
FAULT TOLERANT COMPUTING 285

FAULT TOLERANT COMPUTING

We say that a computer is fault tolerant if it fulfills its in-
tended function despite the presence or the occurrence of
faults. Fault tolerance is achieved through the introduction
and the management of redundancy. A fault-tolerant com-
puter may contain several forms of redundancy, depending
on the types of faults it is designed to tolerate. For example,
structural redundancy can be used to provide continued sys-
tem operation even if some components have failed; informa-
tion redundancy in the form of error control codes can allow
the detection or correction of data errors; timing redundancy
can be used to tolerate transient faults, and so on.

Redundancy techniques have been employed since the in-
ception of the computer era. In those early days, computer

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

286 FAULT TOLERANT COMPUTING

components were so unreliable that redundancy techniques
were almost essential for the computer to successfully com-
plete a lengthy computation. Indeed, extensive parity check-
ing and duplicated arithmetic logic units were used in the
very first commercial computer, the UNIVAC 1 (c. 1951) (1).
The term fault-tolerance itself can be traced back to early
work on onboard computers for unmanned spacecraft (2),
which employed large numbers of spare subsystems to be able
to survive missions of 10 years or more in deep space.

Of course, the reliability of hardware components has
vastly improved since those early days. However, since com-
puting technology now permeates almost every aspect of mod-
ern society, there is a growing potential for computer failures
to cause us great harm, leading to loss of life or money, or
damage to our health or to our environment. Consequently,
fault-tolerance techniques are an essential means to ensure

Dependability

Attributes

Means

Impairments

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Fault prevention
Fault tolerance
Fault removal
Fault forecasting

Faults
Errors
Failures

that we can depend on computers used in critical applica-
Figure 1. A classification of the main concepts of dependability.tions. Currently, fault-tolerance techniques are being em-

ployed as a means to protect critical computing systems not
only from physical component failures, but also from faults in

• The nonoccurrence of catastrophic consequences on thehardware and software design, from operator errors during
environment leads to safetyhuman–machine interaction, and even from malicious faults

perpetrated by felons. • The nonoccurrence of unauthorized disclosure of infor-
In this article, we describe the essential principles of fault- mation leads to confidentiality

tolerant computer system design. We first establish the basic • The nonoccurrence of improper alterations of information
concepts and terminology of dependable computing. Two sec- leads to integrity
tions then detail the various techniques that can be used for

• The aptitude to undergo repair and evolution leads toerror detection and error recovery, with illustrative examples
maintainabilitydrawn from fault-tolerant systems currently in operation. A

further section is devoted to fault-tolerance viewed in the con-
Associating integrity and availability with respect to author-text of distributed computing systems. The following two sec-
ized actions, together with confidentiality, leads to security.tions discuss the fault-tolerant system development process

A system failure occurs when the delivered service stopsand present a case study of fault-tolerance techniques em-
fulfilling the system function, the latter being what the sys-ployed in the Ariane 5 space launcher. In the final section, we
tem is intended for. An error is that part of the system statedescribe some future directions for fault-tolerant computing.
that is liable to lead to subsequent failure: an error affectingWe review the fault classes that are currently the subject of
the service is an indication that a failure occurs or has oc-fault-tolerance research and discuss some of the current eco-
curred. The adjudged or hypothesized cause of an error is anomic challenges.
fault.

The development of a dependable computing system calls
BASIC CONCEPTS AND TERMINOLOGY for the combined utilization of a set of methods that can be

classed into:
This section, based on Ref. 3, introduces the concept of de-
pendability within which the fault tolerance approach plays

• Fault prevention: how to prevent fault occurrence or in-a major role. It first presents some condensed definitions on
troductiondependability. These basic definitions are then commented on

• Fault tolerance: how to provide a service that fulfills theand supplemented in the three subsequent sections.
system function in spite of faults

• Fault removal: how to reduce the presence (number, seri-Basic Definitions
ousness) of faults

Dependability is that property of a computer system such that
• Fault forecasting: how to estimate the present number,reliance can justifiably be placed on the service it delivers.

the future incidence, and the consequences of faultsThe service delivered by a system is its behavior as it is per-
ceived by its user(s); a user is another system (physical, hu-

The notions introduced up to now can be grouped into threeman) which interacts with the former.
classes (Fig. 1):Depending on the application(s) intended for the system,

different emphasis may be put on different facets of depend-
ability, i.e., dependability may be viewed according to differ- 1. The attributes of dependability: availability, reliability,
ent, but complementary, properties, which enable the attri- safety, confidentiality, integrity, maintainability; these
butes of dependability to be defined: (a) enable the properties which are expected from the

system to be expressed, and (b) allow the system quality
• The readiness for usage leads to availability resulting from the impairments and the means oppos-

ing to them to be assessed;• The continuity of service leads to reliability

FAULT TOLERANT COMPUTING 287

2. The means for dependability: fault prevention, fault tol- evolvability the other forms of maintenance: adaptive mainte-
nance, which adjusts the system to environmental changeserance, fault removal, fault forecasting; these are the

methods and techniques enabling one (a) to provide the (e.g., change of operating systems or system data-bases), and
perfective maintenance, which improves the system’s functionability to deliver a service on which reliance can be

placed, and (b) to reach confidence in this ability. by responding to customer—and designer—defined changes,
which may involve removal of specification faults (5).3. The impairments to dependability: faults, errors, fail-

Security has not been introduced as a single attribute ofures; they are undesired—but not in principle unex-
dependability, in agreement with the usual definitions of se-pected—circumstances causing or resulting from the
curity, which view it as a composite notion, namely ‘‘the com-lack of dependability.
bination of confidentiality, the prevention of the unauthorized
disclosure of information, integrity, the prevention of the un-A major strength of the dependability concept as formulated
authorized amendment or deletion of information, and avail-here is its integrative nature:
ability, the prevention of the unauthorized withholding of in-
formation’’ (6).• It allows for the classical notions of reliability, availabil-

The variations in the emphasis to be put on the attributesity, and so on to be put into perspective.
of dependability have a direct influence on the appropriate• It provides a unified presentation allowing for the under-
balance of the means to be employed to make the resultingstanding and mastering of the various impairments,
system dependable. This is an all the more difficult problemwhile preserving their specificities via the various failure
as some of the attributes are antagonistic (e.g., availabilitymodes and fault classes that can be defined.
and safety, availability and security), and therefore imply de-

• The model provided for the means for dependability is
sign trade-offs. The problem is further exacerbated by the factextremely useful, as those means are much more orthog-
that the dependability dimension of the computer designonal to each other than the usual classification according
space is less understood than the cost and performance di-to the attributes of dependability, with respect to which
mensions (7).the design of any real system has to perform trade-offs

due to the fact that these attributes tend to be in conflict
The Impairments to Dependabilitywith each other.
In this section, after examining the failure modes, we describe

The following sections expand on the basic definitions con- the various fault classes to be considered. Finally, we address
cerning the dependability attributes and impairments and the fault pathology issue by discussing further the notions of
the means for dependability. Fault-tolerant computing is the fault, error, and failure and identifying their respective mani-
focus of this article so we will concentrate essentially on this festations and relationships.
aspect. A more detailed treatment of these basic definitions,
and in particular of the respective role of and dependencies Failures and Failure Modes. A system may not, and gener-
between fault tolerance, fault removal, and fault forecasting, ally does not, always fail in the same way. The ways a system
can be found in Refs. 3 and 4. can fail are its failure modes, which may be characterized ac-

cording to three viewpoints: domain, perception by the system
The Attributes of Dependability users, and consequences on the environment.

The failure domain viewpoint leads one to distinguish:The attributes of dependability have been defined according
to different properties, which may be emphasized more or less

• Value failures: the value of the delivered service does notdepending on the intended application of the computer sys-
fulfill the system function.tem considered:

• Timing failures: the timing of the service delivery does
not fulfill the system function.• Availability is always required, although to a varying de-

gree depending on the application.
A class of failures relating to both value and timing are the• Reliability, safety, and confidentiality may or may not be
halting failures: system activity, if any, is no longer percepti-required according to the application.
ble to the users. According to how the system interacts with
its user(s), such an absence of activity may take the form ofIntegrity is a prerequisite for availability, reliability, and
(a) frozen outputs (a constant value service is delivered; thesafety, but may not be so for confidentiality (for instance
constant value delivered may vary according to the applica-when considering attacks via covert channels or passive lis-
tion, e.g., last correct value, some predetermined value, etc.),tening).
or of (b) a silence (no message sent in a distributed system).Whether a system holds the properties which have enabled
A system whose failures can be—or more generally are to anthe attributes of dependability to be defined should be inter-
acceptable extent—only halting failures, is a fail-halt system;preted in a relative, probabilistic sense, and not in an abso-
the situations of frozen outputs and of silence lead respec-lute, deterministic sense: due to the unavoidable presence or
tively to fail-passive systems and to fail-silent systems (8).occurrence of faults, systems are never totally available, reli-

The failure perception viewpoint leads one to distinguish,able, safe, or secure.
when a system has several users:The definition given for maintainability goes deliberately

beyond corrective maintenance, aimed at preserving or im-
proving the system’s ability to deliver a service fulfilling its • Consistent failures: all system users have the same per-

ception of the failures.function (relating to repairability only), and encompasses via

288 FAULT TOLERANT COMPUTING

• Inconsistent failures: the system users may have differ- granularity, (b) the notion of ‘‘acceptable error rate’’—
implicitly before considering that a failure has oc-ent perceptions of a given failure; inconsistent failures

are usually termed, after Ref. 9, Byzantine failures. curred—in data transmission.

