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FORMAL LOGIC

Formal logic originates with Aristotle and concerns the activ-
ity of drawing inferences. Of course, by the time language de-
veloped, humans had deduced conclusions from premises, but
Aristotle inaugurated the systematic study of the rules in-
volved in the construction of valid reasoning. The first impor-
tant discovery of this approach was that the logical structure
of sentences and deductions is given by some relations be-
tween signs in abstraction from their meaning. This aspect
explains the attribute formal. Since the mid-nineteenth cen-
tury, modern logic has emphasized this aspect by developing
logic notational systems. In this sense it is also referred to as
symbolic logic, or mathematical logic, inasmuch as the emer-
gence of the symbolic perspective was stimulated by certain
trends within mathematics, namely, the generalization of al-
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gebra, the development of the axiomatic method, especially in The extension of model- and proof-theoretic approaches to
fields other than mathematics has become, especially sincegeometry, and the tendency, above all in analysis, to find ba-
the 1960s, an important area of investigation, related to oldsic concepts for a foundation of mathematics. The elaboration
problems in philosophical logic and to alternative approachesof the formal method in modern logic was pioneered by Leib-
in the foundation of mathematics (6). In fact, many interest-niz (1646–1716) and was given its fundamental basis in the
ing situations require the formalization of concepts that areworks of De Morgan (1806–1871), Boole (1815–1864), Peirce
beyond the scope of typical mathematical problems—for ex-(1839–1914), Schöreder (1841–1902), Frege (1848–1925),
ample, constructive reasoning, modal notions, spatiotemporalPeano (1858–1932), Hilbert (1862–1943), Russell (1872–
relations, epistemological states, knowledge representation,1970), Löwenheim (1878–1957), Skolem (1887–1963), Post
natural language comprehension, and computational pro-(1897–1954), Tarski (1901–1983), Church (1903–?), Gödel
cesses. All logical systems that deal with these subjects con-(1906–1978), Herbrand (1908–1931), Gentzen (1909–1945),
stitute the realm of nonclassical, or alternative, logics. TheKleene (1909–?), and Turing (1912–1954). Church’s book (1)
following are some nonclassical logics (and thinkers): intu-is a source of information for the history of logic before 1956;
itionistic logic (Brower, Heyting), modal logic (Lewis, Lang-another valuable, and more recent, historical survey is
ford), temporal logic (Prior, Fine), intensional logic (Kripke,Moore’s (2); some fundamental works of modern formal logic
Montague), and linear logic (Girard). Comprehensive essaysare collected in (3,4).
in these fields can be found in Refs. 5–9.In logic, the essential aspect of the formal method consists

This wide spectrum of applications indicates the centralityof a clear distinction between syntax and semantics. This is
and vitality of formal logic; moreover, the logical nature ofan intrinsic feature of any formal language as opposed to a
computability (10a), the search for automated deduction sys-natural language. Syntax establishes which (linear) arrange-
tems (10), and the importance of almost all nonclassical logicsments of symbols of a specified alphabet should be considered
for computer science (5,7,11) show that the connection be-as well-formed expressions, the categories in which they are
tween formal logic and computer science is so deep that it canclassified, and the symbolic rules following which some rela-
be compared to the relationship between classical mathemat-tions between expressions are defined. Semantics establishes
ics and physics.how to define the general concepts of interpretation, satisfia-

First-order or (elementary) predicate logic is the basic logi-bility, truth, consequence, and independence. This distinction
cal system on which proof theory and model theory are built.does not mean that syntax and semantics are opposed, but
It is also the basis for a deep understanding of advanced logi-rather complementary. In fact, syntax, defined separately
cal systems. The following sections present the fundamentalfrom semantics can elaborate formulae by using only symbolic
results of predicate logic. Let us take a preliminary look atinformation which, by virtue of its nature, can be encoded in
the symbolization process in logic. Consider seven logical sym-physical states of machines, and thus calculated or mecha-
bols: ¬, ∧, ∨, �, }, �, �. Assume for them these intuitivenized. Semantics, which deals with no particular interpreta-
meanings: ¬� asserts the negation of the sentence �; � ∧ �tion of symbols, can formally define logical validity, which is
asserts the conjunction of the two sentences � and �; � ∨ �

conceived, according to Leibniz’s definition, as truth in all asserts their disjunction, that is, that at least one of them
possible worlds. holds; � � � asserts that � implies �; and � } � asserts the

However, it took many decades for modern logic to make a equivalence between � and �, that is, that either both senten-
clear and rigorous distinction between syntax and semantics. ces hold, or neither holds. Moreover, let us fix a domain where
Such a distinction originated with the Warsaw School of variables range; then �x� means that � holds for any value
Logic, and the first steps were made by Tarski, in the 1930s, of x, while �x� means that there exists at least one value of
toward its notion of interpretation of logical languages. x that makes the sentence � true. Let us consider an example.

Syntactical and semantical methods are the approaches We use (i) three variables x, y, and z ranging on the individu-
from which the two main branches of modern mathematical als of some biological population with sexual reproduction
logic stem: proof theory and model theory. Proof theory is and (ii) four predicate symbols P, A, M, F such that P(x, y)
strictly related to the theory of effective processes, and thus means x is a parent of y, A(x, y) means x is an ancestor of y,
it is connected to the notion of computation and algorithm. M(x) means x is a male, and F(x) means x is a female. By using
This field grew as an autonomous theory after the seminal logical symbols, predicate symbols, variables, and parenthe-
work of Turing (1936), where the first mathematical model of ses, we can put into formulae many sentences expressing
a computing machine was introduced. Computability, or re- some common facts about sexual reproduction:
cursion theory in a more abstract perspective, was developed
chiefly by Turing, Post, Gödel, Church, Kleene, Curry, and • �x(�y(P(y, x) ∧ M(y))) (Everybody has a father).
von Neumann, in connection with automata and formal lan- • �x(�y(P(y, x) ∧ F(y))) (Everybody has a mother).
guages theory (5).

• �x(M(x) ∨ F(x)) (Everybody is either male or female).Since its inception, model theory has been strictly related
• �x(¬(A(x, x))) (Nobody is a self-ancestor).to the foundational theories of mathematics: set theory and
• �x(�y((P(x, y) � A(x, y)))) (Parents are ancestors).arithmetic, along with many classical algebraic and geometric

theories. Moreover, analysis too was able to benefit from the • �x(�y(�z((A(x, y) ∧ P(y, z)) � A(x, z)))) (The ancestors of
model-theoretic perspective: Nonstandard analysis, due to parents are ancestors too).
Abraham Robinson in the 1960s, gives, in purely logical
terms, a rigorous foundation to the infinitesimal method of These sentences constitute the axioms of a theory. Can we
early (pre-Cauchy and pre-Weierstrass) analysis, as devel- interpret them in a different domain, with different meanings

for predicate symbols, in such a way that they could be trueoped by Leibniz.
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in this new interpretation as well? With a more detailed anal- constants. Let us indicate by �fun
n the set of n-ary function

symbols of �, and by �rel
n the set of n-ary relation symbols of �.ysis, we discover that these axioms cannot be fulfilled by real

biological populations, inasmuch as it is possible to show that Let V be a set of symbols for individual variables (usually
letters from the end of the alphabet, with or without sub-they require a domain (if nonempty) with infinitely many in-

dividuals. On the other hand, we can interpret these formulae scripts). The sets T�(V) of �-terms of variables V, along with
the sets F�(V) of �-formulae of variables V, consist of se-on natural numbers. However, how can we prove that a fa-

ther’s uniqueness is not a consequence of the given axioms? quences of symbols in the alphabet:
And, in what sense is ¬�x(�y((A(x, y))))—that is, the nonex-
istence of a common ancestor for all individuals—a logical � ∪ V ∪ {¬, ∧, →, ↔, ∀, ∃, =, (, )}
consequence of them? Is there an algorithm for generating all

defined by the following inductive conditions (where ⇒ is thethe logical consequences of these axioms? The theory devel-
usual if–then implication):oped in the following sections will provide general answers to

these questions.
• c � �fun

0 ⇒ c � T�(V)In mathematical logic the relationship between mathemat-
ics and logic is twofold: On the one hand, mathematics pro- • v � V ⇒ v � T�(V)
vides tools and methods in order to find rigorous formulations • n 
 0, f � �fun

n , t1, . . ., tn � T�(V) ⇒ f (t1, . . ., tn) �
and solutions to old logical problems; on the other hand, the T�(V)
logical analysis of mathematical concepts (after Hilbert, meta- • Q � �rel

