
MACROS 673

Original program Equivalent program
stmt1 stmt1

stmt2 stmt2

macro1 stmt1,1

stmt3 stmt1,2

macro2 stmt1,3

macro1 stmt3

stmt4 stmt2,1

stmt2,2

stmt1,1

stmt1,2

stmt1,3

stmt4

Figure 1. Illustration of macro expansion.

A program using macros may take up more space than an
equivalent program using subroutines. However, in order for
multiple subroutine calls to share common code, certain addi-
tional code is required to coordinate these calls and handle
branching to the subroutine code, saving and restoring of reg-
isters and other machine state, and returning to the main
code. This code is additional overhead at runtime; in some
cases, this overhead can dwarf the time required to execute
the actual code in the subroutine. Thus, the choice between
macros and subroutines often represents a tradeoff between
the size of the eventual code and the speed at which the
code executes.MACROS The basic mechanism already described can be made more
useful by the addition of a number of extensions. First among

A macro, or macroinstruction, is a computer programming these is the addition of formal parameters to the macro proto-
language construct that defines an abbreviation for a longer type; these may be referenced in the body of the macro either
sequence of statements or instructions. Macros can be used by name or by position. Actual parameters are supplied with
to simplify programming and reduce programmer errors, to the macro call and replace occurrences of the formal parame-
improve the clarity of code by hiding underlying complexity, ters in the macro expansion.
or to extend the syntax of the programming language itself. A second extension is to allow macros to be nested (i.e., to
They are a common feature found in many environments. allow the body of a macro to contain macro calls itself).

A macro definition consists of a name or prototype and a Nested macro calls are recursively expanded during prepro-
body composed of the programming language statements for cessing. Care must be exercised to ensure that this does not
which the prototype serves as an abbreviation. A macro call result in an infinite recursion, and so this extension is often
is an occurrence of a macro’s name in the text of the program. combined with conditional expansion of macros. It is useful in
At some point prior to the actual processing of the program this context to allow evaluation of arbitrary expressions dur-
text (often called the preprocessing phase, to distinguish it ing the preprocessing phase as well.
from the actual compilation or interpretation phase), macro A third extension is to allow the creation of unique identi-
calls are expanded (i.e., they are replaced with the body of the fiers for use as labels or variables. This is necessary because
macro definition, called the expansion of the macro). Thus, for the expanded code of separate macro calls is nearly identical,
every program that contains macros, there exists an equiva- and for some purposes (e.g., assembly language statement la-
lent program containing no macros; this is simply the text of bels) unique identifiers are required.
the original program with all the macros expanded and is the
result of the preprocessing phase.

Figure 1 illustrates the process of macro expansion. The MACROS IN DIFFERENT PROGRAMMING LANGUAGES
original program on the left contains three macro calls, in-
cluding two calls to the same macro. Note in particular that Macros and similar constructs are found across the spectrum

of programming languages and can even be found in applica-these two calls to the same macro result in different copies of
the statements making up the body. Macros are based upon tion software such as word processors. Although some lan-

guages do not include a macro facility as part of the languagethe concept of literal inclusion of the text in the body of the
definition, and this is the main difference between macros definition (e.g., FORTRAN, Java), a stand-alone preprocessor

can be used to obtain the benefits of macros with any lan-and subroutines. Although used for a similar purpose, subrou-
tines are based on the concept of multiple calls to the same guage.

The first macro processors accompanied the first assemblyshared code. This contrasts with the situation of multiple
macro calls, which result in multiple copies of the text of the languages. Because the instructions provided by a machine

language are generally very low level, macros were extremelydefinition, one for each call.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



674 MACROS

useful for allowing the programmer to work at a higher level. data structures, such as stacks and queues, which are indif-
ferent to the type of data that they contain.For example, a common operation is to save or restore all the

general-purpose registers; when no single machine instruc- The Lisp programming language includes a powerful
macro facility. In Lisp, the process of macro expansion occurstion is available to do this, a macro can be defined that ex-

pands to the necessary sequence of instructions. not at the textural level as in most other languages but at the
expression level. A Lisp macro is actually an expression thatThe C programming language includes a macro facility as

a part of the ‘‘C preprocessor,’’ which also provides other facil- is evaluated (this corresponds to the expansion process) to
produce a second Lisp expression (the expansion). This allowsities such as file inclusion and conditional compilation. In C,

macros are typically used to provide a single point of defini- for very flexible macro expansion because the expansion of
the body of a macro can be controlled using any of the pro-tion for literal constant values (e.g., array sizes) and as a re-

placement for functions in cases where in-line code is more gramming language constructs in the Lisp language. Macros
in Lisp can become quite complex and often involve specialefficient than a subroutine. For example, the Standard C Li-

brary contains a function getc that reads a single character ‘‘quoting’’ operators in order to provide very fine control over
the expansion process.of input. This ‘‘function’’ is actually a macro because the over-

head of a subroutine call outweighs the time required to pro- Many modern office productivity applications contain some
kind of macro facility; similar to macros in programming lan-cess a single character.

