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The task of a processor in a computer system is to repeatedly
execute a cycle consisting of fetching the instruction from
memory, decoding it, and executing it. The processor must
constantly perform memory read operations on its external
bus in order to fetch (A) a piece of data or the next instruction
from the memory location pointed to by the program counter.
Since the processor typically runs at a much faster speed than
the external bus and memory, it stalls when performing a
read operation from memory. The cache memory has a much
faster access time than the traditional memory. Virtually all
advanced processors include a high-speed cache on the chip
of the processor itself. The cache memory is located between
the central processing unit (CPU) and the main memory. An
important use of the cache memory is to hold the data that
are most likely to be accessed again. The processor always
attempts to access data in the cache memory before it ac-
cesses the main memory. When the processor requests an in-
struction from a particular memory address, the cache per-
forms a very fast lookup in its directory to determine if the
requested instruction is already in the cache. If the requested
instruction is found in the cache memory, it is passed to the
processor directly. Otherwise, the processor fetches a data
block containing the requested instruction from the main
memory. In the meantime, the fetched block is also put in the
cache. Since the bus and memory are very slow, the data
block fetched from memory is relatively larger than the re-
quested instruction itself, under the assumption that the in-
formation in the data block will be accessed again. This block
of information is referred to as a cache block, or line. The
cache memory is very effective in reducing memory access la-
tency in the computer.
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cache lookup latency in the memory accesses for the missed
data.

For the memory write operations, there are two different
ways to handle them: write-through or write-back policy.
These two policies are also referred to as the store-through
and store-in policies. For the write-through cache, if the data
to be written to the memory are resident in the cache, the
data are updated in the cache. In addition, the data are also
updated in the main memory by performing a memory write
bus transation. In other words, the write-through policy al-
ways ensures that the data in the cache and memory are con-
sistent. For the write-back cache, the written data are up-
dated in the cache immediately. The update of data in the
memory is delayed until a cache flush instruction is per-
formed or the data in the corresponding cache block are being
chosen as a replacement victim.
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Research and development of systems with multiple pro-
Figure 1. Typical memory hierarchy of CPU, L1 cache, L2 cache, cessors have shown them to be able to deliver high computing
main memory, and secondary memory. power to today’s typical applications. These systems consist

of two basic types: distributed-memory multicomputer and
shared-memory multiprocessor. In distributed-memory sys-
tems, multiple independent processing nodes with local mem-It is possible to include another cache outside the processor
ory are connected by a general interconnection network. The(off-chip cache) that intercepts all memory requests and per-
communications between processes on different processingforms a lookup. If the request can be serviced from the level
nodes involve explicit send/receive operations. Programmers2 (L2) cache, the requested information is then returned to the must take care of data distribution across different nodes and

processor. The L2 cache can be fast enough to match the pro- explicitly manage communications for processes in different
cessor’s core speed. Thus, the delivery of information from processing nodes. The synchronization of processes executing
the L2 cache is substantially faster than an access to main in parallel is implicitly embedded in the send/receive opera-
memory. Figure 1 illustrates a bus-based system with a two- tions performed in different nodes. Most programmers find
level cache structure. The level 1 (L1) cache, the one closest to this programming model more difficult than the programming
the processor, can be small enough to match the clock cycle of model with single address space used in uniprocessor
the processor, while the higher-level caches (e.g., the L2 cache) systems.
can be large enough to hold most of the data accessed by the Shared-memory multiprocessors have become very popular
processor. Under this multilevel cache memory architecture, mainly because they offer an identical programming model
the processor will first try to get the data from the L1 cache. as uniprocessor systems. In shared-memory systems, multiple
If the requested data are not present in the L1 cache, the re- processors are also connected by an interconnection network.
quest is passed on to the L2 cache. If the data are present in The global physical memory is accessible to all processors. In
the L2 cache, the data will be supplied to the L1 cache, saved other words, any processor in a shared-memory system can
with a copy, and then passed on to the processor. Note that directly access any location in the global memory address
all data in the level 1 cache are always in the level 2 cache. space using read (load) or write (store) operations. As in uni-
The level 2 cache is said to have the multilevel inclusion prop- processor systems, the memory is decomposed into a number
erty. The higher-level cache (e.g., level 2) usually has signifi- of equally sized blocks. A block is the basic unit of data trans-

ferred in the systems. In small-scale shared memory multi-cantly more space than the lower level cache (e.g., level 1).
processors, the global physical memory is made tightly cou-There are two different types of the L2 cache: look-aside
pled, called uniform memory access (UMA) model shown inand look-through. The look-aside cache (B) sits off to the side
Fig. 2, where each node has a uniform memory access latency.of the processor bus and watches for memory accesses from

the processor. When it sees one, it performs a lookup in its
tag to determine if the requested information is currently res-
ident in the cache. If it is, the cache instructs the main mem-
ory not to respond and supplies the requested information to
the processor. Since both the cache and main memory respond
to memory accesses concurrently, system bus is less available
for the memory accesses from other processors (in a multipro-
cessor environment) or intelligent bus masters. Unlike the
look-aside cache, the look-through cache (C) sits in between
the processor and the system bus. The look-through cache at-
tempts to fulfill all memory accesses from its cache. If the
lookup results in a hit, the system bus isn’t needed at all. This
leaves the system bus more available for other processors or
intelligent bus masters. If the lookup is a miss, the L2 cache
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then uses the system bus to fetch the requested block from
main memory. Note that the look-through cache introduces a Figure 2. UMA shared memory model.
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problems. If the data have been modified at the L1 cache, and
not modified in the L2 cache or main memory, the disk con-
troller will read from the memory. Thus, special care must be
taken to ensure that the CPU and the disk controller will
obtain the most recently updated data. In order to keep track
of different copies of a cache block at different times, a state
is assigned to a block. A cache coherence protocol is designed
to check these states of a block at different levels and define
an appropriate action to maintain coherence. The most com-
monly used protocol is MESI, which stands for modified, ex-
clusive, shared, and invalid—corresponding to the names of
the four states of cache lines. Variants of the MESI cache
memory protocol is used by PowerPC, Intel Pentium, and
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MIPS R4400 processors. The meanings of these four states
Figure 3. NUMA shared memory model. are described as follows:

• Modified. The cache line has been modified, may be dif-The UMA multiprocessor systems are also called symmetric
ferent from main memory, and is available only in thismultiprocessor (SMP). Typically, a bus interconnect is used in
cache.SMP. Examples of commercial SMPs are four-processor Pen-

• Exclusive. The cache line is the same as that in maintium Pro-based quad pack, Sun Ultrasparc-based Enterprise
memory and is not present in any other cache.server, SGI Power series, SGI Challenge system, and SGI

Power Challenge system. Although the cost of adding a pro- • Shared. The cache line is the same as that in main mem-
cessor to a bus is small, aggregate communication bandwidth ory and may be present in another cache.
on the bus is fixed. Dividing this fixed bandwidth among the • Invalid. The cache line does not contain valid data.
large number of processors limits the practical scalability of
the bus-based SMP. Alternatively, a scalable interconnect can The detailed cache coherence operation in a multilevel
be used, which provides more bandwidth as more processors cache is given in Refs. 2 and 3. Here we describe the events
are added. The global physical memory can also be physically briefly. When the CPU generates a read miss, the requested
distributed among the processors, called a nonuniform mem- data will be searched at the L2 cache. If the requested data
ory access (NUMA) model as shown in Fig. 3, where the mem- are not present, it is retrieved from the main memory and
ory access latency is dependent on the physical location of stored first in the L2 cache and then in the L1 cache. The state
memory. of the lines in the L1 and L2 caches becomes shared state.