0 ⇒ Q � F�(V)
mathematics) tries to define general notions and notations

• n 
 0, p � �rel
n , t1, . . ., tn � T�(V) ⇒ p(t1, . . ., tn) �where all mathematical theories can be expressed. These two

F�(V)aspects have been strictly related since the early development
• t1, t2 � T�(V) ⇒ (t1 � t2) � F�(V)of mathematical logic. Indeed, one of the most important re-
• � � F�(V) ⇒ (¬�) � F�(V)sults of the twentieth century was the definition of a founda-

tional framework, essentially common to almost all mathe- • �, � � F�(V) ⇒ (� ∧ �) � F�(V)
matical theories. This framework relies on two theories which • �, � � F�(V) ⇒ (� ∨ �) � F�(V)
can be briefly depicted by two evocative expressions: Cantor’s

• �, � � F�(V) ⇒ (� � �) � F�(V)
Paradise, according to a famous definition of set theory by

• �, � � F�(V) ⇒ (� } �) � F�(V)Hilbert, and Peano’s Paradise, an analogous expression
• v � V, � � F�(V) ⇒ (�v�) � F�(V)adopted to indicate induction principles. Sets and induction,

besides their enormous foundational aspect, are also the basis • v � V, � � F�(V) ⇒ (�v�) � F�(V)
for the syntax and the semantics of predicate logic which will
be presented below. A (predicate) formula, or simply a predicate, is a formula of

F�(V) for some signature � and for some set V of variables. AHereafter the basic notation and concepts of set theory and
arithmetic will be assumed: membership, inclusion, classes, propositional formula is a predicate formula built on proposi-

tional symbols and connectives. Letters �, �, . . . (from thesets (i.e., classes which belong to other classes), the set � of
natural numbers �0, 1, 2, . . .�; operations, sequences, rela- end of the Greek alphabet) stand for predicate variables, that

is, meta-variables ranging over predicate formulae. The ex-tions, functions (or maps); equivalence and ordering relations;
countable (finite or denumerable) and more than countable pression �(x, y, . . .) denotes a predicate where variables

among x, y, . . . may occur. In this case, if t, t�, . . . arecardinalities; graphs and trees with König’s tree lemma (if an
infinite tree has a positive but finite number of nodes at any terms, then �(t, t�, . . .) denotes the formula �(x, y, . . .) after

replacing all the occurrences of x, y, . . . by t, t�, . . ., respec-level, then the tree has an infinite branch); and finally, induc-
tion principles for proving statements and for defining sets, tively. A formula where symbols do not belong to a specific

signature is considered to be a predicate schema. A predicatefunctions, or relations.
The next seven sections describe the basic concepts and schema built on variables for propositional symbols is a prop-

ositional schema. A formula is said to be atomic if no connec-results in predicate logic. The final two sections outline some
aspects centered around the notion of logical representability. tives or quantifiers occur in it. The set var(t) of variables oc-

curring in a term t can easily be defined by induction. In theThis is the basis for many applications of formal logic and for
a logical analysis of computability, which is the core discipline formulae �v�, �v� the formula � is said to be the scope of the

quantifiers � and �, respectively. In this case the occurrenceof theoretical computer science. In Refs. 1 and 12–16 there
are some valuable presentations of predicate logic, along with of variable v is said to be bound or apparent. An occurrence

that is not bound is said to be free. A formula which does notintroductions to the main branches of mathematical logic; log-
ical representability is studied in depth in Refs. 17 and 18; contain free occurrences of variables is said to be a sentence;

F� is the set of sentences on the signature �; and T� is the setand many important developments and applications of math-
ematical logic are presented in Refs. 6, 7, and 11. of �-terms without variables, also called closed terms. The set

free(�) of variables having free occurrences in the formula �
can easily be defined by induction. The notions of subterm
and subformula, the replacement of variables by terms, theTHE SYNTAX OF PREDICATE LOGIC
replacement of subterms by other terms, and the replacement
of subformulae by other formulae can easily be defined by in-A signature � is a set of symbols for denoting functions and

relations. Each symbol is equipped with a number expressing duction. When a term t replaces a variable x in a formula �,
t is assumed to be free in � with respect to (w.r.t.) x; that is,its arity. Relation symbols of arity 0 are called propositional

symbols; function symbols with arity 0 are called (individual) no variable of t will be bound after the replacement.
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Parentheses are usually omitted, provided that there is no ambiguously use � for the equality symbol of predicate logic,
the equality between individuals of a model, and the equalityambiguity, or if any ambiguity which is thereby introduced is

irrelevant. Parentheses are also omitted by assuming that between sets; moreover, ⇔, X� , � will denote the equivalence
between assertions, the nonsatisfaction relation, and the non-unary logical symbols are connected to a formula in the

rightmost order, for example, �v¬� stands for (�v(¬�)); unary equality relation, respectively; a comma between assertions
will indicate their conjunction.logical symbols precede binary connectives, for example, ¬� ∨

� stands for ((¬�) ∨ �); and connectives ∧, ∨ tie the constit-
uent formulae more closely than �, }. Finally, �u�v� is usu- Definition 1
ally abbreviated to �uv� (and �u�v� to �uv�).

THE SEMANTICS OF PREDICATE LOGIC

Given a signature � such that

1. �fun
0 � �a, b, . . .�

2. �n
0�
fun
n � �f , g, . . .�

3. �n
0�
rel
n � �p, q, . . .�

a � structure M defined as

M |= Q ⇐⇒ QM = 1

M |= p(t1, . . ., tn) ⇐⇒ 〈tM
1 , . . ., tM 〉 ∈ pM

M |= (t1 = t2) ⇐⇒ tM
1 = tM

2

M |= ¬ϕ ⇐⇒ M � ϕ

M |= (ϕ ∧ ψ) ⇐⇒ M |= ϕ, M |= ψ

M � (ϕ ∨ ψ) ⇐⇒ M � ϕ, M � ψ

M � (ϕ → ψ) ⇐⇒ M |= ϕ, M � ψ

M |= (ϕ ↔ ψ) ⇐⇒ M |= (ϕ → ψ), M |= (ψ → ϕ)

M |= ∀vϕ(v) ⇐⇒ {a|Ma |= ϕ(a)} = |M |
M |= ∃vϕ(v) ⇐⇒ {a|Ma |= ϕ(a)} �= ∅

M = 〈A, aM , bM , . . ., f M , gM , . . ., pM , qM , . . . 〉

consists of: (a) a nonempty set A, called the domain of M , The semantics given for � sentences allows us to interpret a
where some elements aM , bM , . . . belong to A; (b) some oper- predicate �(x1, . . ., xk), with k free variables, into the k-ary
ations f M , gM , . . . on A whose arities are those of f , g, . . . relation (�(x1, . . ., xk))M on the domain of a � model M . In
respectively (an n-ary operation on A is a function from the fact, let a1, . . ., ak � �M �, and let �a1,. . .,ak

be the signature �
n-sequences of A in A); and (c) some relations pM , qM , . . . on extended with the elements a1, . . ., ak as constants. We de-
A whose arities are those of p, q, . . ., respectively (an n-ary note by M a1,. . .,ak

the �a1,. . .,ak
model which extends M , where

relation on A is a set of sequences of n elements of A). We aM
i � ai for 1 � i � k; therefore we can define

identify relations of arity 0 with two elements called truth
values, denoted by 1, 0 (true, false). The domain of M will be 〈a1, . . ., ak〉 ∈ (ϕ(x1, . . ., xk))M ⇐⇒ Ma1 ,..., ak

|= ϕ(a1, . . ., ak)
denoted by �M �.

