary CMOS logic, where 1 and 0 are represented by
the logic primitives (say, gates and wires). Once one is given the presence or absence of charge in a capacitor. In conven-
the formal specifications of these primitives (such as the tional CMOS circuitry, a 1 is created by charging a capacitor
input/output table for the NAND gate, as in Fig. 2) and per- from a constant-voltage source (the power supply) via a resis-
haps some design constraints (time delay through a gate, tor, and it is destroyed by discharging the capacitor to ground,
speed of propagation along a wire, maximum number of in- always via a resistor. In either case, the charge transfer that
puts that an output can drive), one can forget about the phys- converts a 0 token into a 1 token or vice versa is accompanied
ics that is behind the logic: programming is an exercise in by energy dissipation. Thus, for the circuit to operate we must
virtual reality, not in physics (38). keep supplying high-grade energy and removing heat.

Precisely because logic isolates one from physics, the only A more subtle source of dissipation was pointed out by
physical resources that one can manage at the programming Landauer (42). In the AND gate, three of the four possible
level are those that are indirectly reflected in the logic; thus, input configurations, namely 00, 01, and 11, yield the same
though one cannot double the amount of physically available result. In this sense, the gate is not logically reversible (by
RAM by clever programming, one might still be able to contrast, the NOT element is reversible). But, at a micro-
achieve an equivalent result by running a data compression scopic level, physics is presumed to be strictly reversible (this
algorithm. applies both to classical and quantum physics). Thus, the de-

Here we shall discuss attempts to incorporate more aspects grees of freedom represented by the logic values can only be
of physics into the formal scheme of computation, giving the a partial description of the physics; to retain reversibility, for
programmer greater scope for physical resource management every ‘‘merge’’ of trajectories at the logic level there must be
from within the logic itself. One aim is to achieve a better a ‘‘split’’ of trajectories in some other degrees of freedom of
match between the logic of a program and the underlying the system [this is just another way of expressing the second
physics, and thus, ultimately, better performance. As a bonus, principle of thermodynamics (39)]. No matter how clever we
one gains a better understanding of the ‘‘information mechan- might be in circumventing other sources of energy dissipa-
ical’’ aspects of physics. tion, the fact remains that any erasure of information from

the logic degrees of freedom of the system must be matched
Three Sources of Dissipation by a proportional increase of entropy in the rest of the system.

Finally, in ordinary computers (just as in brains), signalsIn this section we address what are basically thermodynami-
are continually regenerated. Signal regeneration encompassescal aspects of computation (39).
of a number of housekeeping functions such as noise abate-A magnetic bubble is a small magnetic domain pointing
ment and signal amplification, and it is really a form of era-opposite to the surrounding material (see Fig. 16). In bubble
sure. What is thrown out in this case is not logic data (as inmemories (40), the two states (1 and 0) of a bit are repre-
clearing a register, when both 0 and 1 are forced to 0), butsented by the presence or absence of a bubble at a given place.
whatever deviations may have crept into the logic levels be-By suitable sequencing of external magnetic fields, a row of
cause of undesired disturbances; thus, anything that happensbubbles can be made to advance along a preassigned path
to be near a value of 1 (and so is presumably a slightly cor-and, in particular, to stream past a reading head much like
rupted version of a logic 1) is forced to 1, and anything nearmagnetic tape. Since bubbles do feel the influence of nearby
0 is forced to 0.bubbles, it is conceivable that one could use bubbles for logic

as well as for storage. Note that conventional logic elements
(see Fig. 2) do not preserve the number of 1s (for example, CONSERVATIVE-LOGIC GATES
NOT turns a 1 into a 0 and vice versa), and thus would have
to contain bubble ‘‘factories’’ and bubble ‘‘dumps.’’ On the The above dissipative processes—token conversion, entropy

balance, and signal regeneration—are ancillary to a comput-other hand, though easy to move, bubbles are hard to create
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er’s primary business, which is token interaction. However,
in conventional computers (just as in brains) these ancillary
functions are all bundled together in the mechanism of a logic
element. By unbundling them, conservative logic gives one the
freedom to handle them separately and to recombine them
(possibly at the circuit level rather than at the gate level) so
as to better satisfy specific constraints and fulfill specific opti-

a

a

a a

a

aa a

a
a

b

1 0 1 0 1

a+b

a+b

OR NOT FANOUT
mization goals.