The C preprocessor also includes advanced capabilities for guages, a macro in these applications is a shorthand for a
longer sequence of commands. Generally a user has the abil-stringitizing macros (enclosing the result of the macro expan-

sion in double quotes so that it is treated as a string literal ity to ‘‘record’’ a macro, during which the application stores
the sequence of commands given by the user. Later the userby the compilation phase) and for token pasting (combining

adjacent lexical tokens, one of which is typically the result of can ‘‘play back’’ (analogous to macro call expansion in pro-
gramming languages) the macro, and the entire sequence ofa macro expansion, to form a single token). In addition, a

number of predefined macros can expand to the current commands will be executed.
source file name, the current date, and so on.

The UNIX operating system includes a stand-alone macro
MACRO PROCESSORS

processor called m4 that can be used to provide macro capabil-
ities with any programming language. The m4 macro pro-

To translate macros, one can use preprocessors or embed the
cessor includes many powerful features, including conditional

macro translation into the interpreter. Parameters that occur
expansion of macros, that allow recursive macros to be writ-

in a macro can be referenced positionally or by name. Named
ten. The fact that m4 is not tied to any one language can be a

parameters are more convenient in instances where there are
disadvantage; for example, it does not understand (and will

a large number of formal parameters, some of which may get
try to expand macros within) the structure of C language com-

default values.
ments.

Languages such as C have a separate preprocessor to han-
The C�� programming language inherits all the macro

dle macros. The macro preprocessor works in a fashion simi-
facilities of the C language preprocessor and adds two new

lar to a translator, with three important phases. The first
facilities as well. These facilities, in-line functions and tem-

phase consists of reading the macro definitions; the second
plates, are not macros in the strict sense; however, they are

phase consists of storing these definitions; and the last phase
based on the same concept of textual substitution. Further-

consists of expanding macros occurring in the program text.
more, they are not a part of the preprocessor, as are the C

Factors that need to be considered include computing the
language macro facilities but are part of the C�� language

position of formal parameters (if they are referred to position-
definition itself.

ally) as well as substituting actual parameter values in macro
In-line functions are meant for situations in which the

expansions. The macro preprocessor also must maintain a
overhead of a subroutine call would exceed the amount of

symbol table containing the macro prototypes. If recursive or
work accomplished by the subroutine itself (e.g., the getc

nested macro calls are permitted, extra care must be taken in
macro discussed earlier). Macros attack this problem by in-

the macro preprocessor.
lining the body of the subroutine, avoiding run-time overhead

The macro preprocessor is capable of detecting a number
at the expense of increased code space. However, macros do

of errors. These include errors in the macro definition (e.g.,
not always provide the same semantics as a function call, and

multiple definitions of the same macro), as well as in the
this can lead to a number of pitfalls for the unwary program-

macro expansion (e.g., calling a macro with the wrong number
mer (see details later in this article). In-line functions provide

of arguments).
the same benefits as macros by in-lining the body of the sub-

The operation of the macro preprocessor can consist of ei-
routine (in most cases; the code may not be in-lined in com-

ther one or two passes. In a two-pass preprocessor, macro
plex cases such as recursive functions), while avoiding their

definitions are read and accumulated in the symbol table dur-
pitfalls by providing precisely the same semantics as a nor-

ing the first pass, and macro expansion takes place during the
mal subroutine call.

second pass. Figures 2 and 3 give a pseudo-code description of
Templates are used to allow the specification of a family

a two-pass macro processor.
of C�� classes or functions, parameterized by type. During
compilation, templates are instantiated in a process similar to

Implementation Details
macro expansion to create the required classes and functions
according to the actual types used in the program. Templates A macro name table is implemented similarly to a symbol ta-

ble in an assembler or a compiler. Hash table algorithms areare an important mechanism for supporting generic program-
ming; a common application is the construction of container used to insert and find entries in Macro name tables.