For example, the structure A R of standard arithmetic We put
has the signature �0, 1, 	, 
, ��, where 0, 1 are constants, 	,

 are binary operation symbols, and � is a binary relation
symbol. We indicate it by

TH(M ) = {ϕ ∈ F�|M |= ϕ}
MOD�(ϕ) = {M ∈ MOD� |M |= ϕ}

AR = 〈ω, 0AR, 1AR, +AR, ×AR, ≤AR〉
Let M � be the model which extends M with all the elements
of its domain �M � as self-referential constants (aM � a for allwhere 0A R , 1A R , 	A R , 
A R , �A R are the usual meanings
a � �M �). The set DIAG(M ), called diagram of M , is consti-associated with the corresponding symbols. In the following
tuted by the atomic formulae, or the negations of atomic for-the superscripts are dropped; that is, we use ambiguously the
mulae which belong to TH(M �). It is easy to verify that asame notation for symbols of a signature � and for their
model M is completely identified by its diagram. Two � mod-meanings in a � structure. The context will indicate the sense
els M and M � are elementary equivalent if TH(M ) �of the notation used.
TH(M �).Let us define set-theoretic semantics for predicate logic.

When a sentence holds in a model, we also say that itsLet � be a signature, V a set of variables, and M a � struc-
truth value is true ( false otherwise). Thus, the semantics ofture. First, we extend (by induction) the interpretation c �
connectives can be expressed by the so-called truth tables,—cM , of constants of � into the domain of M , to the set T� of
that is, by giving the truth value of composite formulae inclosed � terms. To this end, it is sufficient to put
correspondence to the truth value of the constituent formulae.
For example, if 1, 0 stands for true and false, respectively, we

( f (t1, . . ., tn))M = f M (tM
1 , . . ., tM

n )
can express truth tables by the following equations:

We will denote by M a the structure obtained by M by adding
to it an element a � �M � as a new constant such that aM �
a (�a will denote the signature of M a). Let MOD� be the class
of all � structures. The following conditions define the satis-
faction relation X between a model of MOD� and a sentence

1 = (¬0) = (1 ∨ 0) = (0 ∨ 1) = (1 ∨ 1) = (1 ∧ 1) = (0 → 1)

= (1 → 1) = (0 → 0) = (1 ↔ 1) = (0 ↔ 0)

0 = (¬1) = (1 ∧ 0) = (0 ∧ 1) = (0 ∧ 0) = (0 ∨ 0) = (1 ↔ 0)

= (0 ↔ 1)

of F�. If M X �, we say that the � structure M satisfies the
� sentence � (� holds in M ). We assume that Q � �rel

0 , p � A model of a propositional formula is completely determined
by the truth value assigned to the propositional symbols—�rel

n with n 
 0, t1, t2, . . ., tn � T�, �, � � F�, v � V. We will
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that is, by a function called the Boolean valuation of proposi- 10. � ∧ � } ¬(¬� ∨ ¬�) (∧ De Morgan)
tional symbols. 11. � ∨ � } ¬(¬� ∧ ¬�) (∨ De Morgan)

A � theory is a set � of �-sentences. A �-structure M is a 12. � ∧ (� � �) � � (Detachment)
model of a � theory � if all the sentences of � hold in M . The

13. (� � �) } (¬� � ¬�) (Contraposition)set MOD�(�) is so defined:
14. (� � (� � �)) } (� ∧ � � �) (Exportation)
15. ((� � �) ∧ (� � �)) � (� � �) (Syllogism)
16. ((� ∨ �) ∧ (¬� ∨ �)) � (� ∨ �) (Resolution)

MOD�(�) =
⋂
ϕ∈�

MOD�(ϕ)

17. (� � �) } ¬� ∨ � (Implication by ∨, ¬)
A � theory � is satisfiable if it has a model, that is,

18. (� } �) } (� � �) ∧ (� � �) (Equivalence by �, ∧)MOD�(�) � 0�; otherwise it is unsatisfiable.
19. ¬�x� } �x¬� (� Negation)A � sentence � is logically valid if it is valid in any � struc-
20. �x�(x) � �(t) (� Elimination)ture:
21. �(t) � �x�(x) (� Introduction)

MOD�(ϕ) = MOD� 22. QxQy� } QyQx� (Q Repeating)
23. Qx�(x) } Qy�(y) (Q Renaming)In this case it represents a logical law, and we also write
24. (Qx�(x) � �) } Qx(�(x) � �) (Q Prefixing w.r.t. �, x �

var(�))|= ϕ

25. (�x� � �) } �x(� � �) (� Prefixing w.r.t. �, x �
A propositional � formula which is logically valid is called a var(�))
tautology. A � sentence � is a logical consequence of a � theory 26. (�x� � �) } �x(� � �) (� Prefixing w.r.t. �, x �
� if any model of � is also a model of �: var(�)).

MOD�(�) ⊆ MOD�(ϕ)
If (nonlogical) symbols occurring in a predicate schema can be
instantiated by symbols of some signature �, then the schema

In this case we also write can be interpreted in a �-structure as if it were a �-formula.
In this case it is logically valid if it holds in any �-structure,� |= ϕ
and of course, any instance of it is a logically valid formula.
A propositional schema that is logically valid is called a tauto-Of course, MOD� � MOD�(0�), and therefore X � is equivalent
logical schema. Given a set AX of sentences or predicate sche-to saying that � is a logical consequence of the empty set (of
mata, an axiomatic theory of axioms AX is the set of all sen-sentences). The notation introduced above gives rise to two
tences that are logical consequences of AX, which in thisdifferent, though related, meanings for the symbol X: (a) sat-
context are also called theorems of the theory.isfaction of a sentence in a model and (b) logical consequence

of a sentence from a theory.
Example 2 (Peano’s Arithmetic). The theory PA has theIf SR are the axioms of the theory of sexual reproduction,
usual arithmetical signature ��, 	, 
, 0, 1�, and consists ofconsidered in the introduction, then a father’s uniqueness is
the following axioms. PA is an infinite theory because its lastnot a logical consequence of SR; that is, SR X� �xyz(P(x, z) ∧
axiom is the axiom schema of the induction principle (�(x)P(y, z) ∧ M(x) ∧ M(y) � x � y). Indeed, we can define a model
ranges on predicates with a free variable x).

N for SR on the domain � of natural numbers by putting

• �x¬(0 � x 	 1)
• �xy(x 	 1 � y 	 1 � x � y)

PN (n, m) ⇐⇒ AN (n, m) ⇐⇒ n > m

MN = FN = ω
• �x(x 	 0 � x)

Therefore, N X SR, but N X� �xyz(P(x, z) ∧ P(y, z) ∧ M(x) ∧ • �xy(x 	 (y 	 1) � (x 	 y) 	 1)
M(y) � x � y). • �x(x 
 0 � 0)

• �xy(x 
 (y 	 1) � (x 
 y) 	 x)
Example 1 Important Logical Laws (� � �∧, ∨�, Q � ��, ��):

• �xy(x � y } �z(x 	 z � y))
• (�(0) ∧ �x(�(x) � �(x 	 1))) � �x�(x)1. (� � �) } (� � �) (Commutativity)

2. (� � (� � �)) } ((� � �) � �) (Associativity)
Another important arithmetical theory is Raphael Rob-

3. (� ∧ (� ∨ �)) } ((� ∧ �) ∨ (� ∧ �)) (Distributivity of ∧ inson’s theory RR (17) which essentially coincides with
w.r.t. ∨) DIAG(A R ).