Figure 18. Realization of the OR, NOT, and FANOUT functions byFor the sake of illustration we shall compare an ordinary
means of the Fredkin gate. Inputs are from the left, outputs to thelogic gate such as the NAND gate with a conservative-logic
right. The quantities (0s and 1s) that flow in from the top are con-gate such as the Fredkin gate, which, unlike commonly used
stants; those that flow out from the bottom are garbage, to be recy-gates, is invertible and token-conserving. In ordinary logic, it
cled. For instance, in the left panel, inputs a and b yield as a resultis assumed that fanout is available—that is, that the same
their logical OR, denoted by a � b; an input constant of 1 is needed

output signal can be fed as an input to more than one gate. for the Fredkin gate to operate as desired, and two garbage values,
With this understanding, as already mentioned, the NAND a � b and a, are produced.
gate (Fig. 17, left) is a universal logic primitive.

In conservative logic, signal fanout as such is not used (sig-
nal copies are made by means of gates, not by tapping a wire);

the entire energy of the output signals comes from the inputon the other hand, certain computations require constant in-
signals. (If one suspects that a signal may have become atten-puts in addition to the argument, and they produce unre-
uated or contaminated by noise, it will be one’s responsibilityquested (or ‘‘garbage’’) outputs in addition to the result. With
to pass it through a ‘‘restoring bath’’ of strength commensu-this understanding, also the Fredkin gate (Fig. 17, right) is
rate to the expected amount of degradation; it is only thereuniversal (43). In fact there are simple transliteration rules
that free energy will be drawn from the power supply.) Notefor constructing, from an arbitrary logic circuit, a functionally
that only ‘‘single strength’’ signals are provided at the gate’sequivalent conservative-logic circuit. Figure 18 shows how to
output; it is the circuit designer’s responsibility to insert addi-realize some common logic functions.
tional gates to perform fanout if and when copies are re-The NAND gate has two inputs and one output. As shown
quired. In this way, copies are paid for only when needed.in the bottom panel of Fig. 17, the entire energy of the incom-
And once one is done with a signal, in most cases conservativeing signals is ultimately dumped into the heat sink, no matter
logic provides the means to recycle the energy temporarilyhow much or how little noise might have managed to creep
invested in it (43) (Fig. 23). Logic recycling in reversible com-into the signals themselves. The energy of the output signal
putation was introduced by Bennett (44); more details can becomes from the power supply; when the output drives more
found in Ref. 43.than one load (in the figure, a fanout of 2 is indicated) it will

To summarize, conservative logic is a scheme for computa-draw from the power supply a proportionate amount of
tion based on discrete operations (events) on discrete objectsenergy.
(signals), and this scheme satisfies three independent conser-The Fredkin gate (Fig. 17, right) has three inputs and
vation laws, namely:three outputs. The first signal, u, always goes through un-

changed, while the other two come out either straight or
• Conservation of the Number of Threads. Each event hasswapped depending on whether u equals 1 or 0. Thus, here

as many output signals as input signals, and composition
of events matches outputs to inputs on a one-to-one ba-
sis; thus, a computation can be thought of as the time
evolution of a fixed collection of binary degrees of free-
dom, or threads. The state of each thread may change
from event to event, but the number of threads is invari-
ant.

• Conservation of the Number of Tokens. Let logic 1 and 0
be represented by two kinds of token (or, equivalently,
by the presence or absence of a token at a given place).
At each event, the tokens carried by the threads that
participate in that event may be reshuffled, but the num-
ber of tokens of each kind is invariant.

• Conservation of Information. Finally, conservative logic
is invertible; that is, each event establishes a one-to-one
correspondence between the collective state of its input
signals and that of its output signals. As a consequence,
the current global state of the system uniquely deter-
mines the system’s entire past as well as its future. If
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x1 y1

x2 y2

x2

x2

x1

y = x1x2 y1 = ux1 + ux2

y2 = ux1 + ux2
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our knowledge of the initial state of the system is ex-
pressed by a statistical distribution, then this distribu-Figure 17. Logic diagram (top) and energy flow (bottom) of the
tion will in general change as the computation pro-NAND gate and the Fredkin gate. The NAND gate is shown with a

fanout of 2. The solid arrows indicate the relevant interactions. gresses, but its entropy is invariant.
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A conservative-logic computation may be visualized as a piece
of spacetime tapestry, with threads running in time’s general
direction. At each point in spacetime the threads are liable
to cross or change color, but the flow of material, color, and
information obeys a strict accounting discipline much like
that imposed on an electric circuit by Kirchhoff ’s laws.

