
472 LIST PROCESSING

SAMPLE APPLICATIONS OF LISTS

With lists, one need not preallocate the size or shape of stor-
age structures. This property makes lists ideal for applica-
tions whose natural information requirements grow and
shrink unpredictably, and whose parts change shape and
combine with each other in ways that cannot be forecast
easily.

For example, in symbolic formula manipulation, subex-
pressions may be nested within expressions to an unpredict-
able depth, and the number of terms of a formula may grow
without limit. Therefore, lists are natural to use. Also, lists
can absorb overflows in a table of fixed size, since lists can
grow to meet unforeseen demand for table space. This could
be done by making the last element of a table a pointer to
the overflow list. Lists may also be useful in devising efficient
algorithms in which they can be used to keep track of internal
information at intermediate stages in the execution of a pro-
cess. For reasons such as these, lists and list structures are
an important topic in the study of data structure.

FORMAL DEFINITION OF LISTS

A list is a finite ordered sequence of items (x1, x2, . . ., xn)
where n � 0. The list () of no items occurs as a special case
where n � 0, and is called the empty list. The empty list is
denoted by the symbol . The items xi (1 � i � n) in a list can
be arbitrary in nature. In particular, it is possible for a given
list to be an item in another list. For example, let L be the
list [(x1, x2, (y1, y2, y3), x4).] Then, the third item of L is the list
(y1, y2, y3). In this case we say (y1, y2, y3) is a sublist of L. If a
list L has one or more sublists, we say that L is a list struc-
ture. If a list has no sublists, we call it either a linear list or
a chain.

TYPES OF LISTSLIST PROCESSING

As might be expected, there are a number of different possibleLists are very flexible data structures that are suitable for a
underlying representations for lists, each with particular ad-large number of applications. The main advantage of lists is
vantages and disadvantages. Three broad classes are sequen-that they organize computer memory into an elastic object
tially allocated lists, linked lists, and associate lists. We de-that can be allocated on demand in various amounts and
vote the most attention to linked lists, because they are theshapes during the running of a program. Lists can be length-
richest in terms of variety and they possess a number of spe-ened by the insertion of new elements or by adjoining a new
cial cases such as one-way linked lists, symmetrically linkedlist to a given list. Also, one list could be embedded inside
lists, and circular lists.another list, creating a two-dimensional list. Embedding can

To support linked-list representations, memory is orga-be performed repeatedly, producing structures of unrestricted
nized into cells, and unused cells are linked together into adepth. Thus, lists can grow both in length and depth by nest-
list of available (or unallocated) cells. As demands for storageing. Lists can also shrink. Elements or embedded lists can be
arise, cells are removed from the list of available space anddeleted and lists can be broken into constituent parts.
are added to the structures in use. It is also possible for vari-Lists have interesting growth, combining, and decay prop-
ous list cells to become disconnected from the set currentlyerties that permit them to change size and shape dynamically
in use by a program, and such cells may be reclaimed andunder programmed control. By contrast, other methods of
used again.storage allocation must allocate storage in a fixed size and

shape before a program is run, and during program execution,
Sequentially Allocated Listssize and shape either cannot vary or are costly to vary. This

happens, for instance, with the allocation of tables, arrays, Let L � (x1, x2, . . ., xn) be a linear list with elements xi (1 �
and record structures in some programming languages. Of- i � n), where each element requires one word to be repre-
ten, in order to use these structures advantageously, one sented in memory. In sequential allocation, the representa-
must be able to predict demand for storage before a program tions of the items xi are stored consecutively in memory begin-

ning at a certain address �, as shown in Fig. 1.is run so that one can preallocate a sufficient amount of space.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

LIST PROCESSING 473

x1

x2

xn

....

Figure 1. A sequentially allocated list.

In general, we can store xi in location � � i � 1 (1 � i �
n). As immediate generalizations, the items xi might each
take k words, and we could store L either in ascending or in
descending order of addresses, so that item xi would be stored
in the k words beginning at address � � k(i � 1) for ascending
order and � � k(i � 1) for descending order.