This discussion explains why it is often desirable to explicitlyGrading the consequences of the failures upon the system en-
mention in the specification such conditions as the maximumvironment enables the failure severities to be defined. The
outage time (related to the user time granularity).failure modes are ordered into severity levels, to which are

generally associated maximum admissible probabilities of oc-
Faults and Fault Classes. Faults and their sources are ex-currence. Two extreme levels can be defined according to the

tremely diverse. They can be classified according to five mainrelation between the benefit provided by the service delivered
viewpoints, their phenomenological cause, their nature, theirin the absence of failure and the consequences of failures:
phase of creation or of occurrence, their situation with respect
to the system boundaries, and their persistence.• Benign failures, where the consequences are of the same

The phenomenological causes leads one to distinguish (13):order of magnitude as the benefit provided by service de-
livery in the absence of failure

• Physical faults, which are due to adverse physical phe-
• Catastrophic failures, where the consequences are incom- nomena

mensurably greater than the benefit provided by service
• Human-made faults, which result from human imperfec-delivery in the absence of failure

tions

A system whose failures can only be—or more generally are The nature of faults leads one to distinguish:
to an acceptable extent—benign failures is a fail-safe system.
The notion of failure severity enables the notion of criticality • Accidental faults, which appear or are created fortu-
to be defined: the criticality of a system is the highest severity itously
of its (possible) failure modes. The relation between failure

• Intentional faults, which are created deliberately, with
modes and failure severities is highly application-dependent. or without a malicious intention
However, there exists a broad class of applications where in-
operation is considered as being a naturally safe position (e.g., The phase of creation with respect to the system’s life leads
ground transportation, energy production), whence the direct one to distinguish:
correspondence that is often made between fail-halt and fail-
safe (10,11). Fail-halt systems (either fail-passive or fail-si- • Development faults, which result from imperfections
lent) and fail-safe systems are however examples of fail-con- arising either (1) during the development of the system
trolled systems, i.e., systems which are designed and realized (from requirement specification through to implementa-
in order that they may only fail—or may only fail to an ac- tion) or during subsequent modifications, or (2) during
ceptable extent—according to restrictive modes of failure, the establishment of the procedures for operating or
e.g., frozen output as opposed to delivering erratic values, si- maintaining the system
lence as opposed to babbling, consistent failures as opposed • Operational faults, which appear during the system’s ex-
to inconsistent ones; fail-controlled systems may in addition ploitation
be defined by imposing some internal state condition or acces-
sibility, as in the so-called fail-stop systems (12). The system boundaries leads one to distinguish:

Errors. An error was defined as being liable to lead to sub- • Internal faults, which are those parts of the state of a
sequent failure. Whether or not an error will actually lead to system which, when invoked by the computation activity,
a failure depends on three major factors: will produce an error

• External faults, which result from interference or from
1. The system composition, and especially the nature of interaction with its physical (electromagnetic perturba-

the existing redundancy: tions, radiation, temperature, vibration, etc.) or human
environmenta. Intentional redundancy (introduced to provide fault

tolerance) which is explicitly intended to prevent an
The temporal persistence leads one to distinguish:error from leading to failure,

b. Unintentional redundancy (it is practically difficult
• Permanent faults, whose presence is not related to point-if not impossible to build a system without any form

wise conditions whether they be internal (computationof redundancy) which may have the same—
activity) or external (environment)unexpected—result as intentional redundancy.

• Temporary faults, whose presence is related to such con-
2. The system activity: an error may be overwritten before ditions, and are thus present for a limited amount of

creating damage. time
3. The definition of a failure from the user’s viewpoint:

what is a failure for a given user may be a bearable The notion of temporary fault deserves the following com-
nuisance for another one. Examples are (a) accounting ments:
for the user’s time granularity: an error which ‘‘passes
through’’ the system-user(s) interface may or may not • Temporary external faults originating from the physical

environment are often termed transient faults.be viewed as a failure depending on the user’s time

FAULT TOLERANT COMPUTING 289

Fault Pathology. The creation and manifestation mecha-
nisms of faults, errors, and failures may be summarized as
follows:

1. A fault is active when it produces an error. An active
fault is either (a) an internal fault that was previously
dormant and which has been activated by the computa-
tion process, or (b) an external fault. Most internal
faults cycle between their dormant and active states.
Physical faults can directly affect the hardware compo-
nents only, whereas human-made faults may affect any
component.

2. An error may be latent or detected. An error is latent
when it has not been recognized as such; an error is
detected by a detection algorithm or mechanism. An er-
ror may disappear before being detected. An error may,
and in general does, propagate; by propagating, an error
creates other—new—error(s). During operation, the
presence of active faults is determined only by the de-

Physical faults

Human-made faults

Accidental faults
Intentional,
nonmalicious faults
Intentionally
malicious faults
Development faults

Operational faults

Internal faults

External faults

Permanent faults

Temporary faults

Faults

Physical
faults

Design
faults

Interaction
faults

Malicious
logic

Intrusions

tection of errors.
Figure 2. Fault classes resulting from pertinent combinations of the 3. A failure occurs when an error ‘‘passes through’’ the sys-
basic classification viewpoints. tem-user interface and affects the service delivered by

the system. The consequence of a component failure is
a fault (a) for the system that contains the component,
and (b) as viewed by the other component(s) with which
it interacts; the failure modes of the failed component• Temporary internal faults are often termed intermittent
then become fault types for the components interactingfaults; these faults result from the presence of rarely oc-
with it.curring combinations of conditions.

These mechanisms enable the ‘‘fundamental chain’’ to be com-
pleted:In practice, the number of likely combinations is more re-

stricted than the 48 different fault classes that could be ob-
� � � � failure � fault � error � failure � fault � � � �tained from the 5 viewpoints: only 17 combinations are indi-

cated in Fig. 2, which also gives the usual labeling of these
The arrows in this chain express a causality relationship be-combined classes of faults.
tween faults, errors, and failures. They should not be inter-These labels are commonly used to designate one or sev-
preted restrictively: by propagation, several errors can be gen-eral combined fault classes in a condensed manner. In partic-
erated before a failure occurs.

ular, the label physical faults relates to the various combina- Situations involving multiple faults and/or failures are fre-
tions that precisely share physical faults as elementary quently encountered. Consideration of their causes leads one
faults. Two comments are in order regarding the human- to distinguish:
made fault classes:

• Independent faults, which are attributed to different
causes1. Intentional, nonmalicious, design faults result generally

• Related faults, which are attributed to a common causefrom tradeoffs, either (a) aimed at preserving acceptable
performance or at facilitating system utilization, or (b)

Related faults generally manifest themselves by similar er-induced by economic considerations. Such faults can be
rors, whereas independent faults usually cause distinct er-sources of security breaches, under the form of covert
rors, although it may happen that independent faults lead to

channels. Intentional, nonmalicious interaction faults similar errors (15). Similar errors cause common-mode
may result from the action of an operator either aimed failures.
at overcoming an unforeseen situation, or deliberately Two final comments, relative to the words, or labels, fault,
violating an operating procedure without having devel- error, and failure:
oped the consciousness of the possibly damaging conse-
quences of his or her action. These classes of intentional 1. Their exclusive use in this document does not preclude
nonmalicious faults share the property that, often, it is the use in special situations of words which designate,
realized that they were faults only after an unaccept- briefly and unambiguously, a specific class of impair-
able system behavior, thus a failure, has ensued. ment; this is especially applicable to faults (e.g., bug,

defect, deficiency) and to failures (e.g., breakdown, mal-2. Malicious logic encompasses development faults such as
function, denial-of-service).Trojan horses, logic or timing bombs, trapdoors, as well

as operational faults (for the considered system) such 2. The assignment made of the particular terms fault, er-
ror, and failure simply takes into account current us-as viruses or worms (14).

290 FAULT TOLERANT COMPUTING

age: (a) fault prevention, tolerance, and diagnosis, (b) masking generally involve error detection, which may then be
performed after the state transformation. As opposed to fault-error detection and correction, (c) failure rate.
masking, the implementation of error processing by error re-
covery after error detection has taken place is generally re-Techniques for Fault Tolerance
ferred to as error detection and recovery.

