
262 INSTRUCTION SETS

INSTRUCTION SETS

A computer system’s instruction set is the interface between
the programmer/compiler and the hardware. Instructions in
the instruction set manipulate components defined in the
computer’s instruction set architecture (ISA), which encom-
passes characteristics of the central processing unit (CPU),
register set, memory access structure, and exception-han-
dling mechanisms.

In addition to defining the set of commands that a com-
puter can execute, an instruction set specifies the format of
each instruction. An instruction is divided into various fields
which indicate the basic command (opcode) and the operands
to the command. Instructions should be chosen and encoded
so that frequently used instructions or instruction sequences
execute quickly. Often there is more than one implementation
of an instruction set architecture. This enables computer sys-
tem designers to exploit faster technology and components,
while still maintaining object code compatibility with previ-
ous versions of the computer system.

Instruction sets began very simply and then became more
complex as hardware gained complexity. By the 1980s, in-
struction sets had become sufficiently complex that a move-
ment began to return to simpler instruction sets, albeit not
the simplicity of the early machines. RISC (reduced instruc-
tion set computers) architectures were introduced, in contrast
to the CISC (complex instruction set computers), which were
then in vogue.

In addition to these general-purpose ISAs, special purpose
architectures, such as vector and parallel machines, graphics
processors, and digital signal processors (DSPs), require ISAs
that capture their unique capabilities.

GENERAL-PURPOSE INSTRUCTION SETS

Instructions contain an opcode—the basic command to exe-
cute, including the data type of the operands—and some
number of operands, depending on hardware requirements.
Historically, some or all of the following operands have been
included: one or two data values to be used by the operation

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

INSTRUCTION SETS 263

(source operands), the location where the result of the opera- added [by either moving the operands to registers in the
arithmetic logic unit (ALU) or by performing the addition di-tion should be stored (destination operand), and the location

of the next instruction to be executed. Depending on the num- rectly in memory, depending on the architecture] and store
the result into location 300.ber of operands, these are identified as one-, two-, three-, and

four-address instructions. The early introduction of the spe- It is unlikely that an instruction set would provide this
three-address instruction. One reason is that the instructioncial hardware register, the program counter, quickly elimi-

nated the need for the fourth operand. requires many bytes of storage for all the operand informa-
tion and, therefore, is slow to load and interpret. Another rea-

Types of Instructions son is that later operations might need the result of the opera-
tion (e.g., if A � B were a subexpression of a later, moreThere is a minimum set of instructions that encompasses the
complex expression), so it is advantageous to retain the resultcapability of any computer:
for use by subsequent instructions.

A two-address register-to-memory alternative might be:
• Add and subtract (arithmetic operations)
• Load and store (data movement operations)
• Read and write (input/output operations)
• An unconditional branch or jump instruction

Load R1, A ; R1 := A
Add R1, B ; R1 := R1 + B
Store C, R1 ; C := R1

• A minimum of two conditional branch or jump instruc-
while a one-address alternative would be similar, with thetions [e.g., BEQ (branch if equal zero) and BLT (branch
references to R1 (register 1) removed. In the latter scheme,if less than zero) are sufficient]
there would be only one hardware register available for use• A halt instruction
and, therefore, no need to specify it in each instruction. (The
IBM 1620 and 7094 are example hardware.)Early computers could do little more than this basic instruc-

Most modern ISAs belong to the RR category and use gen-tion set. As machines evolved and changed, greater hardware
eral-purpose registers (organized either independently or ascapability was added, for example, the addition of multiplica-
stacks) as operands. Arithmetic instructions require that attion and division units, floating-point units, multiple regis-
least one operand is in a register while ‘‘load’’ and ‘‘store’’ in-ters, and complex instruction decoders. Most instruction sets
structions (or ‘‘push’’ and ‘‘pop’’ for stack-based machines)include, in addition to the minimum set already listed:
copy data between registers and memory. ISAs for RISC ma-
chines (see the subsection titled ‘‘RISC’’) require both op-• System instructions such as operating system call and
erands to be in registers for arithmetic instructions. If thevirtual memory management
ISA defines a register file of some number of registers, the

• Traps and interrupt management instructions
instruction set will have commands that access, compute

• Instructions to operate on decimal or string data types with, and modify all of those registers. If certain registers
• Instructions to synchronize processors in multiprocessor have special uses, such as a stack pointer, instructions associ-

configurations ated with those registers will define the special uses.
The various alternatives that ISAs make available, such as

Examples of basic and advanced instructions are given in the
section ‘‘Representative Instruction Sets.’’ Instruction sets ex- • Both operands in memory
panded to reflect the additional hardware capability by com- • One operand in a register and one in memory
bining two or more instructions of the basic set into a single,

• Both operands in registersmore complex instruction. The expanding complexity of in-
• Implicit register operands such as an accumulatorstruction sets (CISCs) continued well into the 1980s until the
• Indexed effective address calculation, for A[i] sorts of ref-introduction of RISC machines (see the subsection titled

erences‘‘RISC’’) changed this pattern.

are called the addressing modes of an instruction set. Ad-Classes of Instruction Set Architectures
dressing modes are illustrated in the section titled ‘‘Represen-

Instruction sets are often classified according to the method tative Instruction Sets,’’ with examples of addressing modes
used to access operands. ISAs that support memory-to-mem- supported by specific machines.
ory operations are sometimes called SS architectures (for
storage to storage), while ISAs that support basic arithmetic Issues in Instruction Set Design
operations only in registers are called RR (register to regis-