If the items xi have nonuniform sizes, we may store them
contiguously, as long as we provide some means for recogniz-

INFO

x1 2

LINK

αA1

INFO

x2 3

LINK

αA2

INFO

x3 4

LINK

αA3

INFO

xn

LINK

An

....

ing the boundaries between adjacent elements. For example, Figure 2. A linear linked list.
we could mark the first word of each item specially, or we
could store the number of words per item in a special field in
each item. However, such storage policies entail loss of ability

field containing an address of another cell. The LINK field of
to perform direct arithmetic indexing of list elements.

the last cell �n contains a null address. This representation is
Sequential representations of lists save space at the ex-

usually drawn as shown in Fig. 3.
pense of element access time and increased cost of growth and

To represent the more general case of list structures, as
decay operations. Further, managing the growth of several

opposed to linear lists, we must enlarge upon the idea illus-
sequentially allocated lists at or near saturation of the avail-

trated in Figs. 2 and 3. For example, suppose we are fortunate
able memory is quite costly.

enough to have representations of atoms and pointers that
take identical amounts of space. Then, to represent list struc-

Linked Allocation for Lists
tures with items that are either sublists or atoms xi, we can
store either an atom xi or the address of a sublist in the INFOLinked allocation of list structures provides a natural way of

allocating storage for lists that conveniently accommodates field of a given cell. However, we now need a systematic way
to tell whether the INFO field contains the address of agrowth and decay properties, as well as certain natural tra-

versals of the elements. The cost of such representations is sublist or an atom directly. For example, in Fig. 4, a TAG
field containing ‘‘�’’ is used to indicate that the content of theborne in increased expense for access to arbitrary elements

and in a reduction in storage utilization efficiency because of INFO field is an atom xi, and a TAG field containing ‘‘�’’ is
used to indicate that the INFO field contains the address of athe extra space needed to hold links.
sublist of the list.

Figure 4 shows how the list structure [x1, x2, (y1, y2, y3), x4]Unidirectional Linked Allocation. Let L � (x1, x2, . . ., xn) be
a list. Let �i (1 � i � n) be a set of distinct addresses of is represented using these conventions. In many cases, all bits

in a cell are required to contain efficient machine representa-memory cells. We consider only cells of uniform size. The link
fields of a particular cell are assumed to be fields that hold tions of such atoms as integers, floating point numbers and

so forth; and there is no space left for a tag bit. Under theseaddresses of other cells. Thus, relationships such as contigu-
ity of elements in a list, or sublists of a list, can be repre- circumstances, we can have space for both an atom field and

a sublink field (SUBLINK), and only one can be used at asented by explicit links stored in particular fields of cells. This
permits contiguous or nested listed elements to be repre- time. We would need an additional tag field for this represen-

tation.sented in nonadjacent cells in memory.
Since the possibilities for such representation schemes are

numerous, we give various illustrations in the hope that the Symmetrically Linked Allocation. Consider the diagram in
Fig. 5. In this diagram, each cell contains links to its left andreader will be able to generalize to a set of linked representa-

tions themes of general utility that can be adapted to the pe- right neighbors (except for the first cell which has no left
neighbor, and the last cell, which has no right neighbor). Eachculiarities of the many machine environments and many rep-

resentation requirements encountered in practice. cell has an INFO field, which contains an item xi, and two
address fields, LEFT LINK and RIGHT LINK. Such a struc-The simplest form is illustrated in Fig. 2. Each cell has two

fields, an INFO field containing an item xi in L and a LINK ture is called a symmetrically linked list.

Figure 3. Graphical representation of a

INFO

x1

LINK INFO

x2

LINK INFO

x3

LINK INFO

x4

LINK

. . .
linear linked list.

474 LIST PROCESSING

LINKINFO LINK

x1

INFOINFO

x2

INFO

x4

TAG

+

TAG

–

LINK LINKTAG

+

TAG

+

LINK INFOINFO

y1 y2 y3

INFOTAG

+

LINK LINKTAG

+

TAG

+

Figure 4. Linked representation of a list structure.

It is easy to traverse a symmetric list in either direction Circular Lists. Circular lists are formed by linking the last
cell of a chain to the head of the chain. As illustrated in Fig.(forwards or backwards), starting from the address of any

cell. By contrast, given the address of an arbitrary cell in a 8. Circular lists have the property that all elements can be
accessed starting from any cell on the list, without incurringone-way list, traversal is possible only in the forward direc-

tion. Similarly, if a is the address of an arbitrary cell on a the overhead of two pointers per cell.
symmetric list S, one can delete cell a of S, or one can insert
a new cell before or after cell a of S easily without traversing

OPERATIONS ON LISTSthe list. Fig. 6 shows how to delete cell C from S.
To delete a cell C from a symmetric list S:

In this section we describe a few operations on lists. We use
a unidirectional (linear) linked list because it is the most com-1. If LEFT LINK(C) 	�A then RIGHT LINK[LEFT
mon structure.LINK(C)] � RIGHT LINK(C)

We now introduce some notation for use in the operations.
2. If RIGHT LINK(C) 	�A then LEFT LINK[RIGHT If p is the address of a node (i.e., pointer), node(p) refers to