4. (� ∨ (� ∧ �)) } ((� ∨ �) ∧ (� ∨ �)) (Distributivity of ∨ A very interesting theory, which we call SS (an acronym
w.r.t. ∧) for standard syntax), is the diagram of the following structure:

5. (� ∧ �) ∨ � } � (∧∨ Absorption)
SEQ = (ω∗, 0, λ, −−, ‖, ≤, �)6. (� ∨ �) ∧ � } � (∨∧ Absorption)

7. � � � } � (Idempotence) where �* is the set of finite sequences of natural numbers (0
8. ¬¬� } � (Double negation) is the number zero and � the empty sequence), �� is the

concatenation of sequences (usually indicated by juxtaposi-9. � ∨ ¬� (Excluded middle)
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tion), �� is the length of a sequence (where numbers are se- Tautologies can be determined not only by means of truth
tables, but also with a calculus based on Boole’s axioms (es-quences of unitary length), � is the usual ordering relation

on numbers, and � is the substring inclusion. Many basic re- sentially the logical laws on ¬, ∧, ∨ considered in the example
in the previous section). Given a sentence �(�), where � oc-lations on finite strings can be logically encoded by predicates

within theories which extend SS (see later). curs as a subformula, let us indicate by �(�) a sentence where
in �(�) some occurrences of � are replaced by �. As a simpleThe implication connective needs to be considered with

considerable attention in order to explain its counterintuitive consequence of the way truth tables are constructed, we have
behaviors, known as paradoxes of material implication. In
fact, according to its formal semantics, an implication � � � |= ψ ↔ χ ⇒ ϕ(ψ) ↔ ϕ(χ)

is true when � is false or � is true. Therefore, the proposition
Boole’s calculus is an algebraic calculus in the usual sense,‘‘If 1 � 0, then there are infinite prime numbers’’ is true, al-
based on the replacement of equivalent subexpressions. Twothough it appears to make no sense. Moreover, given a model
propositional formulae �, � are equivalent according to thisM , we can verify that
calculus when, after changing the formula � into ��, so that
connectives �, } are expressed in terms of ∧, ∨, ¬, it is possi-M |= ϕ → ψ ⇐⇒ (M |= ϕ ⇒ M |= ψ)

ble to find a sequence of formulae starting with �� and ending
but the implication ⇒ which appears in this equivalence does with �, where at any step a subformula � is replaced by a
not mean that we can prove the validity of � in M , from the formula � if � } � is a Boole’s axiom. For example,
validity of � in M . In fact, given two sentences � and �, it
is easy to verify that, in any model, at least one of the two
implications � � � or � � � has to be true. Nevertheless,

ϕ → (ψ → θ ) ⇒ ¬ϕ ∨ (¬ψ ∨ θ ) ⇒ (¬ϕ ∨ ¬ψ) ∨ θ

⇒ ¬(ϕ ∧ ψ) ∨ θ ⇒ ϕ ∧ ψ → θ
there are models where we cannot prove either the validity of
� from the validity of �, or that � holds because � holds. One Boole’s axioms are sufficient to transform any propositional
of the great merits of formal logic is the rigorous definition of formula in normal disjunctive form. Therefore, since a truth
two forms of implication: � (material implication) and X ( for- table is uniquely determined by a normal disjunctive form,
mal implication). These two forms select two specific mean- we get the following proposition.
ings of ⇒ and allow us to avoid the intrinsic vagueness re-
lated to the psychological content of the ordinary if–then. Proposition 2 (Completeness of Boole’s propositional calcu-
Although these implications are adequate for the usual needs lus). Two formulae �, � are equivalent according to Boole’s
of mathematical formalization, the search for other rigorous calculus iff (if and only if) they have the same truth table.
forms of implication is nevertheless a central issue in con-
structive and alternative logics. Propositional logic is strictly connected to the theory of combi-

The difference between material implication and formal natorial circuits in the logical design of computer systems.
implication relies on the two different notions they are based Relevant aspects in this regard are: the correspondence be-
on: truth and proof, respectively. A proposition or its negation tween propositional formulae and combinatorial circuits, the
has to be true, but, as we will see, there are axiomatic theo- search for connectives that can express all propositional for-
ries where for some sentence �, neither sentence � nor sen- mulae, and the techniques for minimizing some complexity
tence ¬� is a logical consequence of the axioms. parameters in circuit design. For example, there are 16 differ-

ent binary connectives and in general 22n
n-ary connectives.

Moreover, disjunctive (or conjunctive) normal forms and DePROPOSITIONAL LOGIC
Morgan laws tell us that any propositional formula is equiva-
lent to a formula where only the connectives ∧, ¬ or only ∨, ¬A literal is an atomic formula or the negation of an atomic
occur. If we express ∨ (or ∧) by means of ¬ �, we obtain anformula. A formula constituted by the disjunction of conjunc-
analogous result for the pair of connectives �, ¬; moreover,tions of literals is said to be a disjunctive normal form. Like-
if we set P nand Q � ¬(P ∧ Q), then any propositional formulawise, the conjunction of disjunctions of literals is a conjunctive
can be equivalently expressed only in terms of the connectivenormal form.
nand (likewise for nor defined as P nor Q � ¬(P ∨ Q)).

In propositional logic we can state one of the most chal-Proposition 1 (Disjunctive Normal Forms). Any proposi-
lenging problems in theoretical computer science: Given ational formula is equivalent to some disjunctive normal form.
propositional formula, does there exist a deterministic Turing

Proof. Let us set 1� � � and 0� � ¬�. Let P1, . . ., Pk be the machine (see later) which can decide whether the formula is
propositional symbols of � and suppose that h1, . . ., hm are satisfiable (belongs to SAT), in a number of steps that is a
the Boolean valuations for which the � results are true (m 
 polynomial function on the number of occurrences of proposi-
0, otherwise the proposition is trivial). Then, according to the tional symbols? This problem (5) is a sort of mother problem,
semantics of ∧ and ∨, we get (hi

Pj
is the truth value that hi because a great number of combinatorial problems on graphs,

assigns to the propositional symbol Pj, for 1 � i � m and 1 � trees, strings, automata, and finite sets can be translated into
j � k): particular instances of it. If this problem were solved, it would

lead to the striking conclusion that problems solvable in poly-
nomial time by means of nondeterministic algorithms couldϕ ↔ (h1

P1
P1 ∧ · · · ∧ h1

Pk
Pk) ∨ · · · ∨ (hm

P1
P1 ∧ · · · ∧ hm

Pk
Pk)

also be solved in polynomial time in a deterministic way. This
would imply the coincidence of the two classes of problemsFrom De Morgan laws it follows that any propositional for-

mula can be put in the conjunctive normal form. usually indicated by P and NP.
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Let us conclude this section with a fundamental theorem. in T the leaf with the entire rule (Proper Tableaux
rules).