There are many trade-offs in designing an efficient instruc-ter) architectures.
tion set. The code density, based on the number of bytes perConsider an addition, C � A � B, where the values of A,
instruction and number of instructions required to do a task,B, and C have been assigned memory locations 100, 200, and
has a direct influence on the machine’s performance. The ar-300, respectively. If an instruction set supports three-address
chitect must decide what and how many operations the ISAmemory-to-memory instructions, a single instruction,
will provide. A small set is sufficient, but leads to large pro-
grams. A large set requires a more complex instruction de-Add C, A, B
coder. The number of operands affects the size of the instruc-
tion. A typical, modern instruction set supports 32 bit words,would perform the required operation. This instruction would

cause the contents of memory locations 100 and 200 to be with 32 bit address widths, 32 bit operands, and dyadic opera-

264 INSTRUCTION SETS

tions, with an increasing number of ISAs using 64 bit op- Label: A R6,DATA Add the value in R6 to
the data value namederands. Byte, half-word, and double-word access are also de-

sirable. If supported in an instruction set, additional fields DATA
BCT R7,label Decrement the value inmust be allocated in the instruction word to distinguish the

operand size. Implementation considerations such as pipelin- R7 and, if greater than
0, branch to locationing are important to consider. Also, the ability of a compiler

to map computations to a sequence of instructions must be “label“
considered for ISA design.

Simple CISC Code ExampleThe number of instructions that can be supported is di-
rectly affected by the size of the opcode field. In theory, 2n–1 LD DATA,R6 Two loads to perform�(a 0 opcode is never used), where n is the number of bits allo- LD Count,R7 the CISC LM
cated for the opcode, is the total number of instructions that LD DATA,R8 No register-memory ops
can be supported. In practice, however, a clever architect can in RISC
extend that number by utilizing the fact that some instruc- Label: ADD R6,R8
tions, needing only one operand, have available space that SUBi R7,#1,R7 Decrement and branch�BGEZ R7,label (BCT of CISC)can be used as an ‘‘extended’’ opcode. See the Representative
Instruction Sets section for examples of this practice.

Corresponding RISC Code ExampleInstructions can either be fixed size or variable size. Fixed-
size instructions are easier to decode and execute, but either

On any machine, a series of steps is required in order to exe-severely limit the instruction set or require a very large in-
cute an instruction. For example, these may be: fetch instruc-struction size, that is, waste space. Variable-size instructions
tion, decode instruction, fetch operand(s), perform operation,are more difficult to decode and execute, but permit rich in-
store result. In a RISC architecture, these steps are pipelinedstruction sets. The actual machine word size influences the
to speed up overall execution time.design of the instruction set. Small machine word size (see

If all instructions require the same number of cycles forthe subsection titled ‘‘DEC PDP-11’’ for an example machine)
execution, a full pipeline will generate an instruction per cy-requires the use of multiple words per instruction. Larger ma-
cle. If instructions require different numbers of cycles for exe-chine word sizes make single-word instructions feasible. Very
cution, the pipeline will necessarily delay cycles while waitinglarge machine word sizes permit multiple instructions per
for resources. To minimize these delays, RISC instruction setsword (see the subsection titled ‘‘VLIW Instruction Sets’’).
include prefetch instructions to help ensure the availability of
resources at the necessary point in time.Alternative General-Purpose ISAs

Memory accesses require additional cycles to calculate op-
In the 1980s, CISC architectures were favored as best repre- erand address(es), fetch the operand(s), and store result(s)
senting the functionality of high-level languages; however, back to memory. RISC machines reduce the impact of these
later architecture designers favored RISC (reduced instruc- instructions by requiring that all operations be performed
tion set computer) designs for the higher performance at- only on operands held in registers. Memory is then accessed
tained by using compiler analysis to detect instruction level only with load and store operations.
parallelism. Another architectural style, very large instruc- Load instructions fetch operands from memory to regis-
tion word (VLIW), also attempts to exploit instruction level ters, to be used in subsequent instructions. Since memory
parallelism by providing multiple function units. In this sec- bandwidth is generally slower than processor cycle times, an
tion the instruction set characteristics of RISC and VLIW ma- operator is not immediately available to be used. The ideal
chines. solution is to perform one or more instructions, depending on

the delay required for the load, that are not dependent on the
RISC. RISC architectures were developed in response to data being loaded. This effectively uses the pipeline, eliminat-

the prevailing CISC architecture philosophy of introducing ing wasted cycles. The burden of generating effective instruc-
more and more complex instructions to supply more support tion sequences is generally placed on a compiler and, of
for high-level languages and operating systems. The RISC course, it is not always possible to eliminate all delays.
philosophy is to use simple instructions with extremely rapid Lastly, branch instructions cause delays because the
execution times to yield the greatest possible performance branch destination must be calculated and then that instruc-
(throughput and efficiency) for the RISC processor. tion must be fetched. As with load instructions, RISC designs

RISC designs try to achieve instruction execution times of typically use a delay on the branch instruction so they do not
one machine cycle per instruction by using instruction pipe- take effect until the one or two instructions (depending on the
lines and load/store architectures. RISC design) immediately following the branch instruction

The following simple CISC and corresponding RISC code have been executed. Again, the burden falls on the compiler
examples display some of the basic differences between the to identify and move instructions to fill the one (or two) delay
two. Note that these codes are stylized rather than being ex- slots caused by this design. If no instruction(s) can be identi-
amples of any specific machines. fied, a NOP (no op) has to be generated, which reduces perfor-

mance.
LM R6,R7,DATA Load (multiple)

registers 6 and 7 VLIW Instruction Sets. VLIW architectures are formed by
connecting a fixed set of RISC processors, called a cluster, andbeginning at the

location named DATA using only a single execution thread to control them all. Each

INSTRUCTION SETS 265

• Vector–vector instructions, where all the operands of the
instruction are vectors. An example is an add with vector
registers as operands and a vector register as result.

• Vector–scalar instructions, where the content of a scalar
register is combined with each element of the vector reg-
ister. For example, a scalar value might be multiplied by
each element of a vector register and the result stored
into another vector register.

• Vector–memory instructions, where a vector is loaded
from memory or stored to memory.