Replacing conventional logic elements with conservative-
logic ones eliminates two of the sources of dissipation listed
at the beginning of this section, namely, token creation/de-

p pq

pq

pq

pq

(b)(a)

q

c

x

cx

cx

c

struction (or token conversion) and logically irreversible oper-
ations; moreover, it relieves the individual gate of the respon- Figure 19. (a) The basic nonlinear effect of the billiard-ball scheme,

namely, the collision of two hard spheres of finite diameter. The la-sibility for signal regeneration, so that the latter can be
bels are logical expression whose values are the presence or absenceperformed when and where needed rather than at every step.
of a ball on the corresponding path; thus p is true if a ball is injectedAll this would be of no avail if conservative-logic elements
at upper left. The label pq indicates that a ball will emerge from, say,were not concretely realizable. In the next two sections we’ll
the upper output only if both input balls are present (‘‘p AND q’’). (b)illustrate two physical implementations of the conservative-
A billiard-ball realization of the switch gate (the Fredkin gate may belogic scheme, and at the end we’ll discuss some of the costs of
built out of four of these). The thick lines indicate mirrors; the circles

this approach. indicate snapshots of balls taken at collision instants. If there is no
ball at the ‘‘control input’’ c, a ball at x will go through undeflected

A Billiard-Ball Computer and come out at cx; if a ball is present at c, a ball at x will collide
with it, the two balls will exchange roles, and eventually a ball willAs we have mentioned, the energetics of magnetic bubbles
come out at cx.puts a premium on circuit design principles that help con-

serve bubbles. Ideally, logic interaction of tokens should re-
duce to mere course deflection. A general way to achieve this or balls. This scheme, introduced by Fredkin and the author
goal was indicated by the well-known billiard-ball model of 30 years ago (46), is the conceptual forefather of a family of
computation (43). [There were other computational schemes, technological approaches that has started blossoming in the
invented merely to conserve tokens (45) which do not share last few years in connection with low-power computing strate-
conservative logic’s additional concern for thread and en- gies (see subsection entitled ‘‘Adiabatic Charge Recycling’’).
tropy conservation.] As we’ve seen, conservative logic is thread-conserving.

In the billiard-ball model the primitives of conservative Thus, a circuit can be drawn as a collection of threads run-
logic are realized by elastic collisions involving balls and fixed ning parallel to one another (a thread can be visualized as a
reflectors. Note that the ‘‘rules of the game’’ are identical to shift register), with Fredkin gates conditionally swapping
those of the idealized physics that underlies the classical the- data between pairs of threads, as in Fig. 20.
ory of ideal gases (where the balls represent gas molecules In turn, a Fredkin gate is realized as a two-pole, double-
and the reflectors represent the container’s walls). Quite liter- throw switch. With complementary metal oxide semiconduc-
ally, just by giving the container a suitable shape (which cor- tor (CMOS) technology, it is possible to make almost ideal
responds to the computer’s hardware) and giving the balls switches that require no power to hold the switch on or off
suitable initial conditions (which correspond to the software— (the control electrode responds like a capacitor C in series
program and input data), one can carry out any specified com- with a small resistor Rc); the switch itself has a virtually in-
putation. finite ‘‘off ’’ resistance and a small ‘‘on’’ resistance Rs. In the

In this scheme, the nonlinear effect which provides the case we are going to discuss, a control electrode is always
computing capabilities is simply the collisions of two balls, as driven by a switch, so that the only relevant resistance is the
indicated in Fig. 19(a). Note that a ball will emerge at the series combination R � Rc � Rs.
upper output, labeled pq, if balls are present at both inputs For a moment we’ll ignore this resistance (R � 0), but we
(‘‘p AND q’’), while one will appear at the output below it will explicitly represent the capacitor C. To avoid an infinite
(pq) if the ball on the upper input is absent (‘‘NOT p AND inrush current a capacitor must be charged and discharged
q’’). The role of wires is served by hard mirrors, which ‘‘focus’’ via an inductor L. With these provisions, circuitry like that of
balls back into the fray. Figure 19(b) shows a switch gate (in- Fig. 20 will look like Fig. 21. The starred capacitors are those
vented independently by Ed Fredkin and Richard Feynman). associated with the switches’ control electrodes; the other,
One Fredkin gate can be constructed out of four switch gates matching capacitors have been added in order to equalize de-
and a few additional mirrors (43).