Fault tolerance is carried out by two main forms of activities: The operational time overhead necessary for error pro-
error processing and fault treatment. Error processing is cessing is radically different according to the adopted error
aimed at removing errors from the computational state, if recovery form:
possible before failure occurrence; fault treatment is aimed at
preventing faults from being activated—again. We first define

• In backward or forward recovery, the time overhead is
each of these two activities and then express some addi- longer upon error occurrence than before; also, in back-
tional comments. ward recovery, there may be a considerable overhead

even in the absence of errors due to the need to create
Error Processing. Error processing can be carried out via recovery points.

three primitives:
• In error compensation, the time overhead required by

compensation is the same, or almost the same, whether1. Error detection, which enables an erroneous state to be
errors are present or not (in either case, the time for up-identified as such
dating the system status records adds to the time

2. Error diagnosis, which enables the assessment of the overhead).
damage caused by the detected error, or by errors prop-
agated before detection In addition, the duration of error compensation is much

3. Error recovery, where an error-free state is substituted shorter than the duration of backward or forward error recov-
for the erroneous state; this substitution may take on ery, due to the larger amount of (structural) redundancy. This
three forms: remark is of high practical importance in that it often condi-
• Backward recovery, where the erroneous state trans- tions the choice of the adopted fault tolerance strategy with

formation consists of bringing the system back to a respect to the user time granularity. It also introduces a rela-
state already occupied prior to error occurrence; this tion between operational time overhead and structural redun-
involves the establishment of recovery points, which dancy. More generally, a redundant system always provides
are points in time during the execution of a process redundant behavior, incurring at least some operational time
for which the then current state may subsequently overhead; the time overhead may be small enough not to be
need to be restored perceived by the user, which means only that the service is

• Forward recovery, where the erroneous state transfor- not redundant; an extreme opposite form is ‘‘time redun-
mation consists of finding a new state, from which the dancy’’ (redundant behavior obtained by repetition) which
system can operate (frequently in a degraded mode) needs to be at least initialized by some structural redun-

• Compensation, where the erroneous state contains dancy. Roughly speaking, the more the structural redun-
enough redundancy to enable its transformation into dancy, the less the time overhead incurred.
an error-free state

Fault Treatment. The first step in fault treatment is fault
diagnosis, which consists of determining the cause(s) of er-When backward or forward recovery are used, it is necessary

that error detection precedes error recovery. Backward and ror(s), in terms of both location and nature. Then come the
fault passivation actions aimed at fulfilling the main purposeforward recovery are not exclusive: backward recovery may

be attempted first, then, if the error persists, forward recov- of fault treatment: preventing the fault(s) from being acti-
vated again. This is carried out by preventing the compo-ery may be attempted. In forward recovery, it is necessary to

perform error diagnosis, which can—in principle—be ignored nent(s) identified as being faulty from being invoked in fur-
ther executions. If the system is no longer capable ofin the case of backward recovery, provided that the mecha-

nisms enabling the transformation of the erroneous state into delivering the same service as before, then reconfiguration
may take place, which consists in modifying the system struc-an error-free state have not been affected (16).

The association into a component of its functional pro- ture so that the nonfailed components can deliver an accept-
able, but possibly degraded, service. Reconfiguration may in-cessing capability together with error detection mechanisms

leads to the notion of a self-checking component, either in volve some tasks being abandoned, or reassigning tasks
among nonfailed components.hardware (11,17,18) or in software (19,20); one of the impor-

tant benefits of the self-checking component approach is the If it is estimated that error processing could directly re-
move the fault, or if its likelihood of recurring is low enough,ability to give a clear definition of error confinement areas (7).

When error compensation is performed in a system made up then fault passivation need not be undertaken. As long as
fault passivation is not undertaken, the fault is regarded asof self-checking components partitioned into classes executing

the same tasks, then state transformation is nothing else a soft fault; undertaking it implies that the fault is considered
as hard, or solid. At first sight, the notions of soft and hardthan switching within a class from a failed component to a

nonfailed one. On the other hand, compensation may be ap- faults may seem to be respectively synonymous to the pre-
viously introduced notions of temporary and permanentplied systematically, even in the absence of errors, thus pro-

viding fault masking (e.g., through a majority vote). However, faults. Indeed, tolerance of temporary faults does not necessi-
tate fault treatment, since error recovery should in this casethis can at the same time correspond to a redundancy de-

crease that is not known. So, practical implementations of directly remove the effects of the fault, which has itself van-

FAULT TOLERANT COMPUTING 291

ished, provided that a permanent fault has not been created Validation of Fault Tolerance
in the propagation process. In fact, the notions of soft and

The validation process incorporates both fault removal and
hard faults are useful due to the following reasons:

fault forecasting activities as identified in Fig. 1. The valida-
tion of fault-tolerant computing systems calls for the same

• Distinguishing a permanent fault from a temporary fault
activities as the validation of nonfault-tolerant systems, andis a difficult and complex task, since (1) a temporary
central to these activities are verification and evaluation. Afault vanishes after a certain amount of time, usually be-
major difference, however, is that in addition to the functionalfore fault diagnosis is undertaken, and (2) faults from
inputs, the validation has to be carried out with respect to thedifferent classes may lead to very similar errors; so, the
specific inputs, that is, the faults that such systems are in-notion of soft or hard fault in fact incorporates the sub-
tended to handle. From the verification viewpoint, a particu-jectivity associated with these difficulties, including the
lar form of testing can be identified, and that is fault injection.fact that a fault may be declared as a soft fault when
From the evaluation viewpoint, the main issue is the effi-fault diagnosis is unsuccessful.
ciency of the fault tolerance mechanisms, that is generally

• The ability of those notions to incorporate subtleties of called coverage (24). The possibility of assessing the fault tol-
the modes of action of some transient faults; for instance, erance coverage by modeling alone is very limited due to the
can it be said that the dormant internal fault resulting complexity of the mechanisms involved, encompassing error
from the action of alpha particles (due to the residual detection, error processing, and fault treatment. Thus, in this
ionization of circuit packages), or of heavy ions in space, case also, fault injection is necessary.
on memory elements (in the broad sense of the term, in- Accordingly, fault injection is a central technique for the
cluding flip-flops) is a temporary fault? Such a dormant validation of fault-tolerant systems. Its significance has long
fault is however a soft fault. been recognized, but only recently has it been the subject of

work aimed at overcoming the ad hoc perception that was
Comments. Before turning to the detailed presentation of

usually associated with it. This work can be classified ac-
the methods and techniques implementing the various primi-

cording to the method of fault injection (25):
tives of error processing (see the three subsequent sections of
this article), we will provide additional definitions and gen-

• Physical fault injection, where the faults are injected di-eral comments that we find useful for (a) a better understand-
rectly on the hardware components by means of physicaling of these developments, and (b) eliciting the appropriate
or electrical alterationsmethods and techniques developed therein.

• Informational fault injection, where the faults are in-The classes of faults (physical, design, etc.) that can actu-
jected by altering Boolean variables or memory contentsally be tolerated depend on the fault hypotheses that are con-

sidered in the design process, and in particular, on the inde-
pendence of redundancies with respect to the process of fault Several fault injection techniques and supporting tools have

been developed (26). Most work on, or using, physical faultcreation and activation. An example is provided by consider-
ing tolerance of physical faults and tolerance of design faults. injection is based on injecting at the level of integrated circuit

(IC) pins. This technique constitutes a simulation of theA (widely used) method to attain fault tolerance is to perform
multiple computations through multiple channels. When tol- faults, or, more exactly, of the errors provoked by faults that

can occur during system operation. It is, however, possible toerance of physical faults is foreseen, the channels may be
identical, based on the assumption that hardware compo- be closer to reality for a specific class of faults that are of

particular interest for the space environment: heavy-ion radi-nents fail independently; such an approach is not suitable for
the tolerance of design faults where the channels have to pro- ation. Sources of particles similar to heavy ions exist, al-

though they are only able to inject into a single IC. Besidesvide identical services through separate designs and imple-
mentations (13,21,22), that is, through design diversity (15). the representativity of the faults injected on the pins of the

ICs, another important issue is accessibility. Clearly, thisAn important aspect in the coordination of the activity of
multiple components is that of preventing error propagation problem will not improve in the future when considering the

current assembly techniques such as surface-mounted compo-from affecting the operation of nonfailed components. This as-
pect becomes particularly important when a given component nents. Accessibility problems can be solved by injecting at the

level of the information being processed or stored, althoughneeds to communicate some private information to other com-
ponents. Typical examples of such single-source information at the expense of a greater deviation from real faults, and

thus intensifying the error simulation aspect. This approachare local sensor data, the value of a local clock, the local view
of the status of other components, and so on. The consequence is also known as software-implemented fault injection

(SWIFI).of this need to communicate single-source information from
one component to other components is that nonfailed compo- These fault injection approaches are targeted at the sys-

tem being validated, after it has been implemented, possiblynents must reach an agreement as to how the information
they obtain should be employed in a mutually consistent way. as a prototype. A natural move is to be able to carry out the

fault injection during the design of the system, using a simu-Specific attention has been devoted to this problem in the
field of distributed systems. lation model of the system being designed (27,28).

