
LOGIC TESTING 591

DIGITAL LOGIC CIRCUITS

Digital logic circuits can be classified into combinational and
sequential circuits. Combinational logic circuits are digital
circuits characterized by the fact that the logic values com-
puted at their outputs are a function only of the present input
values. Sequential circuits are digital systems whose outputs
depend on the present inputs and also on the previous input
values. Although combinational logic circuits consist of a net-
work of interconnected logic gates, sequential circuits also
contain memory elements which remember the history of the
previous input patterns. These memory elements are imple-
mented as registers or flip-flops, and their unique configura-
tions represent the states of the sequential circuit. Thus, the
outputs of a sequential circuit depend on the present inputs
and the present internal state stored in these memory ele-
ments. Because of their inherent sequential nature, sequen-
tial circuits are harder to test than combinational circuits be-
cause more information is required to identify their faulty
operation.

CONVENTIONAL TEST METHODS AND TEST ENVIRONMENTS

Figure 1 shows a conceptual environment for testing a logic
circuit. The unit under test (UUT) is connected to its tester
via an interface circuitry which consists of drivers, receivers,
contact probes, and cable connections. In its most basic form,
testing consists of applying stimuli to a UUT and comparing
its responses with the known fault-free behavior. To obtain
fault-free responses, test engineers often stimulate a verified
fault-free unit simultaneously with the UUT using the same
test patterns. Instead of an actual circuit, a hardware emula-
tion or a software model of the designed system can also be
used to obtain fault-free responses. Fault-free responses may
also be available as the functional specifications of the
product.

With increasing circuit densities, large and complex digital
circuits are being assembled on a chip. This has led to greater
difficulties in accessing individual circuit components. To cope

LOGIC TESTING

The rapid and copious advances in semiconductor technology
have enabled integrated circuit (IC) densities (number of com-
ponents and logic gates per chip) to grow phenomenally. This
has allowed the designers to implement a multitude of com-
plex logic functions in digital hardware, often on a single chip.
It is in the vital interest of both the producer and the end
user to ensure that such a complex digital system functions
correctly for the targeted application. It is also of interest to
evaluate the reliability of a product, that is, to know whether
the product will continue to function correctly for a long time.
To guarantee functional correctness and reliability of a prod-
uct, the producers and end users rely on testing.

In its broadest sense, testing means to examine a product,
to ensure that it functions correctly and exhibits the proper-
ties it was designed for. Correct functioning of an electronic

Error
log

Test
controller

Fault-free
unit

(model)

Test
vectors

Error
report

Test
interface

UUT

Fault-free
response

Comparator

UUT’s
response

computer system relies on fault-free hardware and software
components. The subject of this article is testing digital logic Figure 1. A typical testing environment applying test patterns to a
circuits using test equipment and related testing aides, so as UUT via a test interface and comparing its output responses with the

fault-free responses.to detect malfunction and incorrect behavior.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



592 LOGIC TESTING

with this problem, there have been continuing efforts to de-
velop test points within the circuits and to develop miniature
probes to access circuit components via these test points. Be-
cause logic circuits perform many functions, process a large
amount of data, and are increasingly complex, it has also be-
come impossible for test engineers to test them manually.
Such problems, in combination with the advancement of com-
puter technology and data acquisition systems, have led to

AND

OR

OR

D

C

B

A

Z
0

0

s-a-0
the emergence of automatic test equipment (ATE). ATE uses

Figure 2. Faulty operation of a circuit due to a stuck-at-0 fault attest programs to automatically compute a series of stimulus
line A.patterns, called test vectors, and applies these vectors to the

inputs of the UUT through the test interface. ATE acquires
the responses from the outputs of the UUT and automatically

compared with the expected fault-free responses to identifycompares these responses with the responses expected of an
fault operation and diagnose physical defects.ideal (fault-free) unit. If these responses are not in

Testing for fabrication defects and errors, generally knownagreement, errors are registered automatically.
as burn-in or acceptance testing, is usually performed by the
manufacturer. Testing for physical defects and failures is be-
yond the scope of this article. The interested reader is re-

FAULT MODELS AND TESTING TYPES
ferred to Ref. 1 for a thorough treatment of the subject.