In both shared memory models, communications between Subsequent reads into the shared line do not result in any
processes in different nodes employ read and write opera- cache action. A write to the shared line in the L1 cache causes
tions. Programmers can readily run most of their programs its content to be updated and its state to be changed to the
written for uniprocessor systems. The programming ease and exclusive state. Also the write operation is written through to
portability reduce the parallel program development costs sig- the L2 cache, and the state of the L2 line is changed to exclu-
nificantly. However, since the communication speed of the in- sive. A subsequent write to the exclusive line in the L1 cache
terconnection networks cannot match that of processors, the updates the corresponding L1 and L2 cache lines and changes
overall system performance does not improve comparably. In- their state to modified. For any further writes, the L1 line
troducing local caches will greatly improve system perfor- remains in the modified state and there is no action on the
mance, but cache coherence must be maintained when many L2 cache. This is known as a write-once policy.
copies of data are allowed to coexist in different nodes at the When a read request to an L2 cache line in the modified
same time (1). The NUMA machines with coherent caches are state is issued from a system bus, the L2 cache causes the
called CC-NUMA systems. system bus to back off and passes the request to the CPU.

The CPU performs a write-back to update main memory and
Cache Coherence

the L2 cache line. The state of the corresponding lines in the
L1 and L2 caches is changed to shared. The L2 cache then re-With a multilevel cache structure shown in Fig. 1, the same

data may appear in different levels of caches and main mem- leases the bus to perform its read operation. If the system bus
makes a write request to the L2 cache line in the modifiedory. This disk controller in the figure can perform read and

write operations on the main memory directly without the state, then again the L2 cache temporarily blocks the action.
The L2 cache passes the write request to the L1 cache. TheCPU intervention. The disk controller is said to have the di-

rect memory access (DMA) capability. Assume that a program L1 cache evicts the modified line to main memory and declares
the affected line as invalid. Then the L2 releases the bus,stored in the hard disk has been loaded in the main memory

and that the L1 and L2 caches hold a consistent copy of some allowing it to complete the write operation.
The situation becomes more complicated in a multipro-data blocks of the program. Now, the program is modified by

a user and is again loaded into the main memory through a cessor system, where each processor contains its own private
cache, possibly multilevel. A copy of data may exist simulta-DMA transfer. Since the CPU is unaware of any change made

by the disk controller, the data among the caches and main neously in caches of several processors. Thus, various pro-
cessors can all execute on the same data concurrently. How-memory will be inconsistent. Similarly, output from the main

memory to hard disk through DMA transfer also can cause ever, we must make sure that an update on data in one cache
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is immediately reflected in all other caches containing the
same data. The consistency of the copies of the same data
must be maintained in order to make programs execute cor-
rectly.

For example, assume that a shared variable X in the main
memory is set to 12 initially. At time t1, processor P0 reads
variable X. P0 fetches X from the main memory and places it
in its cache. At time t2, processor P1 reads variable X. P1 also
fetches X from the main memory and places it in its cache. At
time t3, P0 writes X with a new value 16. The variable X will
have values 12, 16, and 16 in P0’s cache, P1’s cache, and main
memory, respectively, after time t3 if there is not any cache
coherence mechanism enforced. Various protocols for solving
the cache coherence problem have been suggested and are ad-
dressed in subsequent sections.

Broadcast-Based Protocols

Several cache coherence schemes have been proposed in the
literature (4) to solve the cache consistency problem in multi-
processor systems. The most popular cache protocols used in
the bus-based systems are the snoopy protocols, mainly be-
cause of their simplicity and low cost of implementation. The
bus is a single set of wires connecting several devices, each of
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which can observe every bus transaction simultaneously. This
Figure 4. Performance comparison of various cache coherency proto-broadcasting nature of the bus allows each cache controller to
cols assuming the probability that a selected private block for replace-observe or ‘‘snoop’’ all memory references on the shared bus.
ment is modified is 0.4 and that probability of a write hit on a cleanAn appropriate action is taken to maintain the cache coher-
private block is 0.1.

ence by each cache controller when a bus transaction involves
a memory block, of which it has a copy in its cache. Extra
state information of a shared data block is added to the asso- The examples of update-based protocols include the DEC
ciated cache and memory blocks for facilitating the efficient Firefly (10) and Dragon (11) protocols.
cache coherence operations. Read hits can always be per- The performance comparison of various cache coherency
formed locally in the cache and do not result in any transac- protocols of bus-based multiprocessors has been analyzed un-
tion on the shared bus. When a processor encounters a read der various system parameters by queuing network models in
miss, the requested data will be provided by the main mem- Ref. 12. The results are illustrated in Fig. 4, where the system
ory or by the another processor that owns the data exclu- power is defined as the product of the processor utilization
sively. If a cache observes a write to the data that it has a and the number of processors in the system. For the assumed
copy of, the cache coherence protocol will either invalidate or parameters, it shows that Dragon and Firefly perform better
update the cached copy, depending on the type of protocol than the other protocols. The broadcasting of the new data
used. When a dirty piece of data in the cache is replaced, it provides a higher hit ratio for the shared blocks. However, the
has to be written back to the main memory. Otherwise, no relative performance of the invalidate and update protocols
action is taken. depend heavily on the applicatons. It has been shown that an

Write Invalidate Protocol. In this protocol, a processor is al- invalidation protocol usually performs better than an update
lowed to change its local copy only after all copies in other protocol.
caches are invalidated. The invalidation process starts with Besides buses, the point-to-point connected rings with
an invalidation signal sent over the bus by the writing pro- high-speed broadcast capability are also used as the broad-
cessor. All caches obtain the invalidation message by snoop- cast media for snoopy protocols. Each cache connected to the
ing on the bus and check to see if they have a copy of the data ring can observe all the memory references circulated on the
block containing the referenced word; if so, the cache block ring and can make appropriate responses. The ring-based sys-
must be invalidated. This scheme allows multiple readers but tems can connect more processors due to the point-to-point
only a single writer. The examples of invalidation-based pro- nature of communication. Examples of ring-based systems are
tocols are Goodman’s write-once (5), the Write-Through (6), Express Ring (13) and KSR1 (14).
the Berkeley (7), the Illinois (8), the Synapse system (9), and The main problem with the broadcast-based protocols is
the ones used in Sequent Symmetry and Alliant FX multipro- that they rely on a bus or ring that becomes saturated when
cessors. a large number of requests are generated by the processors

Write Update Protocol. Instead of invalidating all copies of attached to the bus. Thus, the physical limitation of a bus or
the shared blocks, the writing processor broadcasts the new ring is the number of processors that can be connected to it
value of the data over the bus. All copies are then updated before it becomes saturated. A scalable system is the one
with the new value. The memory copy is also updated if write- whose performance increases linearly with the number of pro-
through caches are used. For write-back caches, the memory cessors in the system. Obviously, the broadcast-based systems

do not scale well. The single bus or ring becomes the bottle-copy is updated later when the cache block is being replaced.
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neck of the system. Multiple bus systems can increase the Such a high degree of sharing leads to thrashing in the lim-
ited directory scheme. To solve the pointer overflow problem,scalibility to a limited extent. Hierarchical multiple-level

snoopy buses and rings have been used to design scalable sys- Chaiken et al. (15) proposed a scheme, called the LimitLESS
directory scheme, where the directory size is limited by stor-tems. Examples are Encore Multi, KSR1, and recent