LINK(C)] � LEFT LINK(C) the node pointed to by p, info(p) refers to the information
3. Clean up: LEFT LINK(C) � RIGHT LINK(C) � A pointer of that node, and link(p) refers to the LINK field and

is therefore a pointer. Thus, if link(p) is not nil, info[next(p)]
Again, by contrast, if � is the address of an arbitrary cell refers to the information portion of the node that follows

on a one-way linked list L, it is not possible to delete cell � node(p) in the list.
from L, or insert a new cell before cell � unless we have the
address of the first cell in the list (the header). As shown Inserting Nodes in the Beginning of a List
above, one must pay extra space for the extra flexibility of

Suppose that we are given a list of integers, as illustrated insymmetric lists, since each cell of a symmetric cell has two
Fig. 9(a), and we desire to add the integer 6 to the front ofaddress fields instead of one.
the list. That is, we wish to change the list so that it appearsTo make list structures composed from symmetrically
as in Fig. 9(f). The first step is to obtain a node to house thelinked cells, it is convenient to use special header cells that
new integer. If a list is to grow and shrink, there must bepoint to the left and right ends of a symmetrically linked
some mechanism for obtaining new nodes to add. Let us as-chain. An example of a symmetric list structure [x1, (x2, x3),
sume the existence of a mechanism for obtaining emptyx4, x5] using header cells is given in Fig. 7.
nodes. The operationEach header cell links to the leftmost and rightmost cells

of a symmetrically linked chain and the leftmost and
p :� getnoderightmost cells of the chain each link back to the header cell.

A list item that points to a sublist points to the header for the
obtains an empty node and sets the contents of a variablesublist. The INFO field of a list header frequently can be used
named p to that address. This means that p is a pointer toto contain storage management information. For example,
this newly allocated node, as illustrated in Fig. 9(b).one policy for storage reclamation is to keep a cell count in

The next step is to insert the integer 6 into the INFO fieldthe header cell for each list. Such a reference count is an inte-
of the newly created node p. This is done by the operationger equal to the total number of nodes in the list. Each time

a new cell is added, the cell count increases by one, and each
info(p) � 6time a cell is removed, the cell count is decremented. When-

ever the cell count reaches zero, the header cell itself can be
removed. The result of this operation is shown in Fig. 9(c).

INFO

x1

INFO

x2

INFO

x3

INFO

x4

LEFT
LINK

LEFT
LINK

RIHJT
LINK

Left
LINK

RIGHT
LINK

LEFT
LINK

RIGHT
LINK

RIGHT
LINK

Figure 5. A symmetrically linked list.

LIST PROCESSING 475

Figure 6. Deleting a node from a symmetrically

INFO INFO

Before:

x1

INFO
LEFT
LINK

LEFT
LINK

LEFT
LINK

RIGHT
LINK

RIGHT
LINK

RIGHT
LINK

RIGHT
LINK

INFO

After:

x1

INFO
LEFT
LINK

LEFT
LINK

RIGHT
LINK

linked list.

After setting the INFO portion of node(p), it is necessary which changes the value of L to the value of p. Figure 9(e)
illustrates the results of this operation. Note that Figs. 9(e)to set the LINK portion. Since node(p) is to be inserted at the

front of the list, the node that follows should be the current and 9(f) are identical except that the value of p is not shown
in Fig. 9(f). This is because p is used as an auxiliary variablefirst node of the list. Since the variable L contains the address

of that first node, node(p) can be added to the list by per- during the process of modifying the list, but its value is irrele-
vant to the status of the list before and after the process.forming the operation

Putting all the steps together, we have an algorithm for
link(p) � L adding the integer 6 to the front of the list L:

This operation places the value of L (which is the address of p � getnode
the first node on the list) in the link field of node(p). Figure info(p) � 6
9(d) illustrates the result of this operation. link(p) � L

At this point, p points to the list with the additional item L � p
included. However, since L is the ‘‘official’’ external pointer to
the list, its value must be modified to the address of the new Deleting the First Node of a List
first node of the list. This can be done by performing the oper-

Figure 10 illustrates the process of removing the first node ofation
a nonempty list and storing the value of its info field into a
variable x. The initial configuration is in Fig. 10(a) and theL � p

Header

Header

x1 x4 x5

x2 x3

Figure 7. A symmetrical list structure.