• Vector reduction instructions, in which a function is com-
puted on a vector register to yield a single result. Exam-
ples include finding the minimum, maximum, or sum of
values in a vector register.

P1 P2

P3

(a)

P4

Fl.pt.
+

Fl.pt.
+

Xbar &/or Bus

Mem Int.
ALU

(b)
• Scatter–gather instructions, in which the values of one

Figure 1. A generic VLIW machine. (a) A cluster of four VLIW pro- vector register are used to control vector load from mem-cessors; (b) A single VLIW processor.
ory or vector store to memory. Scatter uses an indirect
addressing vector register and a base scalar register to
form an effective address. Values in a data vector regis-

RISC processor contains some number of parallel, pipelined ter corresponding to the indirect addressing vector regis-
functional units that are connected to a large memory and ter are stored to the calculated effective memory ad-
register bank using crossbars and/or busses. Each instruction dresses. Similarly, a gather uses the indirect address
has a field that corresponds to each of the functional units in register combined with a scalar base register to form a
a cluster and specifies the action of that unit. This generates set of effective addresses. Data from those addresses are
a fine-grained parallelism, as compared with the coarse- loaded into a vector data register.
grained parallelism of vector machines and multiprocessors.
Figure 1 shows a ‘‘generic’’ VLIW computer and Fig. 2 shows SIMD Instruction Sets
an instruction word for such a machine.

Instruction sets for SIMD machines such as the CM-2, DAP,To optimize code for a VLIW machine, a compiler may per-
and MasPar MP series are conceptually similar to vector in-form trace scheduling to identify the parallelism needed to fill
struction sets. SIMD instructions also operate on aggregatethe function units. Indirect memory references, generated by
data. However, rather than processing multiple pairs of op-array indexing and pointer dereferencing, can cause difficult-
erands through a functional pipeline, the SIMD machine hasies in the trace. These memory references must be disambigu-
many identical processors, each operating in lockstep throughated, wherever possible, to generate the most parallelism.
a single instruction stream. The instructions may be SS,
as in the CM-2, or RR, as in the MasPar machines. An impor-

SPECIALIZED INSTRUCTION SETS tant characteristic of SIMD instruction sets is the lack of
branching instructions. Rather, these machines rely on the

The discussion above has focused on instruction sets for most notion of contextualization, meaning each SIMD processor has
general-purpose machines. Often the basic instruction set is its own unique ‘‘context’’ that determines whether or not it
augmented for efficient execution of special functions. executes the current instruction.

Instructions exist in a SIMD instruction set to evaluate an
Vector Instruction Sets expression and set the context to the result of the expression

evaluation. Thus processors that evaluate the expression toVector architectures, such as the original Cray computers,
true will execute subsequent instructions, while those thatsupplement the conventional scalar instruction set with a vec-
evaluate the expression to false will not. Naturally, there aretor instruction set. By using vector instructions, operations
some instructions that execute regardless of the contextthat would normally be executed in a loop are expressed in
value, so that ‘‘context’’ can be set and reset during computa-the ISA as single instructions. Each vector instruction oper-
tion. SIMD instruction sets usually include reduce instruc-ates on an entire vector of registers or memory locations. In
tions, as described above for vector machines. In addition,addition to the normal fetch-decode-execute pipeline of a sca-
some SIMD machines have scan instructions, which set uplar processor, a vector instruction uses additional vector pipe-
variable length vectors across the processor array on whichlines to execute the vector instructions. In a vector instruc-
reduce operations can be performed.tion, the vector register’s set of data is pipelined through the

appropriate function unit. Categories of vector instructions
DSP Instruction Setsinclude:

The architecture of a digital signal processor (DSP) is opti-
mized for pipelined data flow. Many DSPs for embedded ap-
plications support only fixed-point arithmetic; others have
both fixed- and floating-point units; while still others offer

P1

F+ Fx ALU

P2

F+ Fx ALU

P3

F+ Fx ALU

P4

F+ Fx ALU
multiple fixed-point units in conjunction with the floating-
point processor. All these variations, of course, affect the in-Figure 2. A VLIW instruction word.

266 INSTRUCTION SETS

struction set of the DSP, determining whether bits in the puter, the MIPS RISC computer, the Cray X-MP vector com-
puter, and the Intel Pentium processor.instruction word are needed to specify the data type of the

operands. Other distinguishing characteristics of DSP in-
struction sets include: IBM System 360

• Multiply-accumulate instruction (MAC), used for inner The IBM System 360, introduced in April of 1964 with first
product calculations delivery in April of 1965, was the first of the third-generation

(integrated circuit) computers. The general acceptance of a 32• Fast basic math functions, combined with a memory ac-
bit word and 8 bit byte come from this machine. The systemcess architecture optimized for matrix operations
360 consisted of a series of models, with models 30, 40, 50,• Low overhead loop instructions
65, and 75 being the best known. Model 20, introduced in No-• Addressing modes that facilitate FFT-like memory access
vember of 1964, had slightly different architecture from the

• Addressing modes that facilitate table look-up
others.

The 360 (any model) was a conventional mainframe, incor-Multimedia Instructions
porating a rich, complex instruction set. The machine had 16

Multimedia instructions are optimized to process images, general-purpose registers (8 on the smaller models) and four
graphics, and video data types. These instructions typically floating-point registers. Instructions mainly had two ad-
operate on 8-bit quantities, often in groups of 4 or 8, resem- dresses but 0, 1, and 3 were also permitted in some cases.
bling VLIW or SIMD instructions. DSP-like capability may be Instructions could be 2, 4, or 6 bytes in length, defining
provided with the inclusion of Multiply-accumulate on 8- or five addressing modes of instructions. Two-byte instructions
16-bit data values. Many modern microprocessors include were register-to-register (RR) instructions, consisting of:
multimedia instructions to augment their instruction sets in
order to support multimedia functions such as video decoding.