As noted at the beginning of this subsection, testing of theFault tolerance is a recursive concept: it is essential that
the mechanisms aimed at implementing fault tolerance be fault tolerance mechanisms has long been the primary objec-

tive of ad hoc fault injection approaches (29). Meanwhile,protected against the faults that can affect them. Examples
are voter replication, self-checking checkers (17), and ‘‘stable’’ most of the fault-injection tools previously cited aim rather at

evaluating the efficiency of the fault-tolerance mechanisms.memory for recovery programs and data (23).

292 FAULT TOLERANT COMPUTING

Fault removal is obtained only as a by-product, when the codes (e.g., K-out-of-N codes). Detection of multiple errors re-
quires the use of a 1-out-of-2 code (a so-called two-rail code)evaluations reveal some deficiency in the fault-tolerance

mechanisms. Although it has been shown that such a by-prod- that can be thought of as a form of duplication.
uct is nevertheless of real interest (25), the problem of fault-

Duplexing and Comparisoninjection testing specifically aimed at removing potential
fault-tolerance deficiencies is still an open issue, in spite of Duplexing and comparison, despite its high redundancy over-
some recent advances (30,31). head, is a widely used detection mechanism due to its sim-

plicity.
Since few assumptions need to be made about the cause ofERROR DETECTION

an error, duplexing is a general technique. There are few
other checks that can provide equivalent detection power. TheError detection is based on component, time, information, or
basic assumption concerns the independence of redundanciesalgorithmic redundancy (or a combination thereof). The most
with respect to the process of fault creation and activation. Itsophisticated way of performing error detection is to build er-
is thus mandatory to ensure that:ror detection mechanisms into a component alongside its

functional processing capabilities, thus leading to the notion
• Either the faults are created and activated indepen-of a self-checking component (16,19). The most usual forms of

dently in the duplexed unitserror detection are the following:
• Or, if the same fault provokes an error in both units,

these errors are distinct• Error detecting codes
• Duplexing and comparison

Thus, when tolerance of internal physical faults is foreseen,
• Timing and execution checks

the channels may be identical, based on the assumption that
• Reasonableness checks hardware components fail independently. However, if exter-
• Structural checks nal physical faults are to be accounted for, then common mode

failures should be avoided by physically separating the units
The last three forms of error detection can be implemented and/or by having them execute at different times.
by executable assertions in software. An assertion is a logical However, when these assumptions no longer hold (which
expression that performs a reasonableness check on the ob- is the case when design faults in either hardware or software
jects of a program and is evaluated on-line. The logical ex- are accounted for), it is necessary that the units provide iden-
pression is considered as true if the state is judged to be cor- tical services through dissimilar designs and implementa-
rect; if not, an exception is raised. tions, that is, through design diversity.

Timing and Execution ChecksError Detecting Codes

Due to its very limited cost, timing checks by means of watch-Error detecting codes (18) are directed essentially toward er-
rors induced by physical faults. Detection is based on redun- dog timers are the most widely used concurrent error detec-

tion mechanism. Although this technique covers a wide spec-dancy in the information representation, either by adding
control bits to the data, or by a representation of the data trum of faults, it is not easy to evaluate the coverage

achieved. Watchdogs can be used in many situations, rangingin a new form containing the redundancy. The first form of
redundancy constitutes the so-called separable code class and from the detection of the failure of a peripheral device whose

response time should be less than a maximal value (‘‘time-the second corresponds to the nonseparable code class.
A fundamental concept of error detecting codes is the so- out’’) to the monitoring of the activity of central processing

units (CPUs). In the latter case, the watchdog is periodicallycalled Hamming distance. This distance between two binary
words corresponds to the number of bits for which the two reset. If the behavior of the CPU is altered such that the

watchdog is not reset before it expires, then an exception iswords differ. The distance of a code is the minimum Ham-
ming distance between two valid code words. For the code to raised. Such an approach can be used to allow the CPU to

escape from a blocking state or from an infinite loop.be able to detect e errors, the code distance must be greater
than or equal to e � 1. One possible improvement of the detection efficiency pro-

vided by a watchdog is to verify, in addition, the flow of con-The level of redundancy used depends on the error as-
sumption: single errors, unidirectional errors, or multiple trol of the program being executed by the CPU (32). This

method, also known as signature analysis, relies on a com-errors.
Parity is the most common form of coding that allows sin- pression scheme that produces a signature (usually the check-

sum of a series of instructions). The flow of control can thengle errors to be detected. Errors affecting a slice of b bits can
be detected using b-adjacent codes. When the encoded data be verified by generating the signature when executing the

program and comparing it with a reference value obtainedmust be processed arithmetically (addition, multiplication), it
may be convenient to use arithmetic codes. Such codes are when applying the same compression function to the object

code of the program. Signature analysis can be implementedpreserved during arithmetic operations (a code C is preserved
by an operation o if A, B � C implies that A o B � C). Arith- efficiently by hardware monitors or watchdog processors.

Execution flow control can also be applied at higher levelsmetic codes can be classified as either nonseparable or separa-
ble codes. of abstraction. For example, Ref. 33 presents the case of the

control of a communication protocol described as a Petri-netCodes detecting unidirectional errors can also be classified
as either separable codes (e.g., Berger’s code) or nonseparable model. In this case, the parallel execution of the program and

FAULT TOLERANT COMPUTING 293

of the abstract model enables the consistency of the successive ERROR RECOVERY
states of the protocol be verified.

A practical implementation that is worth mentioning is the Error recovery consists in substituting an error-free system
state for an erroneous state. Three forms of error recovery canSACEM processor (34) that combines:
be identified, depending on the way the error-free state can
be built. These three forms are backward recovery, forward• An arithmetic code, aimed at detecting data storage,
recovery, and error compensation.transfer and processing errors

• A signature scheme, for detecting errors in the sequenc-
Backward Error Recoverying of the program and in the addressing of the data to

be processed Backward error recovery (also called rollback) is by far the
most popular form of error recovery. It consists in periodically
saving the system state so as to be able, following detectionReasonableness Checks
of an error, to return the system to a previous state.

Reasonableness checks only induce a very low additional cost The saved states, called checkpoints, must be stored by
compared to the cost of functional elements of the system. means of a stable storage mechanism to protect the data from
Many such checks can be implemented to detect errors aris- the effects of faults (23). Checkpointing can be supported by
ing from a wide spectrum of faults, but their coverage is usu- hardware or software mechanisms that automatically save
ally rather limited. Reasonableness checks can be imple- the data modified between two checkpoints. If the detection
mented by means of: coverage is not perfect, checkpoints may be contaminated by

an error before it is detected. In this case, recovery will not
• Specific hardware, to detect value errors (illegal instruc- be successful unless an error-free state can be provided. This

tion, unavailable memory address) and access protection means that several successive checkpoints must be preserved
violations or the application structure must allow nested checkpoints,

as in the case of recovery blocks (36).• Specific software, to verify the conformity of the inputs
Generally, the data that is saved during the generation ofor outputs of the system with invariants

a checkpoint is not a snapshot of the whole state of the system
but only the state of part of the system, usually a process: aSoftware-based controls can be incorporated in the operating
global checkpoint of the state of a system is, therefore, madesystem to be applicable to any application program (e.g., dy-
up of a set of partial checkpoints. Restoration of an error-freenamic type control, verification of array indices, etc.) or spe-
state requires rolling back to their last checkpoint at least allcific to the application program (e.g., range of possible values,
the processes that may have been directly contaminated bymaximum variation with respect to results of a previous itera-
the error (for example, those run on the unit on which thetion, etc.).
error has been detected). Even then, a consistent system state
may not be obtained since these processes may have inter-

Structural Checks acted with others since their last checkpoint. Not only must
these other processes be rolled back but they may also haveChecks can be applied to complex data structures in a com-
interacted with others. A domino effect can occur whereby theputer system. They can focus on either the semantic or struc-
failure of one process leads to a cascade of rollbacks to maketural integrity of the data.
sure that the system is returned to a global consistent stateSemantic integrity checks consist in the verification of the
(37). Three approaches to checkpointing can be identified:consistency of the information contained in the data structure

using reasonableness checks as described in the previous
1. Checkpoints are created independently by each processparagraph.