Design verification testing is carried out to test for designAn instance of an incorrectly operating UUT is called an error
errors. It can be performed by a testing experiment on anor a fault. Incorrect and erroneous operation can be attributed
appropriate model of the designed system. These models areto design errors, fabrication errors, or other physical defects.
usually software representations of the system in terms ofExamples of design errors are inconsistent specifications, logi-
data structures and programs. Examples of such models arecal errors or bugs in the design, and violations of design rules.
binary decision diagrams (BDDs), finite-state machinesFabrication errors include faulty and incorrect components,
(FSMs), and iterative logic arrays (ILAs). Such a model is ex-incorrect wiring, and ‘‘shorts’’ or ‘‘opens’’ caused by improper
ercised by stimulating it with input signals. The process issoldering. Physical defects generally occur because of compo-
called logic simulation. Usually such models are functionalnent wear out during the lifetime of a system. For instance,
models, that is, they reflect the functional specifications of thealuminum wires inside an integrated circuit (IC) thin out
system and are independent of the actual implementation.with time and may eventually break because of a phenome-
Hence, the process of testing a digital logic circuit with re-non called electromigration. Environmental factors, such as
spect to its functional specification is called functional testing.humidity, heat, and vibrations, accelerate component wear

and tear.
Functional TestingIn general, direct mathematical treatment of physical fail-

ures and fabrication defects is not feasible. Thus, test engi- There is no established definition of functional testing per se.
neers model these faults by logical faults, which are a conve- In its most general sense, functional testing means testing to
nient representation of the effect of physical faults on ascertain whether or not a UUT performs its intended func-
system operation. tions correctly (2). Thus, functional testing validates the cor-

Such fault models assume that the components of a circuit rect operation of a system with respect to its functional speci-
are fault-free and only their interconnections are defective. fication. Functional testing is targeted toward a specific fault
These logical faults can represent many different physical model or is performed without any fault models. In the former
faults, such as opens, shorts with power or ground, and inter- approach, tests are generated for a UUT that detect faults
nal faults in the components driving signals that keep them defined by such models. The latter tries to derive tests based
stuck-at a logic value. A short results from unintended inter- on the specified fault-free behavior. Another approach defines
connection of points, while an open results from a break in a an implicit fault model (also known as the universal fault
connection. A short between ground or power and a signal model) which assumes that any fault can occur. Functional
line can result in a signal being stuck at a fixed value. A sig- tests detecting any fault are said to be exhaustive because
nal line when shorted with ground (power) results in its being
stuck-at-0 (stuck-at-1) and the corresponding fault is called a
s-a-0 (s-a-1) fault.

Figure 2 illustrates the effect of an s-a-0 fault at line A on
the operation of a circuit. An input signal to an AND gate
when shorted to ground (s-a-0) results in its output always
being s-a-0. This, if line A is s-a-0, irrespective of the values at
all other inputs of the circuit, output Z will always evaluate
incorrectly to logic value 0. In such a way, the presence of a
stuck-at fault may transform the original circuit to one within
a different functionality. Testing for physical defects and fail-

AND

OR

a

b

x

y

c

Inputs Outputs

0   0   0
0   0   1
0   1   0
0   1   1
0   0   0
1   0   1
1   1   0

 1   1   1 

0      0
0      1
0      1
0      1
0      0
0      1
1      1

 1      1 

a   b   c x      y

ures is carried out by applying input vectors that excite the
stuck-at faults in the circuit and propagate their effect to the Figure 3. A combinational circuit (a) and its truth table (b). All pos-

sible input combinations are required for exhaustive testing.circuit outputs. The observed responses to the test vectors are



LOGIC TESTING 593

does not depend on input c. Similarly, output y depends only
on inputs b and c. Because of such a partial dependence of
outputs on the inputs, it is sufficient to test output x exhaus-
tively with respect to inputs a and b, and similarly output y
with respect to inputs b and c. Thus, as shown in Table 1,
just four vectors are required to test this circuit pseudoex-
haustively. However, a fault caused by a ‘‘short’’ between in-
put lines a and c (known as a bridging fault) cannot be de-
tected by the test set shown in Table 1. Except for such faults,
all faults defined by the universal fault model can be detected.