Theorem 1 (Compactness of Propositional Logic). A denu- 5. If �(t1) and t1 � t2 are labels occurring in a branch of
merable theory � of propositional formulae is satisfiable iff (if T, then we get a new � tableaux by adding to the
and only if) any finite subset of � is satisfiable. branch �(t2) (where t2 replaces t1) or t2 � t1 (Replacement

Rule and Symmetry Rule).
Proof. If � is satisfiable, then obviously any subset of � is
satisfiable. Therefore, let us prove the reverse implication. As- In the � rule, t indicates any � term without variables, while
sume that any finite subset of � is satisfiable. First, let us in the ¬� rule a indicates an individual constant that is
suppose that � has a finite set of propositional symbols. In uniquely determined by the formula where it is introduced.
this case, all the possible Boolean valuations of � constitute This constant is also called a witness of the formula or even
a finite set �f 1, . . ., f k�. We claim that one of them satisfies its Henkin constant. The uniqueness of this constant implies
�. In fact, suppose that no Boolean valuation could satisfy �. that the ¬� rule can be only applied once (apart from irrele-
For any 1 � i � k, let �ni

be a formula of � such that f i does vant repetitions).
not satisfy �ni

. By hypothesis, ��n1
, . . ., �nk

� has to be satisfi- A branch of a � tableaux T is said to be closed when some
able (it is finite), but this means that for some j, 1 � j � k, f j formula and its negation occur in T; if all the branches of T
satisfies ��n1

, . . ., �nk
�; thus in particular, f j would satisfy are closed, then also T is said to be closed.

�nj
, against the definition of �nj

. We say that the formula � derives from � according to the
When the propositional symbols of � are a denumerable tableaux method, if there exists a � � �¬�� tableaux which is

set, we consider an enumeration of them (P1, P2, . . ., Pn, . . ., closed. In this case we write
and construct the following labelled tree. We put at the root
of the tree the empty valuation of propositional symbols. � �T ϕ
Then, given a node at level n, we add a son to it and label it
with an assignment of a truth value to the propositional sym- (avoiding the subscript when it is arguable).
bol Pn	1, only if this assignment, together with the assign-
ments associated with the ancestors of the current node, does Example 3. The following is a closed ��x¬(�(x) ∧ ¬�(x)) ∧
not make unsatisfiable the first n 	 1 proposition of �. Ac- (�x�(x) ∧ ¬�x�(x))� tableaux. In fact (only Introduction and
cording to our hypothesis, any finite set of � is satisfiable. Coping rules are indicated),
Therefore, at any level, we can assign a truth value to a new
propositional symbol. This implies that the tree is infinite,
thus for König’s lemma, it has an infinite branch. This branch
leads to a Boolean valuation that satisfies �.

COMPLETENESS AND COMPACTNESS

This section presents a method for establishing whether a
sentence � is a logical consequence of a theory �. For the sake
of brevity, we use only logical symbols �¬, ∧, �� (the others can
easily be expressed in terms of these symbols). The method is
mainly based on the following rules expressed by labeled
trees and called ∧ rule, ¬∧ rule, � rule, ¬� rule:

∀x¬(ϕ(x) ∧ ¬ψ(x)) ∧ (∀xϕ(x) ∧ ¬∀xψ(s)) Introduction

∀x¬(ϕ(x) ∧ ¬ψ(x))

∀xϕ(x) ∧ ¬∀xψ(x)

∀xϕ(x)

¬∀xψ(x)

¬ψ(a)

∀xϕ(x) Coping

ϕ(a)

∀x¬(ϕ(x) ∧ ¬ψ(x)) Coping

¬(ϕ(a) ∧ ¬ψ(a))∧
¬ϕ(a) ¬¬ψ(a)

ψ(a)

   � 

�

�

� �

�( )  x   x ∀

��

�    � � �   x ∀� 

 �

( )

 a( ) t( )

 x( )

A theory � is (tableaux) consistent iff no closed � tableauxGiven a � theory �, a � tableaux is a tree with nodes labeled
exists. It is easy to understand that if some closed (� � �¬��)by � sentences, according to the following (inductive) defini-
tableaux exists, then � � �¬�� is unsatisfiable, and that � �tion, where T is any � tableaux (when no confusion arises,
�¬�� is unsatisfiable iff � X �:nodes are identified by their labels).

� � ϕ ⇒ MOD�(� ∪ {¬ϕ}) = ∅ ⇔ � |= ϕ1. Any tree with only one node which is labelled by a sen-
tence of � is a � tableaux.

This implies the inclusion � 	 X, that is, the soundness of
2. If we add a leaf to a branch of T and assign to it a label the � relation:

� � � (Introduction Rule), or a label which already oc-
curs in the branch (Coping Rule), then we get a new � � � ϕ ⇒ � |= ϕ
tableaux.

3. If a label ¬¬� occurs in T, it can be replaced by � (Dou- The reverse implication is a consequence of the completeness
ble Negation Rule). theorem which we will show, after introducing the concept of

systematic tableaux. Intuitively, this is a � tableaux where4. If a leaf of T coincides with the root of one of the ∧, ¬∧,
�, ¬� rules, then we get a new � tableaux by replacing all formulae of � occur in any nonclosed branch and where, if
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a tableaux rule can be applied, then it is applied in all the is, �c	 � [c], (b) any n-ary function symbol f into the function
�f 	 such that, for every �t1	, . . ., �tn	 we havepossible ways.

Given a countable, consistent � theory �, the systematic �
tableaux is defined in the following way. [[ f ]]([[t1]], . . ., [[tn]]) = [ f (t1, . . ., tn)]

Let us consider an enumeration ��i�i � �� of all � sentences
and (c) any n-ary relation symbol p into the n-ary relationwhere every formula occurs infinitely many times (it is easy
�p	 such that, for every �t1	, . . ., �tn	 we haveto define such an enumeration). We proceed by a succession

of steps indexed by natural numbers. We start with a tree
constituted by only one node labeled by �x(x � x). At any step 〈[[t1]], . . ., [[tn]]〉 ∈ [[p]] ⇔ p(t1, . . ., tn) ∈ H
i � � consider �i and a nonclosed branch B of the tableaux

In this manner the previous proof can be extended to theobtained so far, then apply the following procedure.
more general case.If the sentence �i does not belong to �, or is not yet in B,

then we do not alter B. Otherwise, we add �i as a leaf of B. If
The completeness theorem can be generalized: Any consistentsome rule can be applied to �i, we apply this rule exhaus-
theory of any cardinality is satisfiable.tively. That is, if � is �x�(x), we add �(t) to B for every closed

Completeness is equivalent to the inclusion X 	 �. In fact,term t occurring in B; and if � is t1 � t2, we add t2 � t1, and
�(t2) to B, for every �(t1) which occurs in B. We repeat all this
for any other nonclosed branch, and then we go to the next
step with �i	1.

The systematic � tableaux described here is nonclosed,
otherwise � would be inconsistent. The labels of a non closed
branch constitute a theory, usually called a Hintikka set.

� � ϕ ⇒ MOD�(� ∪ {¬ϕ}) �= ∅
(by definition of � and completeness)

MOD�(� ∪ {¬ϕ}) �= ∅ ⇒ � � ϕ (by definition of |=)

� |= ϕ ⇒ � � ϕ (by transitivity and contraposition)

Theorem 2 (Completeness). Any countable consistent � the-
In conclusion, we can assert the following propositions.ory � is satisfiable.

Proposition 3 (Equivalence between X and �)Proof. We can apply the previous construction and get the
systematic � tableaux, which is nonclosed. Therefore, by Kön-

� |= ϕ ⇐⇒ � � ϕig’s lemma, this tableaux has a nonclosed branch H. We prove
that H determines a model for its labels and thus for �. First,
let us assume that in � neither the equality symbol nor func-

Proof. The inclusion � 	 X holds for soundness, while thetion symbols occur.
inclusion X 	 � holds for completeness.Let us define a � model where the domain is the set of all

constants occurring in H (each constant interpreted into it-
The completeness theorem implies two other important prop-self) and where any n-ary relation symbol p is interpreted as
erties: finiteness and compactness.the relation �p	 such that 
t1, . . ., tk� � �p	 if the atomic for-

mula p(t1, . . ., tk) occurs in H. In this model if � � H, then �
Proposition 4 (Finiteness)is true. We verify this statement by induction on the number

of occurrences of symbols ∧, �.
� |= ϕ ⇐⇒ � |= ϕAn atomic formula � � H is true by virtue of the given

interpretation. If � � ¬� and � is atomic, then � cannot be-
for some finite subset � of �.long to H because in this case H would be closed; therefore �

is false, and thus � is true.
Proof. The verse ⇒ is trivial. By the equivalence theoremIf � ∧ � � H, then since H is a branch of the systematic

tableaux, � � H and � � H, so by induction hypothesis both
� |= ϕ ⇐⇒ � � ϕ� and � are true; thus � ∧ � is also true.