The multimedia extensions to the Intel Pentium instruc-
tion set have many DSP-like characteristics. An MMX in-

R1 R2op
code

struction operates on data types ranging from 8 bits to 64
bits. With 8 bit operands, each instruction is similar to a where the opcode is 1 byte, which specifies the operation to
SIMD instruction in that, during a single clock cycle, multiple be performed, R1 is one of the 16 general-purpose registers
instances of the instruction are being executed on different that is a data source as well as the destination of the result
instances of data. The arithmetic instructions PADD/PSUB of the operation, and R2 is one of the 16 general-purpose oper-
and PMULLW/PMULHW operate in parallel on either eight ations and is the second source of the data for the operation.
bytes, four 16 bit words, or two 32 bit double words. At the completion of the operation, R1’s value has been

The MMX instruction set includes a MAC instruction, changed while R2 has the same value it did at the start of
PMADDWD, which does a multiply-add of four signed 16 the instruction.
bit words and adds adjacent pairs of 32 bit results. The There were three modes of 4 byte instructions: register-
PUNPCKL and PUNKCKH instructions help with interleav- indexed (RX), register-storage (RS), and storage-immediate
ing words, which is useful for interpolation. The arithmetic (SI). RX instructions were of the form:
instructions in the MMX instruction set allow for saturation,
to avoid overflow or underflow during calculations.

Configurable Instruction Sets
storage ref.

base|displacement
R1 Xop

code |

Research into future generations of processors generalizes the
where the opcode is 1 byte, which specifies the operation tonotion of support for specialized operations. New designs call

for configurable logic to be available so new instructions can be performed, R1 is one of the 16 general-purpose registers
be synthesized, loaded into the configurable logic, and thus and is either the instruction data source or destination, X
dynamically extend the processor’s instruction set. National is one of the 16 general-purpose registers used as an in-
Semiconductor’s NAPA1000 is such a next-generation pro- dex added to the memory location specified, and the storage
cessor architecture. In conjunction with a conventional RISC ref(erence) is a standard 360 memory reference consisting
processor, the NAPA chip contains an embedded field pro- of a 4 bit base address and a 12 bit displacement value. So,
grammable gate array called the adaptive logic processor for RX instructions, the memory location specified is base �
(ALP). By designing circuits for the ALP, a programmer can displacement � index.
augment the instruction set of the RISC processor with arbi- RS instructions had the form:
trary functionality. Control signals to activate the custom in-
structions are generated by memory-mapped writes to a com-
munications bus, which connects the RISC processor with the
ALP. Such architectures provide virtually unlimited, applica-

op
code

storage ref.
base|displacement

R1 R2

|
tion-dependent extensibility to an ISA.

where the opcode is as for RX, R1, and R2 specify a range of
general-purpose registers (registers ‘‘wrap’’ from R15 to R0),REPRESENTATIVE INSTRUCTION SETS
which are either the instruction data source(s) or destination,
depending on the opcode, and the storage ref(erence) is theThe details of five representative instruction sets are shown

here. These are the IBM System 360, the PDP-11 minicom- standard 360 memory reference, as specified above.

INSTRUCTION SETS 267

SI instructions had the form: SS and DD each consist of a 3 bit register subfield and a 3
bit addressing mode subfield:

op
code

storage ref.
base|displacement

immed.
data | regmode

where opcode is as above, the storage ref(erence) is one of There are seven addressing modes, as shown in Table 2. Ta-
the instruction data values and is defined as above, and im- ble 3 contains a list of PDP-11 opcodes.
med(iate) data is the second instruction data value. It is
1 byte and is the actual data value to be used, that is, the

MIPS RISC Processordatum is not located in a register or referenced through a
memory address. The MIPS R-family of processors includes the R2000, 4000,

The 6 byte instruction format was used for storage-to-stor- and 10000. The R4000 and R10000 are 64 bit machines, but
age (SS) instructions and looked like: remain ISA-compatible with the R2000.

The MIPS RISC R2000 processor consists of two tightly
coupled processors on a single chip. One processor is a 32 bit
RISC CPU; the other (which will not be discussed in any de-

op
len1

op
len2

op
code

storage ref.1
base displacement

storage ref.2
base displacement

tail) is a system control coprocessor that supports a virtual
memory subsystem and separate caches for instructions and

where the opcode is as before, op len1 is the length of the data. Additional coprocessors on higher performance mem-
instruction result destination, op len2 is the length of the in- bers of the R-family include the floating-point coprocessor and
struction data source and is only needed when packed- a third coprocessor reserved for expansion.
decimal data are used, and storage ref(erence)1 and storage The RISC CPU is a 32 bit machine, containing 32 32 bit
ref(erence)2 are the memory locations of the destination and registers and 32 bit instructions and addresses. There are
source, respectively. Table 1 contains a list of 360 opcodes also a 32 bit program counter and two 32 bit registers for the
along with the type (RR, RX, RS, SI, SS) of each operation. results of integer multiplies and divide. The MIPS uses a five-

stage pipeline and achieves an execution rate approaching
DEC PDP-11 one instruction per cycle. R2000 instructions are all 32 bits

long and use only three instruction formats.The DEC PDP-11 was a third-generation computer, and was
Immediate (I-Type) instructions consist of four fields in aintroduced around 1970. It was a successor to the highly suc-

32 bit word.cessful (also) third-generation PDP-8, introduced in 1968,
which itself was a successor to second-generation PDP ma-
chines. rs rtopcode immediate

The PDP-11, and the entire PDP line, were minicomputers,
loosely defined as machines with smaller word size and mem-

where opcode is 6 bits, rs is a 5 bit source register, rt is a 5ory address space, and slower clock rate, than cogenerational
bit source or destination register or a branch condition, andmainframes. The PDP-11 was a 16 bit word machine, with
immediate is a 16 bit immediate, branch displacement, or ad-eight general-purpose registers (R0 to R8), although R6 and
dress displacement.R7 were ‘‘reserved’’ for use as the stack pointer (SP) and pro-