Table 1. Required Vectors for Pseudoexhaustive Testing
Are a Subset of the Set of Vectors Required
for Exhaustive Testing

Inputs Outputs

a b c x y

0 0 0 0 0
0 1 0 0 1
1 0 1 0 1
1 1 1 1 1

The previous method, however, cannot be applied to total-
dependence circuits, where at least one primary output de-
pends on all primary inputs. In such cases, circuit parti-they completely exercise fault-free behavior. However, be-
tioning techniques can be used to achieve pseudoexhaustivecause of their exhaustive nature, such tests are impractical
testing. Using partitioning techniques, circuits are parti-for large circuits. It is often possible to use some knowledge
tioned into segments so that the outputs of the segments de-about the structure (or functionality) of the circuit to narrow
pend only on their local inputs. Then each segment is exhaus-the universe of detected faults. Test sets thus obtained are
tively tested with respect to its inputs. Figure 4 shows asignificantly smaller and are pseudoexhaustive.
circuit partitioned into segments. Each segment can be ex-
haustively tested with respect to their local inputs. In Ref. 3

EXHAUSTIVE AND PSEUDOEXHAUSTIVE TESTING extensions of partitioning techniques were applied for pseudo-
OF COMBINATIONAL LOGIC CIRCUITS exhaustive testing of a commercial 4-bit arithmetic and logic

unit (ALU) with 14 inputs. Pseudoexhaustive testing required
Exhaustive tests detect all possible faults defined by the uni- just 356 test vectors, a small fraction of the 214 vectors re-
versal fault model. In a combinational circuit with n inputs, quired for exhaustive testing.
there are 2n possible input signal combinations. Hence, to test Functional testing is used by manufacturers and also by
a combinational circuit exhaustively, all 2n possible input vec- field-test engineers and end users of systems. Manufacturers
tors need to be applied to the circuit. The exponential growth do not normally supply structural models or implementation
of the required number of vectors in the number of inputs details of a product. Usually, only the functional specifica-
makes exhaustive testing impractical. However, pseudoex- tions of a product are provided to the users. Thus end users
haustive testing methods significantly reduce the size of the rely on functional testing methods (or variants) to verify
test set and detect a large subset of all possible faults. whether a product conforms to its particular set of specifica-

As an example, consider a circuit with three inputs and tions.
two outputs, shown in Fig. 3(a). To test this circuit exhaus-
tively as a ‘‘black box’’ without any knowledge of its structure,
all of the vectors shown in Fig. 3(b) have to be applied. On SEQUENTIAL CIRCUIT TESTING
the other hand, if some information about the underlying
structure of the circuit and the input/output dependence is Testing of sequential circuits is a much more involved process

compared with testing of combinational circuits because theavailable, only a subset of the vectors may be sufficient to test
the circuit pseudoexhaustively. For the example circuit shown response of a sequential circuit is a function of its primary

inputs and also of its internal states. In general, it is custom-in Fig. 2(a), the output x depends only on inputs a and b and

Figure 4. Circuit partitioning into seg-

AND

AND

OR

OR

a

e

d

b

x

y

c

P

q
m

l

Segment 3

Segment 2

Segment 1

Segment 4

OR

ments for pseudoexhaustive testing.



594 LOGIC TESTING

Figure 5. FSM representation: (a) state-
transition graph; (b) state-transition
table.