SunE10000 systems. ing a limited number of pointers in hardware, but the excep-
tional cases that lead to thrashing due to limited directory
space are handled by the software. The efficiency of theDirectory-Based Protocols
LimitLESS protocol depends on the rapid trap-handling and

In order to make shared memory multiprocessors scalable context-switching abilities of the processors.
with respect to a large number of processors, point-to-point One way to reduce the storage overhead in the directory
and switching networks are normally employed. Since the scheme is to use linked lists instead of a sparsely used bit
broadcast procedure generates much network traffic on the map to keep track of multiple copies of data. In addition to
point-to-point networks, non-broadcast-based protocols must the state information, some pointers associated to each cache
be developed to maintain cache coherence on shared memory block are also needed to form a linked list for tracking the
multiprocessors. Without broadcast, the protocols must know processors caching the corresponding data. The IEEE Scal-
which caches should be notified for maintaining consistency able Coherent Interface (SCI) standard project (16) and Stan-
when a shared piece of data is modified. A logical list of ford’s Distributed-Directory protocol (17) apply this approach
caches holding the same shared piece of data must be main- to implement a scalable cache coherence protocol. In this ap-
tained so that write notifications are sent only to the caches proach the storage overhead is minimal, but maintaining the
that have a copy of the data. The list of caches holding a copy linked list is complex and time-consuming. The protocol is
of a piece of data is stored in what is known as a ‘‘directory.’’ oblivious of the underlying interconnection network. There-
We will refer to the cache coherency information stored in the fore, a request may be forwarded to a distant node, although
memory blocks as memory directory and will refer to that it could have been satisfied by a neighboring node. The major
stored in the cache blocks as cache tag. The directory may be disadvantage is the sequential nature of the invalidation pro-
centralized or distributed, depending on the protocols used. cess for write misses. The scalable tree protocol (STP) (18)
Bit map and linked list are two basic data structures used for and the SCI tree extensions (19,20) were proposed to reduce
implementing the directory. Details of these directory cache the latency of write misses. The low latency of read misses is
coherence protocols are described in the next section, and we sacrificed in order to construct a balanced tree connecting all
give an overview of these protocols below. the shared copies of a cache block. The large number of mes-

For each memory block in the system, the full-map direc- sages generated for read misses, however, makes it prohibi-
tory scheme maintains a bit map that contains the informa- tive for an application with a smaller degree of data sharing.
tion about which node has a shared copy of the data in the To take advantages of both the limited bit-map and tree-
memory block. A minimal number of state bits are stored in based linked list protocols, a hybrid cache coherence scheme
each cache block. When a read or write miss occurs, a request was proposed in Ref. 21. The hybrid scheme aims at reducing
is sent to the home memory module as determined by the the latency of both read and write misses. The main idea is
address of the requested data. Upon receiving the read-miss to utilize the sharing information available from the limited
request, the home memory module sends a reply along with number of pointers in the directory and construct an appro-
the data to the requesting node and sets the corresponding priate number of trees that may not be balanced.
bit in the directory. Thus, it takes two messages to serve a The rest of this article is organized as follows. In the sec-
read miss request. Upon receiving a write-miss request, the tion entitled ‘‘Existing Directory-Based Schemes,’’ existing di-
home memory module first sends invalidation messages to all rectory schemes are discussed. Performance comparisons be-
processors caching the data and waits for acknowledgments. tween different protocols are given in the section entitled
The number of invalidation messages is thus proportional to ‘‘Performance Evaluation,’’ by using an execution-driven sim-
the number of processors that have cached the particular data ulation. Finally, concluding remarks are presented in the sec-
block. Also, the storage overhead of the bit maps necessary to tion entitled ‘‘Conclusion.’’
maintain the directory is large, and becomes prohibitive as
the size of the system grows. Several commercial multipro-
cessors based on a full-map directory cache coherence protocol EXISTING DIRECTORY-BASED SCHEMES
are currently available in the market. Examples include SGI
Origin, HP V2200, and Sequent NUMAQ machines. In our discussion of the coherence protocols, we use the fol-

To keep the directory size manageable, limited cache co- lowing naming conventions for various processors and memo-
herency protocols have been proposed in the literature that ries involved in any given transaction. A requesting processor,
limit the number of pointers in the directory. In such cases, a or simply requester, is the processor that originates a given
special action must be taken for the pointer overflow problem request for a given data stored in a memory block, while a
when the number of processors needing the data block is more home processor/memory module, or simply home, is the
than the number of pointers available in the directory. Typi- processor/memory module that contains the requested data
cally, a broadcast mechanism or a randomly replacement pol- and its associated directory. The owner of a memory block is
icy is used to handle the pointer overflow problem. The broad- nominally the home processor. However, if the data of a mem-
cast mechanism may cause unnecessary invalidation ory block are present in the dirty state in a remote processor’s
messages. The random replacement policy may lead to serious cache, then the remote processor is the owner. The owner pro-
degradation in performance for some applications which re- cessor has an exclusive right to read a data from and write a

data to any location in the memory block.quire that the data be read by a large number of processors.
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Existing directory schemes fall into two categories, namely to read and write the block. If the cache block is in the valid
state, some other processors may also have a cached copy ofbit-map and linked list protocols. A nomenclature, DiriX, was

introduced in Ref. 22 for bit-map coherence protocols. The in- the data at the same time.
On a read miss, the requester first sends a read-miss mes-dex i in DiriX represents the number of pointers in the direc-

tory of a memory block for recording which processors have sage to the home memory module. If the corresponding mem-
ory block is in the valid state, the memory module suppliescached the data in the memory block, and X is either B or NB

depending on whether or not a broadcast is issued when the the data to the requester directly. The presence bit associated
with the requester is then set. Figure 5(a) illustrates detailspointers overflow and a write occurs. In Ref. 23, a generalized

notation DiriHXSY,A was introduced for clearly articulating the of the state transition and messages transferred for serving a
read miss initiated from processor P2. If the dirty bit is set,differences between various implementations using hardware

and software extensions. The subscript X of DiriHXSY,A denotes the memory module sends a message to the owner of the
shared block. The owner then writes the data back to thethe number of pointers recorded in hardware when software

extension exists, otherwise, it is B or NB like the X in nota- home memory and changes the state of the corresponding
cache block to valid. Upon receiving the writeback data, thetion Diri X. If a software-extension exists, Y represents B or

NB and A represents how software handles the acknowledg- home memory module supplies the data to the requester and
sets the memory block in the valid state. Thus, read missesments.