Jump (J-Type) instructions consist of two fields in a 32 bitgram counter (PC), respectively.
word.Instructions required one word (16 bits) with the immedi-

ately following one or two words used for some addressing
modes. Instructions could be single-operand instructions: opcode target

where opcode is 6 bits and target is a 26 bit jump address.DDopcode

Register (R-Type) instructions consist of six fields in a 32
bit word.where the opcode is 10 bits, which specify the operation to

be performed, and DD is the destination of the result of the
operation; or double-operand instructions: rs rt rdopcode shftamt function

where opcode, rs, and rt are as defined above for the I-Type
instruction, rd is a 5 bit destination register specifier, shftamt

SS DDop
code

is a 5 bit shift amount, and function is a 6 bit function field.
In addition to the regular instructions, the MIPS pro-where opcode is 4 bits, which specify the operation to be per-

formed, SS is the source of the data for the operation, and DD cessor’s instruction set includes coprocessor instructions.
Coprocessor 0 instructions perform memory-managementis the destination of the result of the operation.

Instructions operands could be either a single byte or a functions and exception handling on the memory-manage-
ment coprocessor. These are I-type instructions.word (or words using indirection and indexing). When the op-

erand was a byte, the leading bit in the opcode field was 1; Special instructions, which perform system calls and
breakpoint operations, are R-type. Exception instructionsotherwise, that bit was 0.

268 INSTRUCTION SETS

Table 1. IBM System 360 Instruction Set

Command Mnemonic Type Command Mnemonic Type

Add register AR RR Load multiple LM RS
Add A RX Load negative register LNR RR
Add halfword AH RX Load negative register (long) LNDR RR
Add logical register ALR RR Load negative register (short) LNER RR
Add logical AL RX Load positive register LPR RR
Add normalized register (long) ADR RR Load positive register (long) LPDR RR
Add normalized (long) AD RX Load positive register (short) LPER RR
Add normalized register (short) AER RR Load PSW LPSW SI
Add normalized (short) AE RX Load register (short) LER RR
Add packed AP SS Load (short) LE RX
Add unnormalized register (long) AWR RR Move immediate MVI SI
Add unnormalized (long) AW RX Move character MVC SS
Add unnormalized register (short) AUR RR Move numerics MVN SS
Add unnormalized (short) AU RX Move with offset MVO SS
AND register NR RR Move zones MVZ SS
AND N RX Multiply register MR RR
AND immediate NI SI Multiply M RX
AND character NC SS Multiply halfword MH RX
Branch and link register BALR RR Multiply register (long) MDR RR
Branch and link BAL RX Multiply (long) MD RX
Branch on condition register BCR RR Multiply packed MP SS
Branch on condition BC RX Multiply register (short) MER RR
Branch on count register BCTR RR Multiply (short) ME RX
Branch on count BCT RX OR register OR RR
Branch on index high BXH RS OR O RX
Branch on index low or equal BXLE RS OR immediate OI SI
Compare register CR RR OR character OC SS
Compare C RX Pack PACK SS
Compare halfword CH RX Read direct RDD SI
Compare logical register CLR RR Set program mask SPM RR
Compare logical CL RX Set storage key SSK RR
Compare logical immediate CLI SI Set system mask SSM SI
Compare logical character CLC SS Shift left double SLDA RS
Compare register (long) CDR RR Shift left double logical SLDL RS
Compare (long) CD RX Shift left single SLA RS
Compare packed CP SS Shift left single logical SLL RS
Compare register (short) CER RR Shift right double SRDA RS
Compare (short) CE RX Shift right double logical SRDL RS
Convert to binary CVB RX Shift right single SRA RS
Convert to decimal CVD RX Shift right single logical SRL RS
Divide register DR RR Start I/O SIO SI
Divide D RX Store ST RX
Divide register (long) DDR RR Store character STC RX
Divide (long) DD RX Store halfword STH RX
Divide packed DP SS Store (long) STD RX
Divide register (short) DER RR Store multiple STM RS
Divide (short) DE RX Store (short) STE RX
Edit ED SS Subtract register SR RR
Edit and mark EDMK SS Subtract S RX
Exclusive OR register XR RR Subtract halfword SH RX
Exclusive OR X RX Subtract logical register SLR RR
Exclusive OR immediate XI SI Subtract logical SL RX
Exclusive OR character XC SS Subtract normalized register (long) SDR RR
Execute EX RX Subtract normalized (long) SD RX
Halt I/O HIO SI Subtract normalized register (short) SER RR
Halve register (long) HDR RR Subtract normalized (short) SE RX
Halve register (short) HER RR Subtract packed SP SS
Insert character IC RX Subtract unnormalized register (long) SWR RR
Insert storage key ISK RR Subtract unnormalized (long) SW RX
Load register LR RR Subtract unnormalized register (short) SUR RR
Load L RX Subtract unnormalized (short) SU RX
Load address LA RX Supervisor call SVC RR
Load and test LTR RR Test and set TS SI
Load and test (long) LTDR RR Test channel TCH SI
Load and test (short) LTER RR Test I/O TIO SI
Load complement register LCR RR Test under mask TM SI
Load complement (long) LCDR RR Translate TR SS
Load complement (short) LCER RR Translate and test TRT SS
Load halfword LH RX Unpack UNPK SS
Load register (long) LDR RR Write direct WRD SI
Load (long) LD RX Zero and add packed ZAP SS

INSTRUCTION SETS 269

Table 2. Addressing Modes of the DEC PDP-11

Address
Mode Name Form Meaning

0 Register Rn Operand is in register n
1 Indirect register a (Rn) Address of operand is in register n
2 Autoincrement (Rn)� Address of operand is in register n