(this is called uncoordinated or asynchronous check-Structural integrity checks are particularly applicable to
pointing). When a failure occurs, a set of checkpointsdata structures whose elements are linked by pointers. Re-
must be found that represents a global consistent state.dundancy in these structures can be of three main forms:
This approach is a dynamic technique that aims to min-
imize timing overheads during normal operation (that1. Counts of the number of elements contained in the
is, without errors) at the expense of a potentially largestructure
overhead when a global state is sought dynamically to

2. Use of redundant pointers (double linking) perform the recovery. However, it entails two major
3. Addition of indicators regarding the types of elements drawbacks: (a) the amount of information saved may be

in the structure quite large and (b) it might be necessary to roll all pro-
cesses back to the initial state if no other global consis-
tent state can be found (i.e., domino effect). The dy-A valid modification of the structure requires the atomic mod-
namic search for a global consistent state and theification of all the redundant elements. Error detection relies
related domino effect risk can be avoided in the case ofon the fact that the modification will not be atomic if the sys-
deterministic processes by logging messages on stabletem behaves in an erroneous fashion. The theory developed
storage so that they can be replayed to a recovering pro-in Ref. 35 extends the properties of the classical coding theory
cess.to this application domain. In particular, it states that the

greater the number of changes necessary for an update, the 2. The creation of checkpoints can be preprogrammed so
as to generate a set of checkpoints corresponding to agreater is the detection power.

294 FAULT TOLERANT COMPUTING

global consistent state. There exists a very simple but
fairly costly technique: if, when a process sends a mes-
sage, it takes the checkpoint atomically with the mes-
sage transmission, the most recent checkpoints always
constitute a global consistent state. Another approach
is to structure process interactions in conversations
(22). In a conversation, processes can communicate
freely between themselves but not with other processes
external to a conversation. If processes all take a check-
point when entering or leaving a conversation, recovery
of one process will only propagate to other processes in
the same conversation. The transactional approach pro-
vides another elegant way of managing checkpoints. A
transaction is the execution of a program that accesses
a set of shared data items (38). The executed program
is designed to transform the data from an initial state
where data are mutually consistent into another consis-
tent state. The transaction must sometimes be aborted,

Dynabus

Processor
module

Processor
module

Processor
module

Disk controller
Tape controller

Disk controller

VDU controller

Disk controller

Dynabus interface

CPU

memory

I/O channel

as would be the case, for example if a current account Figure 3. Architecture of the Tandem NonStop fault-tolerant com-
debiting request were rejected for lack of sufficient puter.
funds. In this case, the data must be restored to their
initial state. The latter must, therefore, be saved,

that portable UNIX single process checkpointing systemsthereby constituting a checkpoint. The means for restor-
have been developed for ‘‘well-behaved’’ programs, that is,ing the initial state can be utilized not only at the re-
programs that, among other restrictions, do not use interpro-quest of the program but also in case of conflicts of ac-
cess communication and only access files sequentially (42).cess to the shared data detected by a concurrency

Example: Tandem NonStop Computers. The NonStop sys-control algorithm (to authorize the execution of transac-
tems produced by Tandem (43) are designed to tolerate a sin-tions in parallel as if their executions were carried out
gle hardware fault (Fig. 3). The CPUs and input/output con-in series) or if a fault-induced error is detected.
trollers are fail-fast in that they are equipped with error3. The establishment of checkpoints is dynamically coordi-
detection mechanisms that block the unit in which an error isnated so that sets of checkpoints represent global con-
detected. Error detection is mainly based on parity checking,sistent states (this is called coordinated or synchronous
coding, and reasonableness tests in software and firmware. Incheckpointing). In this approach, the domino effect
certain cases, self-checking circuits are used. These units areproblem can be transparently avoided for the program-
also designed to limit error propagation: for example, the Dy-mer even if the processes are not deterministic. Each
nabus and the I/O controllers are built in such a way thatprocess possesses one or two checkpoints at each in-
no hardware fault can block the two buses to which they arestant: a permanent checkpoint (constituting a global
connected. There always exists a path to access a dual accessconsistent state) and another, temporary checkpoint,
peripheral even if a processor, bus, or controller has failed.that may be undone or transformed into a permanent

Disks are organized as mirror disks, that is, for each diskcheckpoint. The transformation of temporary check-
there exists an identical copy. Each write is transmitted topoints into permanent ones is coordinated by a two-
both disks, reading being done on one disk only to optimizephase commit protocol to ensure that all permanent
access time. In case of a read error on a disk, the read ordercheckpoints effectively constitute a global consistent
is repeated on the other disk. This standby concept is general-state (39). Another dynamic approach, called communi-
ized: in case of failure of an operation on a processor, a bus,cation-induced checkpointing, relies on control informa-
or a controller, there exists a standby unit capable of carryingtion piggy-backed onto application messages to indicate
out the same operation.when a process receiving a message needs to take a

The same principle is applied to the software, which is or-forced checkpoint to ensure that each local checkpoint
ganized around pairs of processes: to each active process cor-

belongs to at least one global consistent checkpoint
responds a standby process running on another processor,

(40,41). and the active process regularly sends checkpoints to the
standby process. These checkpoints are either copies of the

Backward recovery techniques do have some drawbacks. active process state, or deviations relative to the previous
First, rollback is usually incompatible with applications with state, or even a transform function of the state. In normal
hard real-time deadlines. Second, the size of the recovery operation, the standby process only updates its state ac-
points and the timing overhead needed for their establish- cording to the checkpoints it receives. If the processor on
ment often impose structural constraints that must be taken which the active process is running fails, the other processors
into account during application development and require ded- will detect it through an absence of ‘‘I’m alive’’ messages
icated support from the operating system. Generally, this pre- (transmitted every two seconds by any processor operating
cludes the use of any general-purpose operating system such normally). The operating system of the processor on which
as UNIX and software packages that have not been developed the standby process is executed activates this process, which

takes over from the last checkpoint received.specifically for the architecture considered. Note, however,

FAULT TOLERANT COMPUTING 295

This organization into process pairs calls for a specific de- error processing. This can allow the use of standard operating
systems and software packages.sign of the operating system and of the application software,

especially for the generation of checkpoints. Applications are
facilitated by libraries of elementary functions but the incom- Error Detection and Compensation. A typical example of er-

ror detection and compensation consists in using self-check-patibility with standard products leads to a significant cost
increase. ing components executing the same processing in active re-

dundancy; in case of failure of one of them, it is disconnectedAnother drawback of this architecture is linked to the fact
that the error detection mechanisms have imperfect coverage, and processing can go on without disturbing the others. In

this case, compensation is limited to a possible switch fromso an error may propagate prior to the blocking of the failing
unit. However, based on the information published by Tan- one component to another. This is, for instance, the basis of

the architecture of the Stratus S/32 or IBM System/88.dem, it appears that the global failures of their systems are
mostly due to software design faults and interaction faults, Example: The Airbus 320 Flight Control System. Recent pas-

senger aircraft, such as the Airbus 320/330/340 family andmost of them being Heisenbugs (44), that is, not diagnosed
because difficult to reproduce. the Boeing 777, include computers in the main flight control

loop to improve overall aircraft safety (through stability aug-
mentation, flight envelope monitoring, windshear protection,Forward Error Recovery
etc.) and to reduce pilot fatigue. Of course, these increases in

Forward error recovery constitutes an alternative or comple-
aircraft safety must not be annihilated by new risks intro-

mentary approach to rollback—following detection of an er-
duced by the computing technology itself. For this reason, the

ror, and a possible attempt at backward recovery, forward re-
flight control systems of these aircraft are designed to be

covery consists in searching for a new state acceptable for the
fault tolerant.

system from which it will be able to resume operation (possi-
Fault tolerance in the flight control system of the Airbus

bly in a degraded mode).
320/330/340 family is based on the error detection and com-

One simple forward recovery approach is to reinitialize the
pensation technique (45). Each flight control computer is de-

system and acquire a new operating context from the environ-
signed to be self-checking, with respect to both physical faults

ment (e.g., rereading the sensors in a real-time control
and design faults, to form a fail-safe subsystem. Each com-

system).
puter consists of two lanes supporting functionally-equivalent

Another approach is that of exception processing, for which
but diversely-designed programs (Fig. 4). Both lanes receive

primitives exist in many modern programming languages. In
the same inputs, compute the corresponding outputs, and

this case, the application programs are designed to take into
check that the other lane agrees. Only the control lane drives

account error signals (from error detection mechanisms) and
the physical outputs. Any divergence in the results of each

switch from normal processing to exceptional, generally de-
lane causes the physical output to be isolated.

graded, processing. In fail-safe systems, the exceptional pro-
Each flight control axis of the aircraft can be controlled

cessing is reduced to the most vital tasks. In extreme cases,
from several such self-checking computers. The complete set

these vital tasks bring the system to a stable safe state and
of computers for each axis processes sensor data and executes

then halt the processor. An example is stopping a train: an
the control loop functions. However, at any given instant, only

immobile train is in a safe state if passengers can leave the
one computer in the set (the primary) is in charge of physi-

train (e.g., in case of fire), and if the stopping of the train is
cally controlling the actuators. This computer sends periodic

signaled early enough to other trains on the same track.
‘‘I’m alive’’ messages to the other computers in the set so that

Note that the implementation of forward recovery is
they may detect when it fails. Should the primary fail, it will

always specific to a given application. Unlike backward recov-
do so in a safe way (thanks to the built-in self-checking) with-

ery or compensation-based recovery techniques, forward re-
out sending erroneous actuator orders. According to a prede-

covery cannot be used as a basic mechanism of a general-pur-
termined order, one of the other computers in the set then

pose fault-tolerant architecture.
becomes the new primary and can immediately close the con-
trol loop without any noticeable jerk on the controlled surface.