Both the notations given above are only suitable for bit- require two messages if the data are valid in the memory
block and four messages if the data are dirty.map protocols. We introduce a new notation DiriTreek for the

linked list protocols that will cover all the existing linked list On a write miss, the requester sends a write-miss message
to the home memory module in order to get permission beforeprotocols. The subscript i in Diri represents the number of

pointers in the directory, and subscript k in Treek is the fan- the write can be performed. In the case that the memory block
receiving the write-miss message is in the valid state, theout of the tree. For example, Stanford’s singly linked list pro-

tocol (17) and SCI (16,24) belong to Dir1Tree1 because they memory module invalidates all the valid copies except the re-
quester in the system and waits for the acknowledgments.have a single pointer in the directory pointing to the head of

a list. Note that DiriTreek does not distinguish the difference After receiving all the acknowledgments, the home memory
module supplies the data to the requester and changes thebetween singly linked list protocol (i.e., with only forward

pointer) and double linked list protocol (i.e., with both for- state of the memory block to dirty. Figure 5(b) illustrates de-
tails of the state transition and messages transferred for serv-ward and backward pointers). STP (18) belongs to Dir2Treek

because it maintains a k-ary tree and keeps pointers to the ing a write miss initiated from processor P3. In the case that
the memory block is dirty, the memory module informs theroot of the tree and the latest node joining the tree. Similarly,

the STEM tree extension to SCI (19) belongs to Dir1Tree2 be- owner of the data to write the dirty data back to the memory
and invalidate itself. After receiving the writeback data, thecause it maintains a balanced binary tree and keeps one

pointer to the latest node joining the tree. Our tree-based pro- memory module sends the requested data to the requester
and keeps the memory block to the dirty state. In both cases,tocol (21) is a DiriTreek scheme with only forward pointers.
the requester changes the state of the cache block to dirty
after it receives the requested data from home memory mod-Bit-Map Schemes
ule. The time taken for invalidation is proportional to the

The schemes based on bit maps employ a centralized direc- number of valid copies which can be large for applications
tory containing pointers to the caches holding a copy of the with a large degree of sharing.
shared data. The centralized directory is only kept in the cor- When a cache block is selected to be replaced, no action is
responding memory block as a field along with the data. Only taken if the cache block is in the invalid or valid state. How-
a minimal number of state bits are used for maintaining ever, if the cache block is in the dirty state, it has to write the
cache consistency in each cache block. All the read and write data back to the home memory. After receiving the writeback
misses are handled by the corresponding directory controller data, the memory block is then set to the valid state. In both
in a centralized manner. cases, the state of the cache block is then set to invalid. Notice

that it is possible that an invalidation message could be sent
Full-Map (DirnNB). In the full-map directory protocol pro- to a processor which does not cache the data because of the re-

posed by Censier and Feautrier (25), the directory of a mem- placement.
ory block contains n presence bits and a state bit in an n-node The advantage of this scheme lies in that only the pro-
system. Every processor is associated with a presence bit. cessors that have or had cached the data receive the invalida-
When a presence bit is set, it means that the associated pro- tion messages. Another advantage is that there is no replace-
cessor has a copy of the data in its cache. The state bit en- ment overhead if the replaced cache block is in valid or
codes two states of the memory block, namely, valid and dirty. invalid state. One disadvantage of the full-map protocol is its
The memory block is dirty when the state bit is set; otherwise, centralized behavior for memory references. It is possible that
it is in the valid state. When the memory block is in the dirty the controller of a memory module containing many widely
state, one and only one validation bit is set and the associated shared data blocks becomes a bottleneck because all the read/
processor has a cache block storing the corresponding data in write misses go through it. Another disadvantage is that the
the dirty state. For each cache block, two state bits are used directory memory requirement is not scalable. The amount of
to encode three states of cache blocks, namely, invalid, valid, the directory memory in the n-node system is n[B(n 	 1) 	
and dirty. If a processor has a cache block in the dirty state, 2C] bits, where B and C are the numbers of memory blocks

and cache blocks in each node, respectively.then it is assured of having the only copy and has permission
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Figure 5. The state transitions and message movements for read and write misses in the full-
map protocol. (a) Details of the state transition and messages transferred for serving a read miss
initiated from processor P2. (b) Details of the state transition and messages transferred for serv-
ing a write miss initiated from processor P3.

Limited Directory Schemes (DiriB or DiriNB). Limited direc- the memory requirement for limited directory scheme is
n[B(2 	 i 	 i � n log n) 	 2C], where B and C are the numberstory schemes employ a limited number of pointers to record

which processors have a copy of the data. The main idea be- of memory blocks and cache blocks in each node, respectively.
The nonbroadcast scheme DiriNB avoids the broadcast de-hind these schemes is based on the empirical results that in

most of the applications, only a small number of processors signed for solving the pointer overflow problem in DiriB by
invalidating one of the processors having a copy of the block(less than four) share a memory block most of the time. Thus,

the limited schemes perform as well as the full-map scheme and replacing it with the current requesting processor in the
directory. This scheme does not perform well when the num-for most applications. The advantages of having a limited

number of pointers are the scalable memory requirement and ber of shared copies is much greater than the number of the
pointers and frequent read requests are issued by the pro-faster hardware support. If the pointers are not sufficient to

record all nodes having the shared copies (i.e., pointer over- cessors holding a copy of shared data. The memory require-
ment for the DiriNB limited directory scheme is n[B(1 	 i 	flow), a mechanism must be employed to deal with the pointer

overflow situation. i � n log n) 	 2C], where B and C are the numbers of memory
blocks and cache blocks in each node, respectively.In the limited directory broadcast scheme DiriB (22), an

additional overflow bit for each memory block is employed to In LimitLESSi (15,23) and Dir1SW (26,27), the pointer
overflow problem is solved by software. MIT Alewife (15)handle pointer overflow. If there is no pointer available in the

directory for a request, copy of the block is supplied and the maintains coherence with a LimitLESS directory that has
four pointers in hardware. All the pointers that cannot fit intooverflow bit is set in the directory for that block. Not every

processor having a shared copy is recorded in the directory. the limited hardware-supported directory space are stored in
the traditional memory by trapping to the software handler.In case of a write, invalidation messages will be broadcast to

all the processors in the system to maintain cache coherence. The programs with a large degree of sharing will cause traps
frequently and thus run slowly. The delay in calling the soft-This scheme performs poorly if the number of shared copies

is just greater than the number of pointers. Each of the i ware handler is their major disadvantage. However, the pri-
mary benefit is the simplicity of cache coherence hardware.pointers in each memory block requires log n bits to store the

processor identification in an n-node system. For each pointer, Other limited schemes proposed in Refs. 22, 28, and 29
handle the pointer overflow problem in different ways. Thesean additional bit is needed to indicate if it contains a valid

processor number. With two state bits for each cache block, schemes change the formats of the bit maps so that the bit
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maps present as few processors as possible. Thus, the invali- block to point to the requester. Upon receiving the reply, the
requester sets its pointer to point to the head node, as indi-dation messages are broadcast to a subset of processors, in-
cated by the ID of the head node. The requester now becomesstead of all the processors. However, all these schemes gener-
the new head of the list. Figure 6(a) illustrates the process ofate some unnecessary invalidation traffic in some cases,
a read miss issued from node P2. P2 first sends a read-missthereby degrading the system performance. Since these
(RM) message to the home memory module. The home mem-schemes are more complex than full-map scheme, they make
ory module then sends a read-miss-forward (RM-F) messagethe design of hardware-supported directory difficult.
to the head, P1, and sets the pointer to P2. When P1 receives
the forwarded message, it sends a read-miss-reply (RM-R)Linked List Schemes
message to P2. After receiving the reply from P1, P2 then sets

The schemes based on linked lists employ a distributed direc- its pointer to point to P1. Thus a linked list is formed.
tory among the main memory and the caches. It is different When a write miss occurs, a write-miss message is sent to
from bit-map schemes in that there are pointer fields in both the home memory module. The memory module updates its
the memory blocks and cache blocks. The use of these pointer to point to the requesting node and then sends a
pointers is to organize the set of caches holding a copy of the write-miss-forward message to invalidate all the shared cop-
shared data in a linked list or tree structure. These schemes ies in the system by following the pointers on the linked list.
reduce the size of the directory and do not require invalida- When the node receives the write-miss-forward message, the
tion messages to be sent to all processors. copy of the data in its cache must be invalidated. In addition,

the head is also responsible for supplying the requested data
Singly Linked List Protocol. The singly linked list protocol to the requester. The tail of the list must send an acknowledg-

proposed in Ref. 17 forms the directory by chaining the mem- ment to the requester to indicate the completion of the invali-
ory block and the cache blocks having the shared data as a dation process. The write operation is considered to be per-
singly linked list. Each cache block only keeps a pointer to a formed after the requester receives both the requested data
node that also caches a copy of the same data. The home from the head and the acknowledge from the tail of the list.
memory block points to a node called head, which is the last Figure 6(b) illustrates the process of a write miss issued from
one joining the linked list. The head in turn uses its pointer node P3. P3 sends a write-miss message to the home memory
to point to another node that also has a valid copy. Continu- module. The home memory module sends the write-miss-for-
ing the above pointing process, a singly linked list is formed. ward (WM-F) message to the old head (P2), and the pointer is
The last node in the list called tail points back to the home updated to point to the requester (P3). When P2 receives the
memory module. WM-F message, it invalidates its copy and forwards the mes-