(Rn) :� (Rn) � 2 after operand is fetchedb

3 Indirect autoincrement @(Rn)� Register n contains the address of the address of the operand:
(Rn) :� (Rn) � 2 after operand is fetched

4 Autodecrement 	(Rn) (Rn) :� (Rn) 	 2 before operand is fetchedc; address of operand
is in register n

5 Indirect autodecrement @ 	 (Rn) (Rn) :� (Rn) 	 2 before operand is fetched; register n contains
the address of the address of the operand

6 Index X(Rn) Address of operand is in X � (Rn); address of X is in the PC;
(PC) :� (PC) � 2 after X is fetched

7 Indirect index @X(Rn) X � (Rn) is the address of the address of the operand; address
if X is in the PC; (PC) :� (PC) � 2 after X is fetched

a ‘‘Indirect’’ is also called ‘‘deferred.’’
b If the instruction is a byte instruction and the register is not the SP or PC, (Rn) :� (Rn) � 1.
c If the instruction is a byte instruction and the register is not the SP or PC, (Rn) :� (Rn) 	 1.

Table 3. PDP-11 Instruction Set

No. No.
Command Mnemonic Operands Command Mnemonic Operands

Add ADD 2 Clear Z (� 0 condition) CLZ 0
Add carry ADC 1 Clear N (
 or � 0 condition) CLN 0
Add carry byte ADCB 1 Clear C, V, Z, and N CCC 0
Arithmetic shift right ASR 1 Compare CMP 2
Arithmetic shift right byte ASRB 1 Compare byte CMPB 2
Arithmetic shift left ASL 1 Complement COM 1
Arithmetic shift left byte ASLB 1 Complement byte COMB 1
Bit test BIT 2 Decrement DEC 1
Bit test byte BITB 2 Decrement byte DECB 1
Bit clear BIC 2 Halt HALT 0
Bit clear byte BICB 2 Increment INC 1
Bit set BIS 2 Increment byte INCB 1
Bit set byte BISB 2 Jump JMP 1
Branch not equal zero BNE 1 Move MOV 2
Branch equal zero BEQ 1 Move byte MOVB 2
Branch if plus BPL 1 Negate NEG 1
Branch if minus BMI 1 Negate byte NEGB 1
Branch on overflow clear BVC 1 Rotate right ROR 1
Branch on overflow set BVS 1 Rotate right byte RORB 1
Branch on carry clear BCC 1 Rotate left ROL 1
Branch on carry set BCS 1 Rotate left byte ROLB 1
Branch if gtr than or eq 0 BGE 1 Set C (carry condition) SEC 0
Branch if less than 0 BLT 1 Set V (overflow condition) SEV 0
Branch if greater than 0 BGT 1 Set Z (� 0 condition) SEZ 0
Branch if less than or eq 0 BLE 1 Set N (
 or � 0 condition) SEN 0
Branch higher BHI 1 Set C, V, Z, and N SCC 0
Branch lower or same BLOS 1 Subtract SUB 2
Branch higher or same BHIS 1 Subtract carry SBC 1
Branch lower BLO 1 Subtract carry byte SBCB 1
Clear CLR 1 Swap bytes SWAB 1
Clear byte CLRB 1 Test TST 1
Clear C (carry condition) CLC 0 Test byte TSTB 1
Clear V (overflow condition) CLV 0 Unconditional branch BR 1

270 INSTRUCTION SETS

Table 4. MIPS RISC R2000 Instruction Set

Operation
Command Mnemonic Type Command Mnemonic Type

Add ADD R-type Move from CP0 MFC0 I-type
Add immediate ADDI I-type Move from coprocessor z MFCz R-type
Add immediate unsigned ADDIU I-type Move from HI MFHI 2 operand,
Add unsigned ADDU R-type R-type
And AND R-type Move from LO MFLO R-type
And immediate ANDI I-type Move to coprocessor 0 MTC0
Branch on coprocessor z false BCxF R-type Move to coprocessor z MTCz I-type
Branch on coprocessor z true BCxT R-type Move to HI MTHI R-type
Branch on equal BEQ I-type Move to LO MTLO R-type
Branch on greater or equal zero BGEZ I-type Multiply MULT R-type
Branch on greater or equal zero and link BGEZAL I-type Multiply unsigned MULTU R-type
Branch on greater than zero BGTZ I-type NOR NOR R-type
Branch on less or equal zero BLEZ I-type OR OR R-type
Branch on less than zero BLTZ I-type OR immediate ORI I-type
Branch on less than zero and link BLTZAL I-type Store byte SB I-type
Branch on not equal BNE I-type Store halfword SH I-type
Break BREAK I-type Shift left logical SLL R-type
Cache CACHE I-type Shift left logical variable SLLV R-type
Move control from coprocessor z CFCx I-type Set on less than SLT R-type
Coprocessor operation z COPz I-type Set on less than immediate SLTI I-type
Move control to coprocessor z CTCz I-type Set on less than immediate unsigned SLTIU I-type
Divide DIV R-type Set on less than unsigned SLTU R-type
Divide unsigned DIVU R-type Shift right arithmetic SRA R-type
Double word move from C0 DMFC0 R-type Shift right arithmetic variable SRAV R-type
Double word move to C0 DMTC0 R-type Shift right logical SRL R-type
Exception return ERET Shift right logical variable SRLV R-type
Jump J J-type Subtract SUB R-type
Jump and link JAL J-type Subtract unsigned SUBU R-type
Jump and link register JALR J-type Store word SW I-type
Jump register JR J-type Store word from coprocessor z SWCz I-type
Load byte LB I-type Store word left SWL I-type
Load byte unsigned LBU I-type Store word right SWR I-type
Load halfword LH I-type System call SYSCALL I-type
Load halfword unsigned LHU I-type Probe TLB for matching entry TLBP R-type
Load upper immediate LUI I-type Read indexed TLB entry TLBR R-type
Load word LW I-type Write indexed TLB entry TLBWI R-type
Load word to coprocessor z LWCz I-type Write random TLB entry TLBWR R-type
Load word left LWL I-type Xor XOR R-type
Load word right LWR I-type Xor immediate XORI I-type

cause a branch to an exception vector based on the result of space. Additional instructions in the later �86 instruction set
made the register set more general purpose.a compare. These are R- and I-type instructions.