S3

S1S2 1/0

0/0

0/0

1/1 1/1
0
1
0
1
0
1

0
0
0
1
0
1

S1
S1
S2
S2
S3
S3

S3
S2
S2
S3
S3
S1

Inputs Outputs
Present

state
Next
state

(a)

(b)

ary to model a sequential circuit as a finite automaton or a test engineers apply various input sequences to compare the
observed output values with the known responses derivedfinite-state machine (FSM). An FSM can be represented by a

state-transition table (STT), or by its equivalent state-transi- from the state table. Such experiments are known as state-
identification and fault-detection experiments.tion graph (STG). Use of such representations allows the de-

signers and test engineers to better understand the behav-
ioral characteristics and functionalities of sequential circuits. Fault-Detection and State-Identification Experiments
It also allows them the flexibility to apply various Boolean

Machine-identification experiments are concerned with the
and mathematical transformations without any explicit

problem of determining whether an n-state machine is distin-
knowledge of the underlying technology. Before delving into

guishable from all other n-state machines. These experiments
the details of sequential circuit testing, it is important to un-

are also used to determine whether a machine is operating
derstand fundamental concepts about finite-state machine op-

correctly with respect to its specifications. In such experi-
eration.

ments, a sequential circuit is viewed as a ‘‘black box,’’ and by
applying certain input sequences and observing the outputFSM Representation
responses, the experimenter has either to identify the states

Figure 5 shows a graphical and a tabular representation of a of the machine or detect its faulty behavior.
finite-state machine. The vertices in the STG represent the The experiments designed to identify the states of an FSM
states of the machine and the arcs represent the transitions distinguish one state of the machine from the other. They are
between the states. In response to a set of inputs, a finite- known as state-identification or state-distinguishing experi-
state machine transits from its current internal state (also ments. In such experiments, it is often required to drive the
called present state) to a next state and produces a set of out- machine either to a uniquely identifiable state, or to a pre-
puts. The states of an FSM are assigned binary encodings and specified state. A machine is made to visit different states by
are physically implemented with synchronous delay elements, applying various input sequences, and these states are deter-
called flip-flops or registers. Each state of the machine is rep- mined by observing the output responses of the machine. It is
resented by the set of values in the registers. In such a repre- customary to call the state, in which the machine resides be-
sentation, there in an inherent assumption of synchronization fore applying any input sequence, the initial state. The state
that is not explicitly represented in the STG or the STT. Be- in which the machine resides after applying an input se-
cause of this synchronization, the data stored in the registers
is sampled by a signal called clock, the next state is entered
and the output is produced.

A canonical structure of a synchronous sequential circuit
is shown in Fig. 6. It is composed of a combinational logic
component whose present state inputs (y) and the next state
outputs (Y) are connected by a feedback loop involving the
state registers. The primary inputs are represented as x and
the primary outputs as z. In response to a known input se-
quence, the succession of states traversed by an FSM and the
output responses produced by the machine are specified
uniquely by its state representation (STT or STG). Thus, un-
der the universal fault model, faults or errors in sequential
circuits are accounted for by any fault that modifies the state- Memory

elements

Inputs Outputs

x

y

z

Y

Combinational
logic

transition representation of the underlying FSM. To detect
faulty behavior and identify the faults in sequential circuits, Figure 6. A canonical representation of an FSM.



LOGIC TESTING 595

quence is called the final state. Then this final state is used called checking experiments and consist of the following
three phases:as a ‘‘reference point’’ for further experiments.

Homing experiments are generally conducted to bring a
• initializing the machine to a known starting state by us-machine from an unknown state to a uniquely identifiable fi-

ing a synchronizing sequence;nal state. In these experiments, a sequence of inputs is ap-
plied to the machine to bring it to a final state. The final state • verifying that the machine has n states;
in which the machine resides is identified uniquely from the • verifying every entry in the state table by exercising all
machine’s response to the input sequence. Such an input se- possible transitions of the machine.
quence is known as a homing sequence. Consider the example
machine M and its state table shown in Table 2(a). A homing For the first part of the experiment, initialization is accom-
sequence for this machine is Xh � �101�. The final state of the plished by using the synchronizing sequence, which brings
machine is uniquely determined from the response of the ma- the machine to a unique state S. Now this state becomes the
chine M to this input sequence. As can be seen from Table initial state for the rest of the experiment. To check whether
2(b), if the output response is �000�, then it can be said, be- or not the machine has n states, it is supplied with appro-
yond doubt, that machine M is in final state S0. Similarly, the priate input sequences that cause it to visit all possible states.
output response �101� means that the machine is in final Each state is distinguished from the others by observing the
state S3. Though a machine may possess more than one hom- output responses to the distinguishing sequence. During the
ing sequence, the shortest one is usually of interest. course of this testing experiment, if the machine has not pro-