Thus, general computation can be achieved without creat-
ing or destroying balls; all one needs is conditional permuta-
tions of balls, as prescribed by the Fredkin gate (Fig. 18). In
turn, the required permutations may be synthesized from
simple two-particle interactions of the kind contemplated in
elementary mechanics. See the end of the next section for a
critique.

Figure 20. Here a conservative-logic circuit is viewed as a collectionA Charge-Permuting Computer
of shift registers running parallel to one another. Through a Fredkin

Here we present a realization of conservative-logic in which gate, the datum in one control line determines whether the data in
two controlled lines are swapped or go straight through.the tokens to be processed are unit charges instead of bubbles
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2. Because of unavoidable friction, balls will gradually
slow down.

3. When a ball is hit hard, some of the impact energy is
spilled onto the ball’s internal oscillation modes. This
has two consequences: (a) The ball will exit the collision
with less than the nominal unit speed, and (b) the next
collision will be disturbed by this internal oscillation in
a practically unpredictable way. (This source of error
could in principle be predicted and corrected; but to do

A AB B0 1 2 0 1

so would require additional computing machinery of the
same kind as that which we are trying to correct, andFigure 21. The threads of Fig. 20 are here realized as transmission
the latter would have to be corrected in turn.)lines with occasional crossovers. Active stages (A to B) alternate with

passive ones (B to A). Logic is done by conditional crossovers (Fredkin
gates), and takes place at active stages, while signal routing is done Analogous considerations apply to the charge-permuting
by hard-wired crossovers between threads, and takes place at passive scheme, where, for instance, friction is replaced by the ohmic
stages. The flow of charges across a stage is timed by semaphore loss when a current encounters a nonzero resistance R.
switches, not indicated here but detailed in Fig. 22. All three error sources mandate the occasional insertion of

a signal-regeneration stage, with attendant energy require-
ments. The larger the error, the more often one will have tolays on all threads. What we have is a collection of transmis-
compensate for it by regeneration. Error source 1 can be re-sion lines with occasional crossovers between lines—some
duced by better control of fabrication tolerances and environ-conditional (logic) and some hard-wired (wiring). The flow of
mental disturbances. As a rule, sources 2 and 3 can be re-charges across a stage is timed by semaphore switches, de-
duced by just operating the entire computer more slowlytailed in Fig. 22. These switches are activated so that the
(typically, friction is proportional to the square of velocity andFredkin-gate data are moved across inductors 0 first, while
ohmic loss to the square of the current). From a more detailedthe control charge remains at A; once the data have been
analysis, one can generally conclude the following:transferred, then the control charge itself is transferred

across inductor 1.
• There is no fixed amount of energy dictated by physicsIn a lumped transmission line, like these, charges will tend

that one must spend for a given computational task.to spread as they travel. Since we want to keep the charges
Rather, if one uses a conservative-logic scheme, the samelocalized, as they represent discrete logic tokens, additional
task can be accomplished with less and less overall en-switches will be added to regulate charge movement; unlike
ergy expenditure, at the cost of having to wait a propor-the Fredkin-gate switches, these will be controlled from the
tionally longer time for the result.outside and operated according to a fixed schedule in a data-

• A conservative-logic scheme requires more circuitry thanblind way—like a traffic light. This arrangement is detailed
a conventional scheme. Intuitively, one has to comple-in Fig. 22.
ment the computational infrastructure with a whole re-Both the billiard-ball scheme and the charge-permuting
cycling infrastructure. Even though the latter may helpscheme, as discussed so far, are somewhat idealized, and a
one save on operating costs (energy), it requires an addi-brief critique is in order. One can identify three basic sources
tional investment in capital (gates and wires) and realof error:
estate (chip area). The overall benefit depends on the rel-
ative cost of these resources.1. Because of unavoidable fabrication and operating errors

(mirror positioning, initial ball position and velocity,
Under certain reasonable assumptions (such as bounded den-thermal noise), the overall trajectory will gradually
sity of waste heat flow), it can be proved that the benefits ofdrift away from the nominal course.
conservative/reversible recycling grow faster (asymptotically,
by a polynomial factor in the problem size) than its costs
(46a).