On a read miss, a request is first sent to the home memory sage to P1. Since the pointer of P1 points to the home memory
module. If a copy of the shared data does not present in any module, it can determine locally that P1 is the tail of the list.
other cache block, the memory module directly sends the re- Thus, P1 invalidates its copy and sends an acknowledgment
ply to the requester. Otherwise, the memory module informs to the requester. The write is complete after P3 receives both
the head of the list to send the reply consisting of the data the requested data from P2 and the acknowledge from P1.
and the ID of the head node to the requester. In the mean- Replacement of a cache block in a shared list is done by

invalidating the lower portion of the list. A race may happentime, the memory module updates the pointer of the memory

Figure 6. The state transitions and mes-
sage movements for read and write
misses in the singly linked list protocol.
(a) Process of a read miss issued from
node P2. (b) Process of a write miss issued
from node P3.
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during this replacement. Thus, a care must be taken since the adjacent deletions are issued simultaneously. To ensure for-
ward progress, the cache block closer to the tail has higherrace condition is complex. The sequential invalidation process

results in poor performance for a write on an address with a priority and is deleted first.
As described above, the invalidation process is done se-long shared list. The directory memory requirement for this

protocol is O(n(C 	 B) � (log n 	 2)) bits, where B and C are quentially as in the singly linked list protocol. However, the
number of network messages required by the SCI protocol forthe numbers of memory and cache blocks in each node (30),

respectively. both read and write operations is higher than those required
by the singly linked list protocol. The directory memory re-
quirement is similar to the singly linked list protocol.Scalable Coherent Interface. Scalable coherent interface

(SCI) is an IEEE standard (P1596) (16,24). The motivation
behind SCI is to allow multiple vendors to develop compo- Scalable Tree Protocol. The Scalable Tree Protocol (STP)

(18) uses a top-down approach to construct a single balancednents of a computer system that follow the SCI specifications.
A parallel computer can be built by integrating these compo- tree from the caches having a copy of data. Take a binary tree

as an example. Each memory block contains three pointers,nents. SCI specifies a topology-independent network and a
cache coherence protocol. The SCI cache coherence protocol is root, last, and writepending. Root points to the root of the tree.

Last pointer points to the cache called CL that caches thebased on a noncircular, doubly linked list of cache blocks to
keep track of cached copies. The directory at the main mem- shared data most recently. Writepending pointer points to the

cache with a pending write request. Each cache block con-ory includes 3-bit state field and 16-bit forward field. The for-
ward field specifies the first node in the sharing list. Each tains 5 pointers, called father, son[0], son[1], backward, and

forward. The father pointer of a cache block is used to pointcache block contains a 7-bit state field and two 16-bit pointer
fields, forward and backward, which usually point to the adja- to its father node in the tree. The two pointers of a cache

block, son[0] and son[1], point to its two children. Pointerscent shared caches. Each cached entry has an address that is
partitioned into a 16-bit memory-controller identifier and a backward and forward are used in the same manner as in

SCI protocol.48-bit address offset. For entries at the head of the list, the
backward field is not needed, since the memory-controller The first node issuing a read request to a specific memory

block will be the root of the tree. The second and third nodesfield is part of the address. We now summarize the base SCI
protocol. The state names of cache and memory blocks are issuing read requests will be the children of the first one. Sim-

ilarly, the fourth and fifth nodes making a read request willchanged in order to keep a consistent terminology for this
chapter. be the children of the second node. Continuing the same pro-

cedure, a balanced tree is formed. Basically, a read request isOn a read miss, the requesting node sends a request to
the home memory module. The memory module updates the first sent to the home memory, and the reply contains the

data and the ID of CL. The requester will later become thepointer to point to the requester after it receives the read-
miss message. If the requested data are not shared by any new CL. The requester sends another request to CL. CL then

sends the ID of CL’s father to the requester and set the for-other cache, the memory module directly supplies the data to
the requester. Otherwise, the memory module only sends the ward pointer to the requester. On receiving the reply from

CL, the requester set its backward pointer to CL and sendspointer pointing to the head to the requester. The head of
the list is responsible for supplying the requested data. After another message to CL’s father, asking permission to join the

tree as its son. If CL’s father already owns two sons, the readreceiving the reply from memory, the requester sends a new
request to the head of the list for attaching itself to the shar- requester will exchange two more messages with the succes-

sor of CL’s father and join the tree as its son.ing list. The head returns the requested data after it updates
its backward pointer to point to the requester. The requester On a write miss, a write-miss message is sent to the home

memory module. The home memory then sends a message tosets its forward pointer to the head and becomes the new
head of the list. Unlike the centralized full-map schemes, re- CL to check if the last addition of a node is complete and gets

an acknowledgment from it. Then the invalidation process fol-quests are never blocked at the memory controller; instead,
all requests are immediately added to the head of the existing lowing the tree structure can be performed. The replacement

of a cache copy A is done by replacing A with CL.sharing list.
On a write miss, the requester puts itself as the new head This protocol attains a logarithmic time invalidation pro-

cess by constructing a balanced tree, but paying the price ofof the list as in the read miss situation. Then it sends an
invalidation message to its successor pointed to by the for- generating too many messages for read misses. Since most of

the requests in an application are read misses, the protocolward pointer and waits for an acknowledgment. After the suc-
cessor is invalidated and taken out of the list, the requester performs poorly when the degree of sharing is low or write

misses is infrequent.updates its forward pointer to the successor of its old head
and continues the same invalidation process until the tail of
the sharing list is invalidated. It takes 2P messages to invali- STEM Tree Extension to SCI. To improve the performance for

widely shared data, this scheme has the consensus of the SCIdate a list of P cached copies. Adding the four messages for
inserting itself as a new head, the writing cache requester working group for use as an extension to SCI, officially IEEE

P1596.2 (19). This scheme is a binary tree protocol that allowstakes 2P 	 4 messages to get the write permission. The re-
placement of a cached copy can be done locally by sending the parallel tree insertion and deletion, while maintaining a rea-

sonably balanced tree for write operations. The height of thebackward pointer to its successor and the forward pointer to
the node pointed to by its backward pointer. Multiple cache tree is balanced during insertions by the AVL tree rotation

algorithm. The AVL tree balancing property is that theblocks can be deleted simultaneously. Special precedence
rules are applied to avoid corruption of the linked list when heights of two subtrees of a node differ by at most one. The
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directory at the memory contains one pointer to the most re- onto a k-ary tree such that the nodes in physical proximity
become neighbors in the sharing list. All GLOW protocol pro-cently inserted node, called insertion point of the binary tree.