MACROS 675

Read a line from the input;
while (end of file is not encountered)
�

if (line contains a macro name)
�

Write the macro name in the macro name table;
Prepare the formal argument array list;
Set Macro definition phase � True;

�
else if (Macro definition phase��True)
�

Enter line in the macro definition table after
substituting position numbers for formal parameters.
if (end of macro definition is encountered)
�

Set Macro definition phase � False;
�

�
else
�

Write line back to the output;
�

Read a line from the input;
�

Figure 2. Pseudo-code description of pass one of a two-pass macro
processor.

To implement recursive macro calls, actual parameters are
pushed on to a stack. The actual parameters are substituted
for formal parameters after reading lines from the Macro
definition table. When the end of a current macro definition

Read a line from the input;
while (end of file is not encountered)
�

if (line contains a macro name)
�

if (macro name appears in the macro name table)
�

Set Macro expansion phase � True;
Prepare the Actual Parameter List;

�
else
�

Error ‘‘Macro Not Yet Defined’’;
exit;

�
�
else if (Macro expansion phase �� True)
�

Read line from the macro definition table;
Substitute Actual Parameters for Positions;
if (end of macro is encountered)

Set Macro expansion phase � False;
else

Write line to output;
�
else

Write line to output;
if (Macro expansion phase �� True)

Read line from Macro definition table;
else

Read line from the input;
�

is encountered, the actual parameter stack gets popped.
Figure 3. Pseudo-code description of pass two of a two-pass macro
processor.One-Pass Macro Processor

The two-pass macro processor described earlier makes the
functionality of the processor explicit. As already mentioned,

solution space. There are many different methods of search-a two-pass macro processor cannot handle macro definitions
ing this solution space (e.g., local neighborhood search, gradi-inside a macro call. Also, for a two-pass macro processor, it is
ent methods, and linear programming).unnecessary for a macro to be defined before a macro is called

A tree is implicitly traversed while searching the solution(or used).
space (e.g., a binary search tree when one performs a binaryThe steps involved in a single-pass processor are the same
search in an ordered collection of entries). Macros can be usedas a two-pass processor, namely, reading, storing the macro
to speed up such searches by expanding the statements atdefinitions, preparing both the formal and actual parameters,
compile time and effectively doing the recursion during theexpanding the macros, and writing to the output. A single-
macro expansion rather than during the execution of the pro-pass algorithm also maintains information about whether a
gram. Fletcher (1) describes a backtracking algorithm usingmacro is being defined or expanded. Unless a macro is defined
macros that solves a tiling problem involving polyominoes.inside a macro call (this case is rare among programs), the
Bitner and Reingold (2) show how to use macros to solve astate of the single-pass processor is either a definition phase
large number of combinatorial problems. Such recursive usesor an expansion phase. If a macro is defined inside a macro
of macros require a macro preprocessor capable of conditionalexpansion (macro call), the algorithm substitutes for actual
macro expansion and cannot be accomplished in languagesparameters and enters the definition in the macro definition
such as C and C��.table. The macro name is also entered in the macro name table.

In a single-pass algorithm, a macro must be defined before
Assert Macrosit can be used. However, by maintaining a chain of macro

calls that call yet-to-be-defined macros, a single-pass algo- Macros are often used to make assertions about what the pro-
rithm expands macros when they become defined. grammer expects to be true during the execution of a pro-

gram. Using such macros makes it easier to track down errors
APPLICATIONS as well as to understand the program. Rosenblum (3) suggests

the following guidelines in using assertions:
Search Problems

1. Assert explicit programmer errors.Search problems are an important class of problems. To ob-
tain a solution to a search problem, we often look at the entire 2. Assert public API functions.



676 MACROS

3. Assert assumptions. • Hidden use of registers, declaration of variables, etc. An-
other danger of macros is that they can hide the use and/4. Assert reasonable limits.
or declarations of variables and other resources. A novice5. Assert unimplemented and untested code.
programmer can experience difficulties when the code

6. Assert classes. surrounding the macro conflicts with the code in the ex-
panded body.

This functionality is provided as a macro for the following
• Confusion over the results of expanded code. This prob-reason: as a macro every assertion will result in a distinct bit

lem is also a result of the interactions between the bodyof code, making it possible to refer, via the special macros
of the expanded macro and the surrounding code. For ex-built into the C preprocessor, to the name of the file and line
ample, a macro may be expanded within an expression,number where the assertion occurs in the program text. If
and the result of the evaluation of the macro body mayand when an assertion fails, this information can be printed
depend on the rules of operator precedence. It is for thisout, making it easier for the programmer to track down the
reason that macros in the C programming language aresource of the problem. This would be impossible if assertions
commonly surrounded by parentheses in order to makewere implemented as subroutines.
explicit the order of evaluation that is expected.