Compensation-Based Error Recovery
The design diversity principle is also applied at the system

level. The set of computers controlling the pitch axis (Fig. 5)Error compensation requires sufficient redundancy in the sys-
tem state so that, despite errors, it can be transformed into is composed of four self-checking computers: two Elevator and

Aileron Computers (ELACs) and two Spoiler and Elevatoran error-free state. A typical example is given by the error-
correcting codes presented later. Computers (SECs), which are based on different processors

and built by different manufacturers. Given that each com-Error compensation can be launched following error detec-
tion (detection and compensation), or can be systematic puter type supports two different programs, there are overall

four different pitch control programs.(masking). Even in the latter case, it is useful to report errors
to initiate fault treatment. Indeed, if no fault treatment is There is also considerable functional redundancy between

the flight control surfaces themselves so it is possible to sur-done, redundancy may be degraded without the users being
aware of it, thereby leading to a failure when another fault vive a complete loss of all computer control of some surfaces,

as long as the failed computers fail safely. Furthermore, if allis activated.
Using compensation, it is no longer necessary to re-execute computers should fail, there is still a (limited) manual

backup.part of the application (backward recovery) or run a dedicated
procedure (forward recovery) to continue operation. This type
of recovery is, therefore, fairly transparent to the application: Fault Masking. Unlike the previous technique, masking is

an error compensation technique in which compensation isthere is no need to restructure the application to account for

296 FAULT TOLERANT COMPUTING

Figure 4. Self-checking Airbus 320
flight control computer based on di-
versely programmed control and moni-
tor lanes.

28V DC

Processor RAM
ROM

Power
supply Watchdog

I/O

I/O

Relay

Lightning, EMI
and voltage
protection

Control lane

Monitor lane

Critical outputs
(e.g., actuators)

Processor RAM
ROM

Power
supply Watchdog

carried out systematically, whether an error is detected or Example: Tandem Integrity S2. Announced in 1989 by Tan-
dem, the Integrity S2 system aims, like the NonStop system,not. A typical example is that of majority voting: processing

steps are run by three (or more) identical components whose to tolerate a single hardware fault with the additional re-
quirement of supporting commercial off-the-shelf applicationoutputs are voted. The majority results are transmitted, and

minority results (supposedly erroneous) are discarded (Fig. 6). software through the use of an operating system that is fully
compatible with UNIX. The architecture is shown in Fig. 7.As voting is systematically applied, the computation and,

therefore, the execution time, are identical whether or not This architecture features a triplex structure for the pro-
cessors and their local memories and a duplex structure forthere exists an error. This is what differentiates masking

from the detection and compensation techniques. the voters (which are self-checking), the global memories, and
the input-output buses and processors. Local memories con-The voting algorithm can be simple if the copies are identi-

cal and synchronous and if computation is deterministic in tain a copy of the UNIX kernel (in a protected memory), and
program and data application zones. The global memoriesthe absence of errors. If these assumptions cannot be guaran-

teed, one has to consider that the copies are diverse and a also contain application zones and control and buffer zones
for input/output. Under normal operating conditions, themore or less complex decisional algorithm will be needed, de-

pending mainly on the type of information for which voting is three local memories have identical contents. The same is
true for the two global memories. Each processor has its ownneeded (46).

Figure 5. The Airbus 320 pitch control
nominally uses two diverse pairs of di-
versely programmed self-checking com-
puters.

Left side stick
(copilot)

Mechanical
trim

Right side stick
(pilot)

SEC2
Control

Monitor

SEC1
Control

Monitor

ELAC2
Control

Monitor

ELAC2
Control

Monitor

Mechanical link
THS

Elevators

THS: trimmable horizontal stabilizer

FAULT TOLERANT COMPUTING 297

(a) Single error detection

(b) Single error correction

(c) Single error correction;
 double error detection

: code symbol : noncode symbol

…

…

…

Figure 8. The distance between code symbols determines a code’s
ability to detect and correct errors.

other suppliers can be used. If there is an IOP or associated
bus failure, the BIM switches control of the VME bus over to

Computation Vote

Computation Vote

Computation Vote

the other IOP.
Figure 6. Principle of majority voting.

Error Correcting Codes. The information encoding principle
introduced in the section on error detection can also be em-

clock. Their computations are synchronized when accessing ployed to construct codes capable of correcting errors (47). Er-
the global memory. Each such access gives rise to a majority ror correction requires a larger Hamming distance between
vote. the symbols (words) of the code. To correct a single error, the

In case of inequality, an error is reported and computation code distance must be greater than or equal to 3 (instead of 2
is continued without interruption on the majority processors. for detection). More generally, to correct e errors a code of
A self-checking program is then started on the minority pro- distance 2 � e � 1 is required. Note that a code of distance
cessor to determine whether the error was created by a nonre- d (d � 3) can be employed either to detect d � 1 errors, or to
producible soft fault. If that is the case, the processor can be correct (d � 1)/2 errors. Thus, a code of distance d can cor-
reinserted. Otherwise, it has to be replaced. rect ec errors and detect ed additional errors if and only if:

Input/output is based on the same technique as in the Tan- d � 2 � ec � ed � 1.
dem NonStop system: duplicated buses, self-checking input/ The redundancy principle used to detect or correct an error
output processors (IOPs), mirror disks. Nevertheless, a spe- is depicted in the diagram of Fig. 8.
cific feature is worth noting, that is, bus interface modules The Hamming code is the most popular single error correc-
(BIMs) serve to interface the dedicated duplicated buses with tion code. It is obtained by adding one or more bits to selec-
standard VME buses, so that peripherals and controllers from tively control the parity of certain data bits. These control bits

are used to build a syndrome that allows an unambiguous
error diagnosis. For the correction to take place, the binary
combinations of the syndrome must allow identification of the
various combinations in which errors are absent or present
on any bits of the word (including the control bits). If k stands
for the number of information bits, c refers to the number of
control bits (and equally of the syndrome) and n the total
number of bits of the code word (n � k � c), then we must
have: 2c � n � 1. For example, for a 16-bit encoded data word,
5 control bits are needed. The overhead in terms of the num-
ber of bits is about 30%. This cost becomes less than 15% for
64-bit data words.

The extension of the Hamming code to the systematic and
simultaneous detection of double errors [see Fig. 8(c), for ex-
ample] is simply obtained by adding a single parity bit cov-
ering the n bits.

Other more powerful correcting codes have been developed.
Cyclic codes are particularly suited to serially transmitted
data. These codes are interesting because the encoding and
decoding operations can be performed easily and economically
by using shift registers with loops. Additionally, these codes
lend themselves well to the detection of error bursts (errors
affecting several adjacent bits). The most popular class of bi-
nary cyclic codes are BCH codes (Bose, Chauduri, and Hoc-
quenghem). These are a generalization of the Hamming code
to multiple error correction. Among higher order codes (that
is, covering nonbinary symbols), the most important class cor-
responds to the RS codes (Reed–Solomon). These are a direct

CPU

Local memory

CPU

Local memory

Voter

Global memory

Voter

Global memory

CPU

Local memory

IOP IOP

BIM

VME

BIM

VME

BIM

VME

extension of binary codes that allow correction of error bursts.
An efficient way to define a powerful code is to combineFigure 7. Architecture of the Tandem Integrity S2 fault-tolerant

computer. two (or more) codes. Such product codes allow interesting

298 FAULT TOLERANT COMPUTING

properties to be obtained at a low cost. For example, a single Timing Models. The simplest timing model to reason about
is the synchronous or bounded time model. In this model, anyerror correcting code can be obtained by using a bidimen-
message sent from one nonfaulty process to another is re-sional parity pattern. In addition to the conventional single
ceived and processed at the destination process within aparity bit associated with each word (row) of the matrix repre-
bounded time. In practice, to bound the time for messagesenting the memory space, a parity bit is associated with each
transmission and processing, it is necessary: (1) to use hardcolumn (including the row parity bit column). The matrix is
real-time scheduling and flow control techniques, and (2) tothus extended by a horizontal parity bit word and a vertical
assume an upper bound on the number of failures that canparity bit word. An error affecting one bit can easily be de-
occur per unit of time. This is a very powerful model since ittected and localized (and therefore, corrected) because it af-
is possible to use time-outs to unambiguously detect whetherfects the parity in the corresponding row and column. This
remote processes have crashed or are late. It is an appro-technique is both efficient and inexpensive but fails to correct
priate model for critical applications that require guaranteedmultiple errors.
real-time progress, even in the presence of faults. However,
the required assumptions must be justified through an appro-
priate design of the underlying networks and operatingDISTRIBUTED SYSTEMS
systems.