The insertion point is one of the leaf nodes in the balanced cesses take place in strategically selected bridges called
agents in the network topology. In general, the agents formbinary tree. The nodes traversed by forward pointers from the

insertion point to the root of the tree are called list nodes. As the k-ary tree. Caches on a ring form a circular doubly linked
list (called a child list) that is appended to the agent on thein SCI, four states are encoded in the directory. Each cache

block contains three pointers called forward, backward, and same ring. Since an agent is a bridge that connects many SCI
rings, it can have as many child lists as the SCI rings con-downward pointers, a 5-bit height field, and a 10-bit state

field. In contrast to the AVL balancing property, this scheme nected. In a child list, the agent acts as its virtual head and
tail. All read requests for a data block from nodes of an SCIrequires that the right height of every list cache block in the

binary tree be strictly greater than the right height of its ring will be routed to a remote memory through the agent.
If this agent contains directory information or a copy of thebackward neighbor, called strictly growing property.

On a read miss, a read-miss request is first sent to the requested data block, these requests are intercepted and sat-
isfied locally on the ring. The agents only intercept the spe-home memory. After receiving the read-miss request, the

home memory module updates its pointer field in the direc- cially tagged requests for widely shared data.
On a read miss, the request is intercepted at the firsttory to point to the requesting node and sends a response

message back. The requesting cache now becomes the new agent. The intercept causes a lookup in the agent’s directory
to find information about the requested data block. If theinsertion point of the sharing list. It then sends a rotation

request to the old insertion point. If the strictly growing prop- lookup results in a miss, the agent sends another special re-
quest upward along the predetermined tree structure to theerty is not satisfied, the node at the old insertion point sends

a rotation reject message back to the requesting node and home memory. The requesting node is informed by the agent
to form a circular linked list which is then attached to thethen the insertion operation is complete. Otherwise, a rota-

tion is performed and a rotation-accept message is sent back agent. After receiving the requested data, the agent passes
the data to the requesting node. If the lookup results in a hit,to the requesting node. After receiving a rotation-accept mes-

sage, the requesting node sends another rotation request to the requesting node gets the data from either the agent or the
previous head of the associated doubly linked list.the forward neighbor for asking a possible rotation. This pro-

cess repeats until the strictly growing property is satisfied. On a write miss, the requesting node must first become the
head of the top-level child list connected directly to the mem-On a write miss, the requesting node first becomes the

node at the insertion point, using the deletion and/or inser- ory directory. In this position, the requesting node is the root
of the sharing tree. A node has to roll out from the sharingtion protocols if necessary. Recall that the node at the inser-

tion point is a leaf node of the balanced binary tree. The re- tree before becoming root. Invalidation messages are for-
warded from the root down the tree in parallel. Each agentquesting node sends the invalidation message to the list node

pointed to by its forward pointer (its parent), again to the invalidates the caches on its child list by using the SCI invali-
dation protocol. When the invalidation messages reach thelist node pointed to by its parent’s forward pointer (its grand

parent), until the root list node. Then the subtrees rooted at tails of the lists, they invalidate themselves and send an ac-
knowledgment back. GLOW agents wait for acknowledgmentsthese list nodes can be purged in parallel.

The replacement of a victim cache block is solved as fol- of all the invalidation messages they forwarded, invalidate
themselves, and return their own acknowledgments.lows. If the victim cache block has zero or one child, then the

child (if any) is connected to the parent (or the directory), as For the replacement of a cache block, it follows the stan-
dard SCI protocol. Agents roll out because of conflicts in theirin the SCI’s replacement policy. However, if the victim has

two children, the victim walks down the tree to a leaf node, directory (or data) storage or because they are left childless.
Rollout of an agent is based on concatenating its child listsdetaches the leaf from its parent, and finally replaces itself

with the leaf node. and subsequently substituting the concatenated child lists in
place of the agent in a tree. Thus, the child lists may scatterAs described above, the read miss overhead of this scheme

is similar to STP. Thus, it does not perform well for the appli- over multiple rings after agents roll out. This replacement
policy is more effective than invalidating all of the agent’scations with a low degree of data sharing and less frequent

write misses. The write latencies grow logarithmically as the descendants because of possible shrashing effects.
As we should see, the write overhead is similar to that ofnumber of nodes in the shared list.

STEM extension. The write latencies grow only logarithmi-
cally as the number of sharing nodes grows. Since it incurs aGLOW Tree Extension to SCI. In addition to STEM, GLOW

is another kiloprocessor extension to SCI (20). GLOW exten- great deal of overhead for read operations, it is intended to be
used only for the accesses to the data with high degree ofsions are intended to be used in SCI multiprocessor systems

that are comprised of multiple SCI rings connected through sharing. That is, GLOW must be used in combination with
the standard SCI protocol, or even other full-map protocols.SCI bridges. Only accesses to widely shared data use the

GLOW extension protocol by special request commands, while The read overhead will be the same as the SCI protocol for
the data with a low degree of sharing and much higher thanother accesses to data with low degree of sharing are left to

standard SCI cache coherence protocol. The extensions are SCI for the data with a high degree of sharing.
implemented in the bridges that connect the SCI rings.
GLOW is a k-ary tree protocol. Recall that in SCI and STEM The Hybrid Protocol. The hybrid protocol combines a lim-

ited directory scheme with a tree-based scheme. It is similarprotocols, caches join the sharing list based on their arriving
order. In contrast, GLOW extensions construct the tree in a to the limited directory protocol, except in the cases when the

number of caches requesting read copies of a particular datapredetermined way. GLOW maps the underlying topology
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explained in detail under read misses. The memory require-
ment is O(n � B � i log n � n � C � k log n) in an n-processor sys-
tem, where B and C are the numbers of memory and cache
blocks per processor, respectively.

The empirical results in Ref. 31 suggest that in many ap-
plications, the number of shared copies of a piece of data is
lower than four, regardless of the system size. Thus, we feel
justified in using i � 4 and k � 2 to construct binary trees.
The write operation can be implemented by employing either
an invalidation or an update protocol. We illustrate the hy-
brid scheme by using an invalidation protocol and a strong
consistency memory model. In addition to the i pointers in the
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memory directory, a level field is also associated with each

Figure 7. Two organizations of trees constructed under the pointer to record the heights of the trees for facilitating the
Dir4Tree2 scheme. construction of optimal or near-optimal trees.

In general, the coherence operations are similar to those
in the full-map protocol. The states of cache blocks are exclu-

block from the main memory module is more than that of the sive, valid, and invalid. The states of the memory blocks are
pointers available in the memory directory. The design of the valid and dirty, the same as those in the full-map directory
protocol aims at minimizing the communication overhead for

protocol. The major differences between DiriTreek and the full-constructing optimal or near-optimal trees from the caches
map protocol lie in how trees are constructed by using thehaving copies of data. Based on the trees constructed, a loga-
limited number of pointers and in the actions taken for blockrithmic time algorithm can be developed for invalidating all
replacements. As in the full-map directory protocol, the re-the shared caches when a write miss occurs. Thus, the hybrid
quested block is always provided by the home memory. Weprotocol possesses the advantages of the bit-map protocol and
discuss the coherence operations for the read misses, writethe tree-based linked list protocol, namely, small read miss
misses, and cache replacements in detail below.latency (two network messages), logarithmic write latency,