If ¬(� ∧ �) � H, then, again by systematicity, ¬� � H or
Moreover, � � � if there exists a closed � � �¬��-tableaux;¬� � H; that is, by induction hypothesis at least one of these
obviously, such a tableaux is finite, and thus only a finitetwo formulae is true, and thus ¬(� ∧ �) is true as well.
number of sentences of � occur in it, that is, � is a logicalIf �x�(x) � H, by systematicity, for every constant a of H,
consequence of them.�(a) � H; therefore by induction hypothesis, these formulae

are true; but these constants are the individuals of our do-
The compactness property owes its name to a topologicalmain, and therefore �x�(x) is true.
space naturally definable on the set MOD�, which is compactIf ¬�x�(x) � H, by systematicity, there exists a constant a
(in the standard topological sense). The following is the usualsuch that ¬�(a) � H; but by induction, �(a) is not true, and
formulation of compactness in predicate logic.therefore �x�(x) is not true, that is, ¬�x�(x) is true.

If equality symbols or function symbols also occur in �, the
Proposition 5 (Compactness). A theory � is satisfiable iffprevious model has to be modified in the following manner.
every finite subset of � is satisfiable.Let us consider an equivalence relation � such that t � t� iff

(t � t�) � H. Then, we put as domain the set T�/� of equiva-
lence classes of closed terms occurring in H, and we interpret Proof. If every finite subset of � is satisfiable, due to the

soundness property, no closed � tableaux can exist; therefore(a) any constant c into its equivalence class [c] w.r.t. �, that
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� is consistent, and thus for the completeness theorem it is added to the theory). By compactness, this theory has a model
that is also a model of PA, nevertheless, in this model wesatisfiable.
have a nonstandard number inasmuch as it expresses a sort
of infinite quantity. This kind of phenomenon, strictly con-Compactness implies important consequences for predicate
nected to Skolem’s paradox, not only can be considered a lim-logic. Consider the theory DEN � ��n�n � �� of denumerabil-
itative result of the expressibility of predicate logic, but is alsoity, where for every natural number n, �n is a sentence which
the basis for the powerful application of formal logic in theasserts the existence of at least n different individuals (it can
analysis of infinite and infinitesimal quantities. In fact, non-be constructed with ¬, �, �, and n variables). By using this
standard analysis, founded by Robinson, who elaborated ontheory we can see that any theory � with models of any finite
this idea, gives a rigorous treatment of actual (versus poten-cardinality has a model with infinite cardinality. It is suffi-
tial) infinitely big and infinitely small (real) numbers, incient to consider � � DEN. Clearly, any finite subset of this
terms of nonstandard elements. On this basis, the Cauchy–new theory has a model; therefore, by compactness, � � DEN
Weierstrass �–� theory of convergence was reformulated,has a model, which is a model of �, but it is necessarily infi-
which gave rise to new important research fields.nite because it is a model of DEN too. As a direct conse-

quence, no first-order theory can be satisfied by all and only
finite models. With similar reasonings we could show that no SKOLEM FORMS AND HERBRAND EXPANSIONS
predicate theory of well orderings can exist. Indeed, there are
well orderings with descending chains of any length; therefore Every predicate can be put in an equivalent prenex normal
any theory for these models, by compactness, should also sat- form:
isfy the existence of an infinite descending chain, which is
exactly the opposite of the well ordering definition. Q1x1Q2x2 . . . Qkxk µ

where Q1 Q2 . . . Qk is a sequence of quantifiers called prefix,LÖWENHEIM–SKOLEM THEOREMS
and � is a formula without quantifiers, called the matrix of
the form.The essence of Löwenheim–Skolem theorems is in the rela-

This is a simple consequence of the logical laws on quanti-tionship between first-order theories and cardinalities. Ac-
fiers considered in the section entitled ‘‘the Semantics of Pred-cording to these theorems, any countable theory with an
icate Logic’’ (essentially � negation, Q renaming, and Q pre-infinite model also has a denumerable model (Löwenheim–
fixing).Skolem Downward Theorem), and it even has models of any

It is easy to see that a � formula �x�y�(x, y), in prenexinfinite cardinality (Löwenheim–Skolem Upward Theorem).
form, has a model iff the formula �x�(x, f (x)), built in theThis means that predicate logic is not good at discerning the
signature that extends � with the function symbol f , has acardinalities of structures. This produces pathological effects
model. This result is generalized by the following proposition.(usual referred to as Skolem’s paradox)—for example, denu-

merable models of first-order theory of real numbers, but, at
Proposition 6. For every prenex � sentence � where � oc-the same time, models of Peano arithmetic with more than
curs, we can effectively find a sentence �� with no occurrencedenumerable domains. Technically, the Löwenheim–Skolem
of � which is built in a signature �� 
 � with new constantsDownward Theorem is a simple consequence of the system-
and/or function symbols, and such that �� is satisfiable iff �atic tableaux construction used in the proof of the complete-
is satisfiable.ness theorem. In fact, let � be a countable � theory with an

infinite model; thus the theory � � DEN (DEN being the the-
The formula �� of the previous proposition is said to be theory of denumerability) has a model, because � has an infinite

Skolem form of �. The construction of �� is the following: Ifmodel. If we consider a model obtained by a systematic � �
no universal quantification precedes the quantification �x inDEN tableaux, then it has at most a denumerable set of indi-
the prefix of �, then �x is removed from the prefix and a con-viduals, because � is a countable � theory, and thus the set
stant c is replaced at every occurrence of x in the matrix of �.T� of closed terms is denumerable. However, these individuals
If this quantification is after the sequence Q1x1 . . . Qjxj,must be a denumerable set because this model has to satisfy
then �x is removed and the term f (x1, . . ., xj) is replaced atDEN.
every occurrence of x in the matrix of �. The constant c andThe second (Upward) Löwenheim–Skolem theorem is a
the function symbol f , called a Skolem function symbol, de-simple consequence of compactness. In fact, let � be a count-
pend uniquely on the formula � and on the existential quanti-able � theory with an infinite model, then we can find for �
fications that are eliminated when they are introduced.a model of any infinite cardinality �. To this end, we extend

Of course, if we apply prenex form and Skolem form trans-the signature � with a set C of constants of cardinality � and
formations to all the sentences of a � theory �, we can find awith the set of sentences �¬(c � c�)�c, c� � C�, which also has
�� theory ��(� � ��) where any formula is in Skolem normalcardinality �. By compactness this theory is satisfiable, and
form and which is co-satisfiable with �; that is, it has a modelthus it is easy to extract from it a � model for � with cardinal-
iff � has a model. In this case we say that the set T�� of closedity �.
�� terms is the Herbrand Universe of ��. From Skolem formsLöwenheim–Skolem theorems can be generalized: Any
and the Herbrand universe, we get a propositional theory !theory of infinite cardinality � which has an infinite model
which is co-satisfiable with �:also has a model of cardinality �, for any � � �.

Let us extend Peano arithmetic with a constant c greater
than any natural number (i.e., such that formulae c 
 n are � ={ϕ(t1, . . ., tk) | ∀x1, . . ., xkϕ(x1, . . ., xk)∈ �′, t1, . . ., tk ∈ T� ′ }
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! is said to be the Herbrand expansion of ��. From its defini- The sequent calculi (19), also due to Gentzen, are strictly
related to natural deduction. In these calculi, inference rulestion and from the systematic tableaux construction it follows

that ! has a model iff � has a model. are directly stated in terms of the deduction relation. For ex-
ample, a sequent style formulation of ∧ introduction could beIn Skolem forms the universal quantification is not usually

indicated; that is, all the variables are implicitly assumed to the following:
be universally quantified.