At the opposite extreme, the asynchronous or time-freeA distributed system can be defined as a set of computing
model places no bounds at all on message transmission andnodes, interconnected by a communication network, that co-
processing delays. A message sent by a nonfaulty process tooperate to carry out some common work. The nodes can typi-
another, through a nonfaulty link, will eventually be receivedcally be considered as independent from the viewpoint of fail-
and processed, but with no guarantee when. Algorithms de-ures, so distribution can be a useful framework for providing
signed according to this model are attractive since they arefault tolerance. However, distribution of system state and
independent of networks and operating systems, and are thusother dependencies between cooperating tasks also mean that
general and portable. Unfortunately, some very basic prob-a distributed service can easily be disrupted if any of the
lems in fault-tolerance cannot be solved when this model isnodes involved should fail. With the added potential complica-
adopted (49).tion of unreliable communication, distributed services often

In many practical systems, time-outs are used to empiri-need to be made fault-tolerant if they are to be useful.
cally detect whether remote processes have crashed, even ifThese two opposing facets of the relationship between
the underlying assumptions of the synchronous model are notfault-tolerance and distribution are strong motivations for
justified. It may just be the case that the distributed applica-distributed fault-tolerance techniques. An important charac-
tion is not very critical, so the occasional lack of fault-toler-teristic of these techniques is that error processing and fault
ance has no dire consequences. Alternatively, time-outs aretreatment are implemented mainly by software using distrib-
over-dimensioned to the extent that the probability of falseuted, message-passing algorithms.
detection is considered negligible.

Much recent research has been devoted to defining models
Models and Assumptions that are intermediate between the asynchronous and synchro-

nous models. One promising approach is the timed asynchro-Fault-tolerant distributed algorithms have been devised ac-
nous model, which assumes that noncrashed processes havecording to several distributed system models that embody as-
local clocks with bounded drift. By using these clocks tosumptions about faults and the timing of interprocess com-
timestamp messages, it is possible to compute worst-casemunication (48) (we use the term process in a very general
bounds on the currently achieved message transfer delays.sense, to designate any communicating entity or fault con-
Periods of operation in which synchronous behavior cannot betainment domain, be it a UNIX process, an object, a pro-
guaranteed can thus be flagged as such. This allows distrib-cessor, etc.).
uted algorithms to be designed that carry out useful work
whenever the system behaves synchronously, and that switch

Fault Models. In distributed systems, a fault model is de- to a well-defined safe mode of operation whenever failures oc-
fined in terms of process and communication failures. It is cur too frequently. This model is therefore particularly well
common to admit that communication failures can only result suited for implementing fail-safe distributed systems (50).
in lost or delayed messages, since checksums can be used to
detect and discard garbled messages. However, duplicated or Partitioning. A set of processes is partitioned if it is divided
disordered messages are also included in some models. into subsets that cannot communicate with each other. Parti-

For processes, the most commonly assumed failures are (in tioning may occur due to normal operations, such as in mobile
increasing order of generality): stopping failures or crashes, computing, or due to failures of processes or interprocess com-
omission failures, timing failures, and arbitrary failures. In munication. Performance failures due to overload situations
the latter case, no restrictive assumption is made. An arbi- can cause ephemeral partitions that are difficult to distin-
trarily faulty process might even send contradictory messages guish from physical partitioning.
to different destinations (a so-called Byzantine failure). Partitioning is a very real concern and a common event in

Some fault models also include assumptions about how a wide area networks (WANs). Certain distributed fault-toler-
failed process may be restarted. In particular, a crash failure ance techniques are aimed at allowing components of a parti-
assumption is often accompanied by an assumption that some tion to continue some form of degraded operation until the
local storage is stable in that its contents can survive the components can remerge. Note that partitioned operation is

excluded by principle in the synchronous and asynchronousfailure.

FAULT TOLERANT COMPUTING 299

models. The former forbids partitioning, whereas the latter nonfaulty processes finally make the same decision. Further-
more, if all processes had the same initial value, then theassumes that it will eventually disappear. Partitioning is

however naturally included in the timed asynchronous model final decision should be that value. An equivalent agreement
problem can be coined for choosing a value among more thanas periods of nonsynchronous operation.
two possible values. Agreement in the presence of arbitrary
process faults is called Byzantine agreement. Agreement on aConsistency
vector of initial values is called interactive consistency.

Programming distributed systems is notoriously difficult, Solving consensus is necessary if nonfaulty processes are
even without faults. This is essentially because the ‘‘state’’ of to make consistent decisions. Unfortunately, it has proven im-
the system is distributed across all its processes and, since possible to achieve consensus deterministically when mes-
communication cannot be instantaneous, this state cannot be sages can be lost (unreliable communication) or when the
viewed consistently by any single process. We consider here time needed for them to reach their destination cannot be
some useful consistency techniques that can greatly simplify bounded in advance (asynchronous timing model). Consensus
the programmer’s task. can however be achieved deterministically with a synchro-

nous timing model. Two other important results are that, in
Global Time. One of the characteristics of a distributed sys- the presence of k faulty processes, k � 1 rounds of information

tem is that processors do not have access to a common physi- exchange are needed and that there must be a total of at
cal clock. This complicates the issues of coordination and least 3k � 1 processes if arbitrary failures can occur.
event-ordering. Consequently, one of the most basic consis- Recent theoretical work is centered on the definition of
tency abstractions is some notion of global time. At least two models between the fully asynchronous and synchronous ex-
sorts of global time can be considered: physical time and logi- tremes and seeks to define the minimum amount of restric-
cal time. tive assumptions that need to be added to the asynchronous

Global physical time can be approximated by synchroniz- model for consensus to become achievable.
ing distributed physical clocks. Clock synchronization can be
done mutually (internal synchronization) or with respect to Group Communication. Group communication services fa-
some authoritative time reference (external synchronization). cilitate communication with and among sets of processes and
For internal synchronization, typically each clock periodically are thus a useful abstraction for implementing replicated,
reads the values of remote clocks, computes a correction func- fault-tolerant services. Group communication is essentially
tion (e.g., a fault-tolerant average) and applies it locally. Ex- concerned with three issues: (1) how to select which destina-
ternal synchronization can be achieved by periodically polling tions should accept messages, (2) how to route messages to
a time server, perhaps itself implemented by a fault-tolerant those destinations, and (3) how to provide guarantees about
set of internally synchronized clocks or using a global posi- message acceptance and message ordering. There are many
tioning system (GPS) receiver. different protocols in the literature, with almost as many dif-

The precision to which clocks can be synchronized depends ferent terminologies as authors.
mainly on the uncertainty in the time it takes to read a re- Protocols that send data to all possible destinations are
mote clock. The synchronous timing model must be adhered called broadcast protocols; protocols that designate a subset
to for there to be a deterministic bound on the offsets between of possible destinations are called multicast protocols. A mem-
correct clocks. The timed asynchronous model, while it cannot bership service is used to dynamically manage multicast
achieve a deterministic bound, does allow a very high preci- groups. Membership services typically allow processes to join
sion to be achieved using probabilistic synchronization. An ex- and leave groups dynamically, either voluntarily, or due to
ample of such an approach is the Internet network time proto- failures or network partitioning.
col, that can achieve typical offsets of less than a few tens of The ability to route messages to different destinations has
milliseconds (51). long been a feature of local area networks. With the multicast

Since it is not possible to perfectly synchronize clocks, backbone (MBone), it is now a reality on the Internet. How-
physical time cannot be used to order events that occur less ever, routing messages to multiple destinations only gives the
than a clock offset apart. Logical clocks, however, can be used latter the possibility to accept them, but no guarantees that
to causally order events according to a ‘‘happens-before’’ rela- they will do so consistently.
tionship even in a system that has no notion of physical time. A broadcast protocol that guarantees that all destinations
Logical clocks are implemented by counters at each process. agree to accept the same messages is called a reliable broad-
These are incremented whenever relevant local events occur cast (54). A reliable broadcast that also guarantees that desti-
or when messages are received from other processes, carrying nations accept messages in the same order is called an atomic
piggy-backed values of remote logical clocks. The most elabo- broadcast. Some protocols also satisfy other ordering con-
rate logical clock system maintains a vector of counters at straints, such as FIFO (first in, first out) and causal ordering.
each process, with an element in the vector for every process In general, reliable and atomic broadcast require the same
in the system. Such vector timestamps have found several conditions for solvability as the consensus problem. In partic-
practical uses (52). ular, neither is achievable with the totally asynchronous tim-

ing model.
Consensus. The consensus problem is a fundamental issue

in fault-tolerant distributed computing (53). In its most basic
Tolerance Techniques

form, all processes in a set must make a binary decision. Each
process has its own initial value (i.e., opinion on what the As discussed in the introduction to this section, fault-toler-

ance can be either a necessary evil of distribution or one ofdecision should be). The problem statement requires that all