The general format of an ‘‘Intel architecture’’ instruction isTable 4 gives the base instruction set of the MIPS RISC
shown in Fig. 3. As shown, the instructions are a variableprocessor family. The 4000 and above also have an extended
number of bytes with optional prefixes, an opcode, an ad-instruction set, which tightly encodes frequently used opera-
dressing-form specifier consisting of the ModR/M and Scale/tions and provides access to 64 bit operands and coprocessors.
Index/Base fields (if required), address displacement of 0
bytes to 4 bytes, and an immediate data field of 0 bytes to 4Pentium Processor
bytes. The instruction prefixes can be used to override default

The Intel Pentium series processor has become the most prev- registers, operand size, address size, or to specify certain ac-
alent of microprocessors in the 1990s. The Pentium follows tions on string instructions. The opcode is either one or two
the ISA of the 80 � 86 (starting with 8086). It uses advanced bytes, though occasionally a third byte is encoded in the next

field. The ModR/M and SIB fields have a rather complex en-techniques such as speculative and out-of-order execution,
coding. In general, their purpose is to specify registers (gen-once used only in supercomputers, to accelerate the interpre-
eral-purpose, base, or index), addressing modes, scale factor,tation of the �86 instruction stream.
or additional opcode information. The register specifiers mayThe original 8086 was a 16 bit CISC architecture, with 16

bit internal registers. Registers had fixed functions. Segment
registers were used to create an address larger than 16 bits,
so the address space was broken into 64 byte chunks. Later Prefixes Opcode ModR/M SIB Displacement Immediate
members of the �86 family (starting with the 386) were true
32 bit machines, with 32 bit registers and a 32 bit address Figure 3. Intel architecture instruction format.

INSTRUCTION SETS 271

Table 5. Intel Architecture Instruction Set Summary

Command Opcode Command Opcode

ASCII adjust after addition AAA Load global descriptor table register LGDT
ASCII adjust AX before division AAD Load pointer to GS LGS
ASCII adjust AX after multiply AAM Load interrupt descriptor table register LIDT
ASCII adjust AL after subtraction AAS Load local descriptor table register LLDT
ADD with carry ADC Load machine status LMSW
Add ADD Assert LOCK num. signal prefix LOCK
Logical AND AND Load string operand LOD*
Adjust RPL field of selector ARPL Loop count (with condition) LOOP*
Check array against bounds BOUND Load segment limit LSL
Bit scan forward BSF Load task register LTR
Bit scan reverse BSR Move data, registers MOV*
Byte swap BSWAO Unsigned multiply MUL
Bit test BT Two’s complement negation NEG
Bit test and complement BTC No operation NOP
Bit test and reset BTR One’s complement negation NOT
Bit test and set BTS Logical inclusive OR OR
Call procedure (in same segment) CALL Output to port OUT*
Call procedure (in different segment) CALL Pop word/register(s) from stack POP
Convert byte to word CWB Push word/register(s) onto stack PUSH
Convert doubleword to Qword CDQ Rotate thru carry left RCL
Clear carry flag CLC Rotate thru carry right RCR
Clear direction flag CLD Read from model specific register RDMSR
Clear interrupt flag CLI Read performance monitoring counters RDPMC
Clear task-switched flag in CR0 CLTS Read time-stamp counter RDTSC
Complement carry flag CMC Input string REP INS
Conditional move CMOVcc Load string REP LODS
Compare to operands CMP Move string REP MOVS
Compare string operands CMP[S[W/D]] Output string REP OUTS
Compare/exchange CMPXCHG Store string [REP] STOS
Compare/exchange 8 bytes CMPXCHG8B Compare string REP[N][E] CMPS
CPU identification CPUID Scan string [REP] [N][E] SCANS
Convert word to doubleword CWD Return from procedure RET
Convert word to doubleword CWDE Rotate left ROL
Decimal adjust AL after addition DAA Rotate right ROR
Decimal adjust AL after subtraction DAS Resume from system management mode RSM
Decrement by 1 DEC Store AH into flags SAHF
Unsigned divide DIV Shift arithmetic left SAL
Make stack frame for proc. ENTER Shift arithmetic right SAR
Halt HLT Subtract with borrow SBB
Signed divide IDIV Byte set on condition SETcc
Signed multiply IMUL Store global descriptor table register SGTD
Input from port IN Shift left [double] SHL[D]
Increment by 1 INC Shift right [double] SHR[D]
Input from DX port INS Store interrupt descriptor table register SIDT
Interrupt type n INT n Store local descriptor table SLDT
Single-step interrupt 3 INT Store machine status word SMSW
Interrupt 4 on overflow INTO Set carry flag STC
Invalidate cache INVD Set direction flag SDC
Invalidate TLB entry INVLPG Set interrupt flag STI
Interrupt return IRET/IRETD Store task register STR
Jump if condition is met Jcc Integer subtract SUB
Jump on CX/ECX zero JCXZ/JECXZ Logical compare TEST
Unconditional jump (same segment) JMP Undefined instruction UD2
Load flags into AH register LAHF Verify a segment for reading VERR
Load access rights byte LAR Wait WAIT
Load pointer to DS LDS Writeback and invalidate data cache WVINVD
Load effective address LEA Write to model-specific register WRMSR
High level procedure exit LEAVE Exchange and add XCHG
Load pointer to ES LES Table look-up translation XLAT[B]
Load pointer to FS LFS Logical exclusive OR XOR