Let us consider a Skolem form with a matrix in normal � � ϕ,� � ψ ⇒ � � ϕ ∧ ψ

conjunctive form. We may collect all the literals of its disjunc-
A central issue in sequent calculi, related to very significanttions into sets of literals called clauses. Thus, if a clause is
results in proof theory, is their cut-freeness. This can be para-considered to be true when it contains some true literal, then
phrased by saying that any proof obtained by means of athe initial Skolem form is equivalent to a set of clauses. This
lemma can be also constructed directly:clause representation can obviously be extended to an entire

theory of Skolem forms.
� � ϕ,� ∪ {ϕ} � ψ ⇒ � � ψ

Sequent calculi can be viewed as a sort of reversed tableauxLOGICAL CALCULI
method, that is, a direct formulation of tableaux rules that
are indirect or confutative, because they try to establish theA logical calculus is an effective method which defines a de-
unsatisfiability of theories.duction relation � between a � theory � and a � sentence �.

Frege–Hilbert calculi, natural deduction calculi, and se-The first logical calculi for predicate logic were developed by
quent calculi are sound and complete calculi, and thereforeFrege and Hilbert. They can be classified as axiomatic calculi,
their deduction relations are equivalent to the logical conse-because they derive logically valid formulae (logical theo-
quence relation.rems), starting from some axioms and applying some infer-

Another deduction method, due essentially to Skolem andence rules. Concise formulations of such calculi have a few
Herbrand, and confutative like the tableaux method, is basedaxioms and modus ponens as the only inference rule. For ex-
on the compactness of propositional logic and on the co-satis-ample, if we do not consider equality axioms, a possible set of
fiability between a theory � and the Herbrand expansion ofaxiom schemata (�, �, � � F�(V), t � T�(V)) is (13)
its Skolem forms. Suppose we want verify if � X �. In order
to get a positive conclusion, it is sufficient to prove the unsati-
sfiability of the theory � � �¬��. Thus, let us consider a Her-
brand expansion �� of this theory, which is co-satisfiable with
it. By (propositional) compactness, �� is unsatisfiable iff some
finite subset of �� is such. Our task can then be reduced to
enumerating all the finite subsets of �� and to testing their
satisfiability (e.g., by truth tables).

ϕ → (ψ → ϕ)

((ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)))

((¬ϕ → ψ) → ((¬ϕ → ¬ψ) → ϕ))

∀x(ϕ → ψ) → (∀xϕ → ∀xψ)

ϕ → ∀xϕ

∀xϕ(x) → ϕ(t)
A more efficient method based on the same idea is the so-

called Resolution Method. In this case, in order to prove thatMoreover, axioms are (logical) theorems, and if � and � � �
� X �, we consider Skolem forms of � � �¬�� and put it inare theorems, then � is a theorem too (modus ponens). The
clause form—that is, as a set C of clauses, where each clauseFrege–Hilbert deduction relation �FH holds between a theory
is a set of literals. We try then to get the unsatisfiability of C� and a sentence � if �1 ∧ . . . ∧ �k � � is a theorem of this
by adding new clauses to C, by means of two rules (only onecalculus for some �1, . . . �k � �.
rule in concise formulations), until we get the empty clauseAlthough such calculi are very simple and elegant, it is
(an absurdity). Let � be a substitution—that is, a functionvery difficult to construct complex deductions within them. A
from variables into terms (possibly with variables). The twovery significant result, discovered independently by Herbrand
basic rules on which the Resolution Method relies are asand Tarski (1930) and known as the Deduction Theorem,
follows:states that

• Substitution: Given a clause " � C, add to C the clause� ∪ {ψ} � ϕ ⇒ � � ψ → φ

"� obtained by replacing in " every occurrence of the
variable x with the term �(x).This implication was the starting point for some important

• Resolution: If " � ��� � C and ! � �¬�� � C, add to Cresearch, begun by Gentzen, that led to a novel idea of formal
their resolvent " � !.deduction, strictly connected to basic mechanisms of mathe-

matical proofs: natural deduction. According to this approach,
any logical operator (connective or quantifier) determines The completeness of this method is a consequence of (a) the

co-satisfiability between a theory and any clause representa-rules which express its deductive meaning. For example, if
sentences � and � are derived, then also the sentence � ∧ � tion of it and (b) the completeness of resolution rule for propo-

sitional logic.can be deduced (∧ introduction rule), while from � ∧ � both �
and � can be deduced (∧ elimination rules). A natural deduc- The Resolution Method is the basic tool of logic program-

ming (5), where clauses represent particular implicationstion of a sentence � from a theory � is a sequence of formulae
ending with � and such that every formula in the sequence called Horn formulae (which have only one positive literal).

In this case there are specific resolution strategies which pro-belongs to � or derives, according to some inference rule, from
some preceding formulae. vide a particular efficiency.
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The following simple proposition allows us to relate differ- The usual symbolic devices for defining formal languages
(grammars, automata, rewriting systems) can easily be trans-ent deduction relations.
lated into logical theories. In the following we limit ourselves

Proposition 7. Let �1 and �2 be two deduction relations. If to giving an important example of logical representability,
�1 	 �2 and �1 is complete, then also �2 is complete. (In fact, which helps us to understand the logical nature of comput-
� X � ⇒ ��1� ⇒ ��2�.) ability.

We assume that the reader is familiar with the notion of a
Turing Machine (Turing’s original paper also appears in Ref.LOGICAL REPRESENTABILITY
3). The theory TT, which we will now present, is a logical
description of Turing machines. Its signature consists of (a)Given a signature �, along with a � model M with domain
four constant symbols a0, q0, 
, �, for the blank symbol, theD, a set A 	 D is representable within M if there exists a �
initial state, the right move, and the left move; (b) a unaryformula �(x) such that for any elements a � D the following
function symbol s for generating, from a0 and q0, other sym-equivalence holds:
bols and other states; (c) a binary function symbol for concate-
nation (indicated by juxtaposition); and (d) seven unary predi-a ∈ A ⇐⇒ M |= ϕ(a)
cate symbols I, T, N, O, F, S, C such that: I(�q�) means that
the machine is in the state q, its control unit is reading the(�(a) is a formula in the signature �a which extends � with
first symbol of �, and �� fills a portion of the tape outsidethe elements a as a self-referential constant). In this case we
which there are only blank symbols; T(�) means that � fills asay that � represents logically A in M .
portion of the tape in a final configuration (when a final stateLikewise, a subset A of T� is representable within a � the-
has been reached), and outside � there are only blank sym-ory � if there exists a formula �(x) such that for any closed �
bols; O(�) means that � is an output, that is, the longestterm t we have
string in the tape of a final configuration such that � begins
and ends with symbols that are different from a0; F(q) meanst ∈ A ⇐⇒ � |= ϕ(t)
that q is a final state; S(a) means that a is an input symbol

In this case we say that � represents A within �. (a symbol different from a0), and C(a) means that a is a char-
A set A 	 T� is axiomatically represented by a finite set of acter, that is, an input or a blank symbol. Finally, in the sig-

axioms AX, within the theory �, if A is represented within � nature of TT we have a binary predicate symbol R for express-
� AX (if � is empty we say simply that A is axiomatically ing the instructions of Turing machines: R(qx, q�y 
) means
represented within AX). that when in the state q the symbol x is read, then the state

A relation, viewed as a particular set, can be logically rep- q� is reached, the symbol x is replaced by y, and the control
resented (in models or theories) by a formula with a number moves to the next symbol to the right (likewise for the left
of free variables equal to its arity. move if � occurs instead of 
).