Adiabatic Charge Recycling

There are a growing number of experimental circuit designs
that apply conservative-logic concepts to the goal of lowering

0 01 12 23 3

the power needs of computers (47–49), and they can all be
Figure 22. In this LC shift register, discrete charges representing usefully viewed as variants of the charge-permuting scheme
bits hop from capacitor to capacitor through inductors. Charge move- of the section entitled ‘‘A Charge-Permuting Computer.’’ Most
ment is regulated by a four-phase switching sequence. Starting the of these designs are not concerned with the reversibility as-
cycle when all switches are open and charges are at rest in the capaci- pect of conservative logic; in fact, today the energy dissipation
tors, (a) close switches 0 and 2. Current builds up in the inductors.

due to logic irreversibility is still many orders of magnitude(b) When the capacitors are discharged and current is at peak, close
less that that due to what we have called token conversion.1 and open 0, isolating the capacitors. Now current recirculates in

While near-ideal capacitors are easy to incorporate on athe inductors. (c) Open switch 2 and close 3. Energy flows rightwards
silicon chip, inductors tend to be large and lossy. Instead offrom inductors into capacitors. (d) When capacitors are fully charged

and current is zero, open 1 and 3, completing the cycle. using an inductor to move a charge across a large voltage gap
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with little dissipation, adiabatic charge recycling achieves a functions whose evaluation could be speeded up by quantum
methods. The first functions found in this way were of purelysimilar result by (1) using a ladder of graded voltage levels

and (2) only transferring charges (through the switch resis- academic interest, but they were followed by Shor’s result on
factoring, which is a problem of great practical interest intance R) between adjacent levels. Intuitively, one may think

of the power supply as giant LC ‘‘flywheel’’ external to the cryptography. At the same time, the advantage of quantum
methods for secure communication were being explored bychip, whose voltage oscillates on a regular cycle. To bring a

charge from a point P1 at voltage V1 to a point P2 at voltage Bennett, Brassard, and others. Quantum teleportation is a
theme of much appeal. Quantum logic primitives and circuitV2, one waits until the flywheel reaches a value close to V1,

connects P1 to it by a switch, and transfers the charge to the design techniques have now reached a certain degree of matu-
rity (53). See Ref. 54 for an introductory article, Ref. 55 forpower supply. When the flywheel reaches a voltage close to

V2, the charge is transferred in a similar way to P2. Thus, by an overall review and references, and Ref. 56 for recent pro-
ceedings.means of these ‘‘multiplexing’’ switches, a large number of

small on-chip inductors is replaced by a single, large off-chip Today the field is still in rapid expansion; and experimen-
tal realizations of rudimentary quantum computers, involvinginductor.
a few bits and a few gates, abound. One important concern is
error correction, which in a quantum context is much more
taxing than in ordinary digital logic. Another concern is theQUANTUM COMPUTATION
investment in ancillary physical resources (fabrication toler-
ances, shielding, energy dissipation, etc.) that are needed toAs we’ve seen, there are aspects of physics, such as reversibil-

ity, that are relevant to computation and can be brought un- retain quantum coherence over an increasing number of bits
and clock cycles: How fast does this investment scale withder better control by incorporating them directly into the com-

putation scheme. Quantum computation represents an the size of the quantum system? Even as quantum mechanics
empowers computation, tasks of a computational nature helpimportant further step in this direction. Quantum mechanics

is of course used extensively in the design of semiconductor us probe the power, the limits, and the very meaning of quan-
tum mechanics.devices and communication systems. However, until recently

the most peculiar, nonclassical aspect of quantum mechanics
were hidden within the devices and didn’t affect the logic

CONCLUSIONSvariables that are the object of a computation. In quantum
computation the collection of these variables is encoded in a

To protoneolithic man, farming must have seemed a marginalquantum state, and a computation step is the result of a uni-
and pretty unconventional way to make a living compared totary evolution operator acting on this state. Effects such as
mammoth hunting. Many a computing scheme that today isquantum superposition and interference of different computa-
viewed as unconventional may well be so because its timetional states, entanglement between different parts of the sys-
hasn’t come yet—or is already gone. Some will challenge ourtem, and so on, are part and parcel of the computation process
ingenuity; at the very least, they are all part of our intellec-itself and can be directly controlled and exploited by a
tual history.program.
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NONGAUSSIAN PROCESSES. See STATISTICAL SIGNAL

PROCESSING, HIGHER ORDER TOOLS.
NONLINEAR CIRCUITS. See TRANSLINEAR CIRCUITS.