On a read miss, a read-miss request is first sent to theand scalable directory memory requirement.
home memory module. The operations to serve a read missAs in the limited directory protocol, i pointers are main-
are the same as that in the full-map scheme if a null pointertained in each memory block. However, each cache block has
in the memory directory is available for the request. For ex-k pointers, where k must be less than or equal to i. As de-
ample, consider the memory block containing the requestedscribed later, k-ary trees can be constructed by using the i
data in the valid state. Upon receiving the read-miss request,pinters in the memory directory and k pointers in the cache
the home memory module sets a null pointer to point to thedirectory. We call it a DiriTreek scheme. The subscript k must
requester and then sends the data to the requester. If therebe less than or equal to i. For example, two organizations of
is no null pointer available, two pointers are selected basedtrees with 4 and 14 caches having shared copies of data con-
on the heights of the trees and sent to the requesting nodestructed under the Dir4Tree2 scheme are illustrated in Fig. 7,
along with the requested data. The nodes which were pointedwhere the numbers in the circles denote the arriving se-

quence of the read requests. The construction of the trees is to by the selected pointers will become the children of the

Figure 8. Message movements for a read
miss. (a) After the read miss is completed,
nodes 1 and 2 become the children of node
5. (b) After the read miss is completed,
nodes 11 and 13 become the children of
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Figure 9. Cache coherence operations for a read miss.

for (i = 0..3)
if (p[i] == requester) �

(data, null, null) � requester; level[i]=1; return; �
for (i = 0..3)

if (p[i] == null) �
(data, null, null) � requester;
p[i] = requester; level[i]=1; return; �

if (level[i] == level[j]), where i, j � �0..3� and i � j �
(data, p[i], p[j]) � requester;
p[i] = requester; level[i]++;
p[j] = null; level[j] = 0; return; �

if (level[i] � level[j]) for all j � i �
(data, p[i], null) � requester;
p[i] = requester; level[i]++; return; �

requesting node. One of these two pointers in the memory ble 1 lists the maximum number of processors in the sharing
list versus the level of the trees for Dir2Tree2, Dir4Tree2, anddirectory is reset to pointing to the requester and the other is

reset to null. Figure 8 shows the tree construction process STP or SCI binary tree extension. For Dir4Tree2 in Table 1, it
can be easily checked that when there are 16 processors inindicated by the involved messages while the fifth and the

fifteenth node having a read miss try to join the sharing trees the sharing list, the highest tree is of three levels, which is
shown in Fig. 7. It can be seen that after the read miss is even smaller than a balanced binary tree of 16 nodes. Simi-
completed, nodes 1 and 2 become the children of node 5 in larly, if a 1024-node system is built, the highest tree gener-
Fig. 8(a). Similarly, nodes 11 and 13 become the children of ated by Dir4Tree2 is of 12 levels, which is only one level higher
node 15 in Fig. 8(b). than the balanced binary tree.

Figure 9 lists in detail the coherence operations for serving When a write miss occurs, the write request is first sent to
a read miss at memory directory. Pointer p[i] and level[i] field the home memory module. Invalidation messages are then
for i � 0.3 are initialized to null and 0, respectively. The oper- sent out to the root nodes of the trees by following the
ation (data, x, y) � p means that the data along with two pointers in the directory. The other nodes caching the data
pointers x and y are sent to node p. Four different situations are invalidated by the messages originating from their roots.
are considered in Fig. 9. First (D), the coherence protocol, In order to speed up the invalidation process further, the
checks whether or not the requesting node has already been nodes pointed to by odd-numbered pointers receive invalida-
pointed to by one of the i pointers in the memory directory. tion message from the nodes pointed to by even-numbered
This dangling pointer problem might occur when a cached pointers. The home memory module only receives at most half
block was replaced, and later on it is requested by the same the number of acknowledgments, and thus the possibility of
node again. Other situations regarding dangling pointers are the home node becoming a bottleneck reduces. An example of
addressed when we discuss the replacement policy. The sec- a write miss operation is shown in Fig. 10, where 15 shared
ond situation considers the case when a node has a read miss copies are in the shared tree before a write miss occurs. The
the first time, and there is a null pointer available in the invalidation message received at node 15 is from node 9. The
memory directory. As in the bit-map scheme, the available acknowledgments which are omitted from the figure to pre-
pointer is set to pointing to the requester before sending out serve clarity follow the reverse direction of the invalidation
the data. The third and forth situations consider the cases paths. It can be seen that Dir4Tree2 has a three-level tree
when there is no null pointer available in the directory for which is shorter than the four-level binary tree with 10 nodes
the next incoming read request. If there are two pointers
pointing to two trees with the same height, these two pointers
will be sent to the requesting node and the nodes pointed to
by these two pointers become the children of the requesting
node. Then, one of these two pointers is set to pointing to the
requesting node and the corresponding level field is incre-
mented by one. The other pointer is reset to null and the level
is reset to 0. The last situation considers the case when there
are no two pointers which point to the trees with the same
height. The pointer with the smallest level will be selected
and sent to the requesting node. The node pointed to by the
selected pointer becomes the only child of the requesting
node. Then the selected pointer is set to pointing to re-
questing processor, and the level of the pointer is incremented
by one.

Since there are only limited number of pointers in the di-
rectory, trees generated by DiriTreek may not be balanced. Ta-

Table 1. Maximum Number of Nodes Constructed in
Dir2Tree2 and Dir4Tree2 as a Function of Level

Binary Tree
Level Dir2Tree2 Dir4Tree2 (SCI or STP)

3 9 16 7
4 14 43 15
5 20 75 31
6 27 99 63
7 35 163 127
8 44 256 255
9 54 386 511

10 65 562 1023
11 77 794 2047
12 90 1093 4095
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maintained by an STP protocol with binary trees or the SCI
tree extensions.

When a miss occurs, a cache block must be selected for
storing the requested data before a request is sent to the
home memory module for service. If the selected cache block
currently holds a valid or exclusive copy of data with a differ-
ent address, a replacement operation needs to be performed.
We propose that when a valid or exclusive cached block is
being replaced, the subtree rooted at the replaced cache block
be invalidated without informing the home directory. The ra-
tionale of doing this is as follows. First, as noted in Ref. 31,
most of the time, the number of shared copies of a memory
block is less than four. Thus, our replacement operations will
perform as well as the bit-map scheme because the replaced
cache block does not have any child most of the time. Second,

Table 2. Number of Messages Generated by a Read or Write
Miss for Various Schemes, Where P is the Number of Nodes
in the Sharing List

Protocol Read Miss Write Miss

Full-map 2 2P � 2
Diri NB 2 2P � 2 plus unnecessary

invalidations and read
misses

LimitLESS4 2 2P � 2 plus (P � 4) software
handler delay

Singly linked list 3 P � 2
SCI 4 2P � 2
SCI tree extensions 4 to 2 log P More than 2P � 4
STP (binary) 4 to 8 2P � 4
Hybrid Dir4Tree2 2 2P � 2

the replacements are not frequent if the set size of an associa-
tive cache memory increases. Third, even when the trees grow
bigger, most of the replaced cache blocks are positioned as the
leaf nodes of the trees. The probability that the replaced cache the other protocols. The reason is that the invalidation pro-

cess for the singly linked list protocol is sequential. In otherblocks are nonleaf nodes is low. It should be noticed that the
parent of a cache of a tree is not informed when it is being words, the caches in the shared list of the singly linked list

protocol must be invalidated one after another. The amountreplaced. It causes a cache pointing to another cache that
does not have a valid data block. It is the dangling pointer of time taken to invalidate a cache in the shared list is the

sum of the time for creating a message, transferring the mes-problem which can be easily solved by the same method as in
the bit-map protocol. That is, if a cache receives an invalida- sage across the network, receiving the message, and pro-

cessing the message. Thus, the sequential invalidation pro-tion message for invalidating the data that it does not have
in its cache blocks, it just replies with an acknowledgment to cess is slow. Note that the invalidation process for SCI