Usual arithmetical sets and relations are representable The following axioms (where universal quantification is
within the arithmetical model A R , or within the theories tacitly assumed) allow us to derive all the possible initial con-
PA, RR, or SS. Likewise, arithmetical and syntactical rela- figurations, the way the instructions change configurations,
tions can be naturally represented in the model S E Q and in and the way an output string is recovered:
the theory SS.

For example, we can represent in SS the sum of natural 1. C(a0) ∧ I(q0)
numbers; in fact,

2. I(q0w) ∧ S(x) � I(q0wx)
3. (uv)w � u(vw)AR |= n + m = k ⇐⇒ SS |= ∃uw(|u| = n ∧ |w| = m ∧ |uw| = k)

4. S(x) � C(x)
With a more complex formula we could show that also the

5. R(qx, q�y 
) ∧ I(wqxz) � I(wyq�z)product on natural numbers can be represented in SS. Many
6. R(qx, q�y 
) ∧ I(wqx) � I(wyq�a0)concepts in the field of formal languages theory can be illus-
7. R(qx, q�y �) ∧ I(wuqxz) ∧ C(u) � I(wq�uyz)trated in terms of logical representability, producing interest-

ing perspectives in the logical analysis of complex syntacti- 8. R(qx, q�y �) ∧ I(qxw) � I(q�a0yw)
cal systems. 9. I(wqv) ∧ F(q) � T(wv)

Let us give a very simple example. The language of se-
10. T(a0w) � T(w)quences of zeros followed by the same number of ones—that
11. T(wa0) �T(w)is, �0n1n�n � ��—is represented in SS by the formula �(w):
12. T(xwy) ∧ S(x) ∧ S(y) � O(xwy).

In order to simulate a particular Turing machine M, we must
add other specific axioms to TT, say AX(M), which express the

∃uv(w = uv ∧ |u| = |v|
∧ ∀xyz(u = xyz ∧ |y| = |0| → y = 0)

∧ ∀xyz(v = xyz ∧ |y| = |0| → y = 1))

input symbols of M, the instructions of M, and the final states
The same language is represented by the formula L(x) within of M (M is deterministic if R(qx, t), R(qx, t�) � AX(M) ⇒ t �
SS plus the axioms: t�; otherwise M is non-deterministic).

It is important to note that these axioms are Horn formu-
lae; therefore Horn formulae can be considered as the comput-
able part of predicate logic.

L(λ)

∀x(L(x) → L(0x1))
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Assume a fixed, but arbitrary, finite alphabet A, included satisfiable. By compactness, the resulting completion is satis-
fiable, and it is obviously a complete theory.in �a0, s(a0), s(s(a0)), . . .� (or, without loss of generality, a fi-

nite subset of �). A language on A is a subset of the set A* of For any � model M the theory TH(M ) constituted by all
� sentences that hold in M is of course a complete theory. Astrings of A; moreover, the language L(M) generated by a Tu-

ring machine M is constituted by all the strings which are the theory is axiomatizable when it is an axiomatic theory with a
recursively enumerable set of axioms. Given the computableoutput of M in correspondence to all possible input strings.

A language L is said to be recursively enumerable (or semi- nature of the logical calculi, an axiomatizable theory is recur-
sively enumerable. In fact, due to the finiteness of predicatedecidable) if L � L(M) for some Turing machine M. Church’s

thesis (1936) can be formulated by saying that any language logic, when the axioms AX are recursively enumerated, we
can recursively enumerate all closed AX tableaux, that is, allgenerated by some algorithmic procedure is a recursively enu-

merable language (3). the theorems of the theory.
A very important property of axiomatizable and completeA language L is said to be decidable if L and its comple-

mentary L � A*/L are both recursively enumerable. This is � theories is their decidability. In fact we can generate all �
sentences that are theorems of a complete axiomatizable the-in fact the same as having an effective method for deciding

whether a string of A* belongs to L. Let us enumerate (with- ory �. Given a � sentence �, if it is generated we know that
� � �, if ¬� is generated we know that � � �; by the com-out repetitions) A* � ��1, �2, . . .� and the set TM(A) � �M1,

M2, . . .� of all the Turing machines with A as the alphabet pleteness of �, one of these two alternatives must happen,
and therefore � is decidable.of its input symbols (it is equivalent to enumerating

�AX(M)�M � TM(A)�. A famous example of recursively enu- We say that a � theory � is Gödelian if any recursively
enumerable language included in T� can be representedmerable language is K � ��i��i � L(Mi)�. This language is not

decidable because its complementary K is not recursively enu- within �. Of course, a Gödelian theory cannot be decidable.
The theory TT is Gödelian. It can be shown that TH(A R ),merable. We could prove the nonrecursive enumerability of

K by means of the same diagonal argument of Cantor’s theo- PA, RR, and SS are Gödelian.
No theory can exist that is axiomatizable, complete, andrem (on the nondenumerability of real numbers) or of Rus-

sell’s paradox. Gödelian. In fact, if a theory � is axiomatizable and complete,
it is also decidable; therefore it cannot represent recursivelyThe notions of recursive enumerability and of decidability

can be naturally extended to theories, if we consider their enumerable sets, that is, it cannot be Gödelian. As a simple
consequence of incompatibility among axiomatizability, com-sentences as strings of suitable alphabets.

The following proposition is a direct consequence of the pleteness, and Gödelianity, we get these famous incom-
pleteness results:construction of the theory TT; it tells us that any recursively

enumerable language can be axiomatically represented in the
Proposition 10. The theories TT, PA, RR, and SS are incom-theory TT.
plete.

Proposition 8. For every � � A*, TT � AX(M) X O(�) ⇔ �
Proposition 11. The theory TH(A R ) is not axiomatizable.� L(M).

An axiomatizable theory � in the signature �AR of A R is
UNDECIDABILITY AND INCOMPLETENESS arithmetically sound when its theorems are true in the

model A R .
The main limitation of predicate logic is a direct consequence
of its capability to represent recursively enumerable sets. Proposition 12 (Gödel’s First Incompleteness Theorem). For

any axiomatizable arithmetically sound �AR theory � there
exists a �AR sentence that is true in A R but is not a theoremProposition 9 (Church). The logical consequence X of predi-
of �.cate logic is not a decidable relation.

Gödel’s epoch-making paper of 1931 appears also in Refs. 3Proof. It is sufficient to find a theory with a finite number of
and in 4; a general study of incompleteness proofs is developedaxioms which is not decidable. Let us consider the theory TT
in Ref. 17. The celebrated Gödel’s Second Incompleteness Theo-� AX(M K), where L(M K) � K; if this theory were decidable,
rem, in its abstract form (17), is related to axiomatic systemsthen also K would be decidable (K is representable in this
S that are self-referential inasmuch as they own a provabilitytheory); but this is absurd because we know that K is not de-
predicate P such that S X � ⇒ S X P(�) (where � is a termcidable.
uniquely associated with the sentence �); moreover, S X
P(�) � P(P(�)), and S X P(� � �) � (P(�) � P(�)). In thisA � theory � is complete if � � � or ¬� � � for any � � F�.
case, under very reasonable hypotheses, fulfilled by PA, RR,Any countable satisfiable � theory � can be always ex-
SS, or TT, such theories cannot prove their own consistency;tended to a satisfiable complete � theory. The existence of
that is, they cannot deduce, for some sentence �, the sentencethis extension, called Lindenbaum Completion, is due to the
¬P(� ∧ ¬�).fact that, for any � sentence �, one of the following two theo-

ries must be satisfiable: � � �¬�� or � � ��� otherwise � X
� and � X ¬�, and therefore � would be unsatisfiable. We BIBLIOGRAPHY
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