476 LIST PROCESSING

x1 xnx2 x3

Figure 8. A circular linked list.

final configuration is in Fig. 10(e). The process itself is almost x � info(p) [Fig. 10(d)]
freenode(p) [Fig. 10(e)]the exact opposite of the process to add a node to the front of

a list. The algorithm is as follows:

The operation freenode(p) will make node p available for re-
use by adding it to the empty cells list. Once this operationp � L [Fig. 10(b)]

L � link(p) [Fig. 10(c)] has been performed, it is illegal to reference node(p), since the

Figure 9. Adding a node to the beginning of
a list.

10

INFO

3

INFO

5

6

6

INFO LINKLINK LINK

L

INFO LINK

p

(c)

10

INFO

3

INFO

5

IINFO LINKLINK LINK

L

10

INFO

3

INFO

5

INFO LINKLINK LINK

L

INFO LINK

p

(b)

(a)

10

INFO

3

INFO

5

INFO LINKLINK LINK

L

INFO LINK

p

(d)

6 10

INFO

3

INFO

5

INFO LINKLINK LINKINFO LINK

p
L

(e)

6 10

INFO

3

INFO

5

INFO LINKLINK LINKINFO LINK

L

(f)

LIST PROCESSING 477

5

10

INFO

3

INFO

5

INFO LINKLINK LINK

L

(a)

3

INFO

10

INFO LINKLINK

INFO LINK

p

(c)

5 10

INFO

3

INFO LINKLINKINFO LINK

p
L

L

(b)

5

3

INFO

10

INFO LINKLINK

INFO

x = 5

x = 5

LINK

p

(d)

L

3

INFO

10

INFO LINKLINK

(e)

L

Figure 10. Removing the first node of a list.

node is no longer allocated. Since the value of p is a pointer newly available position 4. In this case, insertion of one item
involves moving four items in addition to the insertion itself.to a node that has been freed, any reference to that value is
If the array contained 500 or 1000 elements, a correspond-also illegal.
ingly larger number of elements would have to be moved.
Similarly, to delete an element from an array, all the ele-Adding a Node to the Middle of a List
ments past the element deleted must be moved one position.

The advantage of a list over an array occurs when it is neces- On the other hand, if the items are stored in a list, then if
sary to insert or delete an element in the middle of a group of p is a pointer to a given element of the list, inserting a new
other elements. For example, suppose that we wished to insert element after node(p) involves allocating a node, inserting the
an item x between the third and fourth elements in an array of information, and adjusting two pointers. The amount of work
size 10 that currently contains 7 items. Items 7 through 4 must required is independent of the size of the list. This is illus-

trated in Fig. 11.first be moved one slot and the new element inserted in the

p

x6L x5x4

x

x3x2x1

p

x6L x5x4x3x2x1

Figure 11. Adding a node in the middle of a list.

478 LITHOGRAPHY

Reading ListLet insafter(p,x) denote the operation of inserting an item
x into a list after a node pointed to by p, This operation may A. Aho, J. Hopcroft, and J. Ullman, Data Structures and Algorithms,
be implemented as follows: Reading, MA: Addison-Wesley, 1983.

G. Gonnet, Handbook of Algorithms and Data Structures, Reading,
q � getnode MA: Addison-Wesley, 1984.
info(q) � x D. Knuth, Fundamental Algorithms, volume 1 of The Art of Computer
link(q) � link(p) Programming, Reading, MA: Addison-Wesley, 1968.
link(p) � q D. Knuth, Sorting & Searching, volume 3 of The Art of Computer

Programming, Reading, MA: Addison-Wesley, 1973.
Before inserting a new node, we will need to traverse the list
to reach node p. List traversal is a very common operation. SAMAH A. SENBEL
For example, suppose we want to insert the new node after Old Dominion University
the first node we find with an INFO value of 100 if it exists.
Therefore p should point to that node or be nil if the list is
empty or that node is not found. The operation goes as
follows:

p � L

/* traverse list until a node with info � 100 is found */
while (p 	� nil) and (info(p) 	� 100) do

p � link(p)
/* insert new node after p */
if p nil

then insafter(p,x)

List Traversal

This is the simplest of operations, we just need to start at the
list header and follow the LINK field to the end of the list.
This example counts the number of nodes in the list and
keeps that value in an integer variable count:

p � L
count � 0
while (p 	� nil)

begin
count � count � 1
p � link(p)

end

We start by initializing the counter to 0, and setting p to the
first node in the list. Then we start traversing and incre-
menting the counter with each step. The operation

p � link(p)

is the key operation here. It sets the pointer p to the following
node in the list using the LINK field.

Erasing a List

This operation is an extension of the process of deleting the
first node in a list, as explained in a previous section. We
delete the first node in the list repeatedly until there are no
more nodes:

while (L 	� nil)
begin

p � L
L � link(L)
freenode(p)

end