To initialize a machine to a known state, a synchronizing duced the expected output, it is concluded that a fault exists.
sequence Xs is applied. This sequence takes the machine to a Finally, to conclude the experiment, it is required to verify
prespecified final state, regardless of the output or the initial every state transition. The desired transitions are exercised
state. For example, the sequence Xs � �10101� synchronizes by applying the appropriate input, and each transition to a
the machine M to state S3, regardless of its initial state. Not state is verified with the help of the distinguishing sequence.
all machines, however, possess such a sequence. The applica- Fault-detection experiments for machines that do not have
tion of a distinguishing sequence Xd produces a different out- distinguishing sequences are complicated, and the resulting
put sequence for each initial state of the machine, and thus experiments are very long. Thus, the design of ‘‘easily testa-
distinguishes among its different states. Hence, the state of ble’’ sequential circuits that possess some distinguishing se-
the machine before applying Xd is uniquely identified by its quence has been a subject of extensive research.
output response to Xd. Note that every distinguishing se- The previous methods for verifying the correctness of se-
quence is also a homing sequence, but the converse is not al- quential machines are based on deriving the information from
ways true. A comprehensive treatment of state-identification the state table of the circuit. These methods are exhaustive,
experiments can be found in Refs. 5 and 6. and thus have practical limitations for large circuits. For se-

The input sequences described previously are helpful for quential circuits that can be structured as iterative logic
identifying and differentiating the states of a machine and arrays (ILAs), pseudoexhaustive testing techniques can be
also to detect the machine’s faulty behavior. Any input se- used to test them efficiently. Recently, the problem of veri-
quence that detects any fault defined by the universal fault fying the correctness of sequential machines has received a
model must distinguish a given n-state sequential machine lot of attention. Formal methods have been developed to ver-
from all other machines with the same inputs and outputs ify the equivalence of sequential circuits against their finite-
and at most n-states (7). The fault-detection experiments, de- state machine models. A recent text (8) is a good source of
signed to identify faulty behavior of the machines, are also information on the subject.

DESIGN FOR TESTABILITY AND SELF-TEST TECHNIQUES

For finite state machines with a large number of states, dis-
tinguishing and synchronizing sequences become unreason-
ably long, resulting in long test application times. Hence, it is
desirable to design circuits in such a way that they are easier
to test. Small circuit modifications can aid in the testing pro-
cess by providing easier or direct access to test points, can
shorten the length of input test patterns, reduce test applica-
tion time, while preserving the intended design behavior.
Techniques which modify the circuit to make it easily testable
are commonly called design for testability (DFT) techniques.

Scan Test

One of the most widely used DFT techniques is scan design.
The rationale behind the scan design approach is to convert
a sequential circuit into a combinational one in order to make
it easier to test. This is carried out by modifying the registers
(flip–flops) to enable their access directly through their inputs

Table 2. Machine M: (a) State Transition Table, (b) Response
to its Homing Sequence 101

Inputs Present State Next State Outputs

0 S0 S3 0
1 S0 S1 0
0 S1 S1 0
1 S1 S0 0
0 S2 S0 0
1 S2 S3 1
0 S3 S2 0
1 S3 S3 1

(a)

Initial State Response to Sequence 101 Final State

S0 000 S0

S1 001 S3

S2 101 S3

S3 101 S3

(b)



596 LOGIC TESTING

serve output responses in order to validate correct operation.
Figure 8 illustrates the general format of a BIST structure.
The stimulus generator is responsible for generating test se-
quences. Exhaustive, random, and pseudorandom approaches
are used to generate the test stimuli. In the exhaustive ap-
proach, all possible input vectors are generated automati-
cally. An N-bit counter is an example of an exhaustive test
pattern generator. Random test stimulus generator applies