272 INSTRUCTION SETS

Table 6. Cray X-MP Instruction Set

Command CAL Syntax Command CAL Syntax

ADD scalar/vector Vi Sj � Vk Set vector length to 1 VL 1
ADD vector/vector Vi Vj � Vk Set vector mask to a value VM Sj
ADD floating scalar/vector Vi Sj � FVk Set scalar to specified element of vector Si Vj, Ak
ADD floating vector/vector Vi Vj � FVk Set specified element of vector to scalar Vi, Ak Sj
AND scalar/vector Vi Sj & Vk Set scalar/vector based on vector mask Vi Sj ! Vk & VM
AND vector/vector Vi Vj & Vk Set 0/vector based on vector mask Vi # VM & VK
Clear vector mask VM 0 Set vector/vector based on vector mask Vi Vj ! Vk & VM
Clear specified element of vector Vi, Ak 0 Set vector mask when zero VM Vj, Z
Copy floating vector Vi � FVk Set vector mask when not zero VM Vj, N
MULTIPLY floating scalar/vector Vi Sj * FVk Set vector mask when positive (
� 0) VM Vj, P
MULTIPLY floating vector/vector Vi Vj * FVk Set vector mask when negative (�0) VM Vj, M
MULTIPLY floating half precision scalar/vector Vi Sj * HVk Shift vector elements left (0 fill) Vi Vj � Ak
MULTIPLY floating half precision vector/vector Vi Vj * HVk Shift vector elements left by 1 (0, fill) Vi Vj � 1
MULTIPLY rounded floating scalar/vector Vi Sj * RVk Shift vector elements right (0 fill) Vi Vj
 Ak
MULTIPLY rounded floating vector/vector Vi Vj * RVk Shift vector elements right by 1 (0 fill) Vi Vj
 1
MULTIPLY reciprocal iteration scalar/vector Vi Sj * IVk Shift pairs of vector elements left (0 fill) Vi Vj, Vj � Ak
MULTIPLY reciprocal iteration vector/vector Vi Vj * IVk Shift pairs of vector elements left by 1 (0 fill) Vi Vj, Vj � 1
Negate vector Vi 	 Vk Shift pairs of vector elements right (0 fill) Vi Vj, Vj � Ak
Negate floating vector Vi 	 FVk Shift pairs of vector elements right by 1 (0 fill) Vi Vj, Vj � 1
OR scalar/vector Vi Sj ! Vk Store from vector to memory (incr addr by spec. amt) , A0, Ak Vj
OR vector/vector Vi Vj ! Vk Store from vector to memory (incr addr by 1) , A0, 1, Vj
Population count vector Vi PVj SUBTRACT scalar/vector Vi Sj 	 Vk
Population count parities vector Vi QVj SUBTRACT vector/vector Vi Vj 	 Vk
Read vector mask Si VM SUBTRACT floating scalar/vector Vi Sj 	 FVk
Read from memory to vector (incr addr by Ak) Vi, A0, Ak SUBTRACT floating vector/vector Vi Vj 	 FVk
Read from memory to vector (incr addr by 1) Vi, A0, 1 XOR scalar/vector Vi Sj \ Vk
Reciprocal approximation floating vector Vi/HVj XOR vector/vector Vi Vj \ Vk
Set vector length (VL) VL Ak

select MMX registers. The displacement is an address dis-
placement. If the instruction requires immediate data, they is opcode destination source1 source2

found in the final byte(s) of the instruction.
Table 6 shows the vector instruction set for a Cray X-MP. InA summary of the Intel architecture instruction set is
the table, S � scalar register, V � vector register, and A �given in Table 5. The arithmetic instructions are 2-operand,
address register. An address register points to specific mem-where the operands can be two registers, register and mem-
ory locations, or can be used as an index or offset. i, j, and kory, immediate and register, or immediate and memory. The
are used to indicate specific instances of these registers. Thejump instructions have several forms, depending on whether
destination is always the first operand listed.the target is in the same segment or a different segment.

BIBLIOGRAPHYCray X-MP Vector Computer

The Cray X-MP was a pipelined vector processor consisting of N. Chapin, 360 Programming in Assembly Language, New York:
McGraw-Hill, 1968.two identical vector-extended RISC-based CPUs, which

J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, Cambridge,shared a common main memory and I/O subsystem. This dis-
MA: MIT Press, 1986.cussion is limited to the vector instruction set only. Each pro-

A. Gill, Machine and Assembly Language Programming of the PDP-cessor had eight 64 bit vector registers and eight vector func-
11, Englewood Cliffs, NJ: Prentice-Hall, 1978.tional units: integer add, two logical, shift, population count/

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-parity, floating point add, floating point multiply, and floating
tative Approach, San Mateo, CA: Morgan Kaufmann Publishers,point reciprocal.
1990.The X-MP was a vector-register (RR) architecture, per-

K. Hwang, Advanced Computer Architecture, New York: McGraw-forming all vector operations, with the exception of ‘‘load’’ and Hill, 1993.
‘‘store,’’ in the vector registers. The alternative memory-mem- G. Kane, MIPS RISC Architecture, Englewood Cliffs, NJ: Prentice-
ory vector architecture (SS) was used in some early machines, Hall, 1988.
but has been discarded in favor of the RR architecture. In- K. A. Robbins and S. Robbins, The Cray X-MP/Model 24, Lecture
structions were either two-address (source and destination): Notes in Computer Science #374, New York: Springer-Verlag, 1989.

MAYA GOKHALE

Sarnoff Corporation
opcode destination source

JUDITH D. SCHLESINGER

IDA/Center for Computing Sciencesor three-address (two sources and a destination):