protocol is also sequential. The invalidation processes for thethe sender without any further action. The proposed replace-
ment action is simple and easy to implement. It is worthwhile full-map, DiriNB, and LimitLESS protocols may be sequential

or parallel. If the memory module requires that the next in-to note that the only possible communication overhead of the
hybrid scheme comes from the replacements. validation message cannot be sent out until the acknowledg-

ment of the previous invalidation message is received, theWe summarize the number of messages generated by a
read or a write miss for the various protocols in Table 2. In process is sequential. Otherwise, the invalidation process is

parallel. Note that if the memory module in the full-map,Table 2, we can see that the full-map, DiriNB, LimitLESS,
and hybrid protocols generate the smallest number of net- DiriNB, and LimitLESS protocols is responsible for sending

and receiving all the invalidation and acknowledgment mes-work messages for a read miss. A smaller number of network
messages reflects a smaller amount of time taken to complete sages, it may become the bottleneck of the invalidation pro-

cess if the size of the shared list is large. On the other hand,a read miss. From the table, we also can see that the singly
linked list protocol generates a smaller number of messages the tree-based protocols, such as the SCI extension, STP, and

hybrid protocols, distribute the load of the memory modulethan the other protocols for a write miss. However, it is not
necessary to mean that the singly linked list protocol must over many other nodes. In addition to the parallel message

transfers over the network, the tree-based invalidation pro-take a smaller amount of time to complete a write miss than
cess is faster than the other protocols. The pros and cons of
each protocol are also given in Table 3.

PERFORMANCE EVALUATION

We use four benchmark applications to compare the perfor-
mance of the hybird DiriTreek coherence scheme with that of
the full-map and the limited directory schemes. The applica-
tions comprise MP3D, LU decomposition, the Floyd Washall
algorithm, and a fast Fourier transformation (FFT) program.
We give a brief description of each program, indicating its
purpose and the data structure employed as follows.

Simulation Methodology

We ported the hybrid coherence scheme to PROTEUS (32),
which is an execution-driven simulator for shared memory
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knowledgments are omitted.) wormhole routing technique. The specification of the simu-
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Table 3. Pros and Cons for Various Protocols

Protocol Pro Con

Full-map Simple to implement High memory overhead
No replacement overhead Sequential invalidation process
Low read miss overhead

Diri NB Simple to implement High invalidation overhead
Low memory overhead Sequential invalidation
Low read miss overhead

LimitLESS4 Low memory requirement (hardware) Sequential invalidation
Slow software handler

Single-link chain Moderate memory overhead Sequential invalidation
Double-link chain Moderate memory overhead Sequential invalidation
SCI extensions Logarithmic invalidation High read miss overhead

High replacement overhead
STP Logarithmic invalidation High read miss overhead

High replacement overhead
Diri Treek Low read miss overhead Replacement overhead

Logarithmic invalidation
Low memory overhead

lated network and the cache memory is given in Table 4. We thus results in worse performance. For 8-processor and 16-
processor systems, the full-map scheme is the best becausecompare the normalized execution time for each application

running with the various schemes as mentioned above, where the degree of sharing for most shared blocks in MP3D is low
(31). It is shown that Dir4Tree2 is only less than 5% slowerthe normalized execution time is defined as the relative exe-

cution time to that of the full-map scheme. The examined than the full-map scheme and much faster than the limited
directory schemes Dir4NB and Dir8NB.schemes are DirnNB, DiriNB, and DiriTree2 for i � 1, 2, 4, 8.

However, as the size of the system increases from 16 to 32
processors, Dir2Tree2 and Dir4Tree2 perform even better thanMP3D. The MP3D application is taken from the SPLASH

parallel benchmark suite (33). MP3D solves problems in rar- the full-map scheme. The reason is as follows. As the size of
the system increases, it is quite possible for different pro-efied fluid flow simulation that are useful for aerospace re-

searchers who study the forces exerted on space vehicles as cessors to access a given space cell during the same time-step.
Thus, the number of shared blocks with larger degree of shar-they pass through the upper atmosphere at hypersonic

speeds. MP3D employs a five-degree-of-freedom simulation of ing also increases. It takes less time for Dir2Tree2 and
Dir4Tree2 to invalidate the shared blocks with larger degreeidealized diatomic molecules in a three-dimensional space.

Two large arrays of structures are used to store the state in- of sharing than the full-map scheme.
formation for each molecule and the properties of each cell
in the three-dimensional space. The work is partitioned by LU Decomposition. The LU application is also taken from
molecules, which are statically scheduled on processors. the SPLASH parallel benchmark suite (33). It is a parallel
MP3D is notorious for its low speedups (34). For our simula- version of the dense blocked LU factorization which factors a
tion, we used 3000 particles and ran the application in 10 dense matrix into the product of a lower triangular and an
steps. The results are given in Fig. 11 for 8, 16, and 32 pro- upper triangular matrix. The dense n � n matrix A is divided
cessors. As expected, the performance of limited protocols into an N � N array of B � B blocks (n � NB) to exploit
(Dir8NB and Dir4NB) is the worst due to the delay caused by temporal locality on submatrix elements. We use a 128 � 128
unnecessary invalidations. The protocol Dir1Tree2 creates a matrix in our simulation study. Figure 12 shows the perfor-
linear sharing list instead of a tree-like list. The invalidation mance results for LU. As expected, the Dir1NB and Dir2NB
process for the linear sharing list becomes sequential, and protocols give the worst performance for all cases. The differ-

ence between other protocols is within 1%. The reason is that
the time spent on waiting synchronization points exceeds 35%
of overall execution time for LU. Thus, all the protocols ex-
cluding Dir1NB and Dir2NB do not show much difference on
the normalized overall execution time.

Floyd Washall. Floyd Washall is a program that computes
the shortest distance between every pair of nodes in a net-
work. The network employed is a random graph of 32 nodes.
The basic data structures in the Floyd Washall algorithm are
two-dimensional arrays for representing the predecessor ma-
trix and the distance matrix. An additional two-dimensional
array is also used for recording the computed path. Each pro-

Table 4. Simulation Model

Data cache 16 kbytes
Block size 8 bytes
Cache associativity Fully associative
Network type Binary n-cube
Network size 8, 16, 32 processors
Network bandwidth 8 bits
Switch/wire delay 1 cycle
Memory access latency 5 cycles
Cache access latency 1 cycle
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Figure 11. Normalized execution time
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cessor is responsible for updating a few rows of the distance FFT. Figure 14 gives the results for the FFT application.
Except for Dir1Tree1, all the other schemes perform very well.matrix. The entire matrix is declared as a shared array. Up-

dating the distance matrix requires reading the entire shared However, the hybrid schemes Dir4Tree2 and Dir8Tree2 perform
better than the full-map and the limited directory schemes.array, which incurs a large degree of data sharing. Figure 13

shows the performance plot for the Floyd Washall program. The improvement in case of the hybrid schemes increases
when the system becomes bigger. The improvement stemsThe performance of both Dir8Tree2 and Dir4Tree2 is very simi-

lar to that of the full-map scheme. The performance difference from the fact that not much communication overhead is
caused by replacements.between Dir4Tree2 and the full-map scheme is less than 2%.

Figure 12. Normalized execution time
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PROTEUS has shown that the hybrid scheme is very close in
performance to that of the full-map scheme. When the num-
ber of processors is large, the new scheme performs even bet-
ter than the full-map scheme in some cases. However, the
hybrid scheme requires less directory space than the full-
map scheme.
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