Combinational
logic

Registers

Input

Scan-in Scan-out

OutputCombinational
logic

randomly chosen subset of possible input patterns. A pseudo-
Figure 7. Scan registers connected serially in serial-scan chain. random sequence generator (PRSG) implements a polynomial

of some length N. It is constructed from a set of registers con-
nected in a serial fashion, called the linear feedback shift regis-

and outputs. These registers are called scan registers. Cir- ter (LFSR). Outputs of certain shift bits are XORed and fed
cuits with scan registers operate in two modes: (i) the normal back to the input of the LFSR. An N-bit LFSR cycles through
mode of operation, and (ii) the test mode. In the test mode, 2N � 1 states before repeating the sequence, producing a
the test equipment has virtually direct access to the registers seemingly random sequence.
which enables the application of test vectors directly on the The response of the analyzer can be implemented as a com-
combinational logic. Since the number of input and output parison between the generated response and the expected re-
(IO) pins on a chip is limited, it is impossible to directly access sponse, and stored in an on-chip memory. However, this re-
all the registers through the IO terminals. Thus, scan regis- quires excessive memory and thus results in large area
ters are chained together as a single serial shift register, as overheads. Usually, the responses are compressed and then
shown in Fig. 7. Test vectors are shifted serially into the reg- stored into memory. The compressed response is also known
isters via the scan-in input pin, and the output responses to as a signature and hence the approach is called signature
these vectors are shifted out via the scan-out pin. analysis. A fault in the logic circuit causes its signature to

However, it is not always desirable to make all the regis- change from a known good value which indicates the faulty
ters scannable. Scanning all the registers adversely affect the operation.
area and performance of the circuit due to the necessary mod- Self-testing techniques are widely used in testing regular
ifications required to accommodate the complete scan chain. structures such as memories. Memory tests include the read-
The extensive serial shifting of test patterns and responses ing and writing of a number of different patterns into and
also results in unacceptable length of the resulting tests. Par- from the memory using alternating addressing sequences.
tial scan provides a trade-off between the ease of testing and With a minimal area overhead, this test approach is built into
the costs associated with scan design. In partial scan, only a the integrated circuit itself which significantly improves the
subset of registers is selected for scan, which limits the in- testing time and minimizes external control.
crease in area and delay of the circuit. However, the key prob-
lem in partial scan design is the selection of scan registers. A
lot of research has been devoted to define the criteria to guide CONFORMANCE AND INTEROPERABILITY TESTING
the selection of scan registers. References 9–12 are a good
source of information on the subject. Building a system involving products from a number of differ-

Scan testing techniques have also been applied to test ent vendors is a challenging task, even when the components
printed circuit boards. This technique, called the boundary are supposed to conform to the appropriate systems stan-
scan technique, has been standardized (13) to ensure compati-

dards. Nowadays, digital systems are so notoriously complexbility between different vendors. It connects the input and
that even the functional specifications provided by manufac-output pins of the components on a board into a serial scan
turers are not sufficient to determine the interoperability ofchain. During the normal operation, the boundary scan pads
the equipment. This problem has strongly affected the tech-act as normal input-output pins. In the test mode, test vectors
nology industries that provide multivendor products, like per-are serially scanned in and out of the pads, thus providing
sonal computers, computer peripherals, and networking solu-direct access to the boundary of the components to be tested.
tions. With the emergence of the ‘‘information age,’’ the need
for interconnection and interoperability of information tech-Built-In Self Test
nology (IT) products, such as data communication and net-

Built-in self test (BIST) techniques rely on augmenting a cir- working hardware, implementations of communication proto-
cuit so that it allows itself to generate test stimuli and ob- cols and other related software products, has also grown

manifold. Conformance testing combined with interoperability
testing greatly reduces the problems associated with building
multivendor systems.

The term conformance refers to meeting the specified re-
quirements. In conformance testing, a product is tested using
specified test cases to verify whether or not it violates any
of the specified requirements and to validate that it behaves
consistently with respect to the options (or functions) that it
is said to support. In conformance testing, a product is tested

Stimulus
generator

Unit under
test (UUT)

Self-test circuit controller

Response
analyzer

for each specification that it supports. Test engineers often
use ATE to automate the processes of test purpose and testFigure 8. A typical built-in self-test structure.