• Expressions evaluated twice. Expressions can and oftenInclude Facility
are given as actual parameters in a macro call. If the

The C preprocessor’s ‘‘include’’ facility is similar to the use of corresponding formal parameter appears more than once
macros. It allows one file to be textually included in another; in the body of the macro, the expression will be evaluated
usually this is used for data and macro definition statements. multiple times in the expansion. This is problematic for
Many common system routines are accessed via include files, expressions that have side effects.
such as �stdio.h�, �math.h�, and �stdlib.h�. • Type mismatches. It is impossible to check that the types

of actual parameters in macro calls are correct, because
Block Structure such checking depends upon the context in which these

parameters appear in the expansion. This results in er-Coplien (4) describes how macros can be used to add the fea-
rors being detected only after macro expansion, whichtures of a ‘‘block-structured’’ language to C�� by using mac-
can make tracking down the source of the error difficult.ros. This is an example of using macros to extend the syntax

• Confusing scope effects. The expanded macro code canof a language.
have confusing interactions with regard to the scope of
variables. For example, a naive macro containing two orText Formatting Languages
more C language statements will not have the expected

Text formatting languages such as LaTeX and AMSTeX are effect if it is used in an if-then-else construct.
macro packages written on top of TeX. This makes using doc-

• Tool problems. Because the programmer sees one thingument formatting languages much easier. Publishers have
(the macro call) and the language processing tools seetheir own styles, and they use macro statements to facilitate
another (the expanded code), macros can lead to prob-the style. Many drawing packages (e.g., idraw) use macros
lems with various tools. This is especially common withas an intermediate language in their storage of figures.
debuggers, which typically are unable to single-step or
otherwise diagnose the code inside of a macro definition.

Scripts Macros usually must be debugged separately from the
code in which they appear by expanding the macro callMany programming languages use scripts and macros inter-
and examining the result by hand.changeably. Some modern programming languages (e.g., Vi-

sual Basic and Tcl/Tk) and many spreadsheet programs use
macros extensively. The advantage of using macros for scripts

CONCLUSIONis the ability to cut and paste statements to construct a pro-
gram without knowledge of the details. Even a computer vi-

Macros are a common feature in most programming lan-rus has been written using macros (5).
guages. The key to understanding them is the idea of macro
expansion; a macro call is replaced with the text in the mac-

PITFALLS OF MACRO USE ro’s definition, possibly with parameter replacement and re-
cursive expansion of nested macro calls. The use of macros

Even though macros are convenient and powerful, their use requires a modicum of care, and a number of pitfalls must
in programming languages can be dangerous if care is not be avoided. However, used properly, macros are a useful and
exercised. The following are a few of the pitfalls that can re- powerful tool.
sult from the naive use of macros.

• Hard to understand code. Just as macros can be used to BIBLIOGRAPHY
make code more clearly understood, when misused they
can make code harder to understand. This is especially 1. J. G. Fletcher, A program to solve the pentamino problem by the

recursive use of macros, Commun. ACM, 8: 621–623, 1965.the case when macros are deeply nested, making it diffi-
cult to understand what the macro expansion will ulti- 2. J. R. Bitner and E. M. Reingold, Backtrack programming tech-

niques, Commun. ACM, 18: 651–656, 1975.mately look like.



MAGNETIC BUBBLE MEMORY 677

3. B. D. Rosenblum, Improve your programming with asserts, Dr.
Dobb’s J., 22 (12): 60–63, Dec. 1997.

4. J. O. Coplien, Advanced C�� Programming Styles and Idioms,
Reading, MA: Addison-Wesley, 1992.

5. J. O. Kephar et al., Fighting computer viruses, Sci. Amer., 277 (5):
88–93, Nov. 1997.

M. S. KRISHNAMOORTHY

JOHN D. VALOIS

Rensselaer Polytechnic Institute

MAGLEV. See MAGNETIC LEVITATION.