LOOP ANTENNAS 597

9. V. D. Agarwal et al., A Complete Solution to the Partial Scancase generation and also to validate, compile, and maintain
Problem, Proc. Int. Test Conf., 1987, pp. 44–51.the test suites. The result of conformance testing is a test

10. K. T. Cheng and V. D. Agarwal, An Economical Scan Design forreport which specifies whether or not the given product
Sequential Logic Test Generation, Proc. Int. Symp. Fault-Tolerantpasses each of the test cases. Conformance testing is carried
Comput., 1989, pp. 28–35.out by vendors, procurers, or independent testing labora-

11. V. Chickermane and J. H. Patel, An Optimization Based Ap-tories.
proach to the Partial Scan Design Problem, Proc. Int. Test Conf.,Interoperability testing provides evidence whether a spe-
1990, pp. 377–386.cific product can be made to ‘‘interface’’ effectively with an-

12. P. Kalla and M. J. Ciesielski, A Comprehensive Approach to theother product implementing the same specifications. Vendors
Partial Scan Problem using Implicit State Enumeration, Proc.normally perform such tests to check interoperability before
Int. Test Conf., 1998.a product is released. Interoperability testing is also used by

13. IEEE Standard 1149.1, IEEE Standard Test Access Port andmajor procurers to check the acceptability of equipment com-
Boundary-Scan Architecture, IEEE Standards Board, New York.binations that they wish to buy.

Acknowledging the previously mentioned problems of con-
PRIYANK KALLAformance and interoperability, Open Systems Interconnection
MACIEJ J. CIESIELSKI(OSI) standards have been developed to achieve interoperabil-
University of Massachusetts at

ity between equipment from different manufacturers and sup- Amherst
pliers. International Standard (IS) 9646 is a standard devoted
to the subject of conformance testing implementations of OSI
standards. IS 9646 prescribes how the base standards have

LOGIC TESTING. See AUTOMATIC TESTING.to be written, how to produce test suites for these standards,
LOG-PERIODIC ANTENNAS. See DIPOLE ANTENNAS.and how the conformance testing process has to be carried

out. A comprehensive description of IS 9646 can be found in LOG-STRUCTURED FILE SYSTEMS. See BATCH PRO-

Ref. 4 with particular applications to conformance testing of CESSING (COMPUTERS).
communication protocols.

PERSPECTIVES

Testing of logic circuits has been an actively researched area
for more than three decades. A high degree of automation has
been achieved, new theories and techniques have been pro-
posed, and many algorithms and tools have been developed to
facilitate the testing process. However, with the unprece-
dented advances in device technologies and growth in circuit
size, testing is becoming increasingly difficult. The high cost
and limited performance of test equipment and the high cost
of test generation are other problems affecting test engineers.
For such reasons, design for testability and self-checking de-
signs are becoming more and more attractive to the testing
community.

BIBLIOGRAPHY

1. M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Sys-
tems Testing and Testable Design, Piscataway, NJ: IEEE Press,
1990.

2. F. F. Tsui, LSI/VLSI Testability Design, New York: McGraw-
Hill, 1987.

3. E. J. McCluskey and S. Bozorgui-Nesbat, Design for autonomous
test, IEEE Trans. Comput., C-33: 541–546, 1984.

4. K. G. Knightson, OSI Protocol Conformance Testing: IS 9646 Ex-
plained, New York: McGraw-Hill, 1993.

5. Z. Kohavi, Switching and Finite Automata Theory, New York:
McGraw-Hill, 1970.

6. A. Gill, State identification experiments in finite automata, Inf.
Control, 4: 132– 154, 1961.

7. A. D. Friedman and P. R. Menon, Fault Detection in Digital Cir-
cuits, Englewood Cliffs, NJ: Prentice-Hall, 1971.

8. G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms, Norwell, MA: Kluwer, 1996.