300 FAULT TOLERANT COMPUTING

its very purposes. In the first case, some form of fault-toler- output messages. Effective output messages are chosen from
these by a decision function that depends on the process faultance is required to minimize the negative impact of a failed

process or node on the availability of a distributed service. In assumption. For crash failures, the decision function could be
to take the first available output. This technique is also capa-its simplest form, this can be just a local recovery of the failed

node. However, continuity of service in the presence of failed ble of tolerating arbitrary failures, using a majority vote deci-
sion function.nodes requires replication of processes and/or data on multi-

ple nodes. Semiactive replication is similar to active replication in
that all replicas receive and can process input messages.Here, we revisit in a distributed setting some of the tech-

niques described in the section on error recovery. However, like passive replication, the processing of messages
is asymmetric in that one replica (the leader) assumes respon-
sibility for certain decisions (e.g., concerning message accep-Local Recovery. The failure of a node hosting an important

server can have an important negative impact on numerous tance or process preemption). The leader can enforce its
choice on the other replicas (the followers) without resortingclients. It is important in such a setting to be able to restart

the failed server as quickly as possible. Two features can be to a consensus protocol. Optionally, the leader may take sole
responsibility for sending output messages. Although primar-built into the design of the server to facilitate this. First, if

server operations are idempotent, clients can simply repeat ily aimed at crash failures, this technique can, under certain
conditions, be extended to arbitrary failures.requests for which they received no reply. Second, if a server

process is stateless, it can restart after failure and resume With both active and semiactive replication, recovery of
failed group members (or creation of new ones) implies initial-operation without needing to restore its state or that of its

clients. Also, a stateless server is not affected by the failure ization of their internal state by copying it across from the
current group members. This operation is basically the sameof any of its clients. This strategy has been used with success

in Sun’s network file system (NFS). as the checkpointing operation of passively replicated state-
ful processes.If a process is ‘‘stateful’’ rather than stateless, stable stor-

age is required to allow local checkpoints of the process state
to survive failures. Stable storage can be implemented using Replicated Data. From a data-oriented viewpoint, replica-

tion serves to improve both availability of data items and per-local nonvolatile memory, for example, a disk. A process can
recover autonomously from a local checkpoint only if it has formance of read operations. First, a replicated data item can

be accessed even if some of its replicas are on failed or inac-not interacted with other processes since taking the check-
point or if it can replay those interactions (e.g., from a log on cessible nodes. Second, it is usually faster to read a local rep-

lica than a remote one. However, write operations on repli-stable storage). If that is not the case, distributed recovery
is necessary. cated data can be slow, since they ultimately involve all

replicas.
Data replica management protocols are called pessimisticDistributed Recovery. Distributed recovery occurs when the

recovery of one process requires remote processes also to un- or optimistic according to whether or not they guarantee one-
copy equivalence, that is, that users perceive the replicateddergo recovery. Processes must rollback to a set of check-

points that together constitute a consistent global state. A data item as if only one copy existed (56).
A pessimistic protocol guarantees one-copy equivalence bydomino effect (cascading rollback) occurs if such a consistent

set of checkpoints does not exist. It is therefore better to coor- ensuring mutual exclusion between write operations, and be-
tween write and read operations. The simplest such protocoldinate the taking of checkpoints to avoid this problem (see

section titled ‘‘Backward Error Recovery’’). is the read-one write-all protocol: a user (process) can read
any replica, but must carry out writes on all of them. This
technique gives excellent read performance, but very poorReplicated Processes. A fault-tolerant service can be imple-

mented by coordinating a group of processes replicated on dif- write performance. Moreover, writes are blocked if any replica
should become inaccessible. Quorum protocols generalize thisferent nodes. The idea is to manage the group of processes so

as to mask failures of some members of the group. We con- idea and allow improved write performance at the expense of
always having to access more than one replica for read opera-sider three different strategies here: passive, active, and

semi-active replication (55). tions. Other pessimistic replica management protocols in-
clude the primary-copy and the virtual-partition protocols.With passive replication, input messages are processed by

one replica (the primary), which updates its internal state Optimistic protocols sacrifice consistency to improve avail-
ability. These protocols authorize write operations on replicasand sends output messages. The other replicas (the standby

replicas) do not process input messages; however, their inter- that are in different components of a partitioned network.
The available-copies protocol is an optimistic variant of thenal state must be regularly updated by checkpoints sent by

the primary. If the primary should crash, one of the standby read-one write-all protocol: writes are performed only on the
copies that are currently accessible. When partitioningreplicas is elected to take its place. Passive replication is par-

ticularly well suited to stateless processes, since the absence ceases, any conflicts resulting from write operations carried
out in different components must be detected and resolved.of internal state removes the very need for checkpointing.

Note that this technique can be viewed as a distributed imple- Conflict resolution depends on the semantics of the data, so it
is usually application-specific.mentation of the local recovery technique discussed pre-

viously. In distributed transaction systems, replica management is
integrated with concurrency control, and the notion of one-Active replication is a technique in which input messages

are atomically multicasted to all replicas, which then process copy equivalence is refined into that of one-copy serializabil-
ity (38).them and update their internal states. All replicas produce

FAULT TOLERANT COMPUTING 301

FAULT-TOLERANT SYSTEM DEVELOPMENT • Choice of the overall fault-tolerance strategy. This activ-
ity defines the error-processing (detection, recovery) and

In the field of safety-critical system development, a number fault-treatment schemes.
of standards have been issued in the last decade that address

Fault-Removal Activities. Fault-removal activities are aimedthe issue of fault-tolerant computing. Such standards are use-
at improving system dependability by removing the faults (ac-ful, but must be defined and applied with care. In particular,
cidentally) introduced during development. They include:earlier standards were too directive in how development ac-

tivities should be done. This led people to provide a scrupu-
• Verification, aiming at revealing faults by detecting er-lous step-by-step compliance, while forgetting the actual ob-

rors. The verification activities may involve very differ-jectives of the standards (to upgrade the overall system
ent approaches, from tests to reviews, inspections, ordependability).
even formal verification.Current standards, such as IEC 1508 (57), DO178B (58),

and ECSS (59), now leave more freedom to the developers to • Diagnosis, which consists in effectively identifying the
choose their own methods and tools. They do not impose a faults causing the errors detected by verification.
particular lifecycle (i.e., how to build the system), but only • Correction, leading to the actual removal of the faults.
give the objectives that must be satisfied (i.e., what must be Since this correction modifies the system, nonregression
achieved). testing must then be done (the whole fault removal pro-

This section describes how activities related to dependabil- cess is recursive).
ity, and especially fault-tolerance, are integrated into the key
phases of the development of critical systems. We first show Fault-Forecasting Activities. Fault-forecasting activities
how the four basic means for dependability permeate all de- allow the presence of faults and the severity of their conse-
velopment phases. Taking the opposite viewpoint, we then de- quences to be anticipated and estimated. They contribute to
tail the system development phases and their contribution to the following system development activities:
the building of the overall system dependability.

• Definition of the system requirements in terms of de-
Dependability Activities within the Lifecycle pendability attributes.

• Allocation of these requirements onto the building blocksThe four basic means for dependability (see ‘‘Basic Defini-
of the system.tions’’) are implicitly present as activities in every phase of

• Evaluation of the presence of faults and of their possiblesystem development, and are used iteratively throughout the
consequences. Different methods, like FMECA (failurewhole lifecycle (60).
modes, effects and criticality analysis), FTA (fault tree
analysis) and Markov models, are available to demon-Fault-Prevention Activities. Fault-prevention activities are
strate the product’s ability to meet the apportioned de-all those activities that enforce the system to be correctly de-
pendability objectives (in terms of reliability and/orveloped, thus preventing faults from occurring. The concerned
availability).development activities are:

These forecasting activities must take into account various
• Choice of methods, formalisms, and languages. These system characteristics, like detailed mission definition, op-

choices cover all system development activities, and some erating and environmental conditions, system configuration
of them may be imposed by standards. and fault-tolerance mechanisms (optimized through FMECA

• Project management activities. A good organization of and risk analyses), and the values of parameters of system
the whole project reduces the potential of creating acci- dependability models (failure rates, . . .). For physical faults,
dental faults due to misunderstandings between people. the latter can be extracted from reference handbooks [e.g.,
Furthermore, risk-management activities allow some MIL HDBK 217 (61)]. For design faults, however, there is no
faults to be avoided by evaluating risks and then taking equivalent to the MIL handbook. In this case, parameter val-
the appropriate risk-reduction actions. ues need to be obtained by statistical testing, or by applying

reliability growth models to collected failure data (62).
Fault-Tolerance Activities. Fault-prevention and fault-re-

System Development Phasesmoval activities do not have a perfect coverage. So there may
be residual design or implementation faults. Also, of course, Industrial projects aimed at developing fault-tolerant systems
faults can occur during system operation. The very aim of involve a client and a system supplier. The overall goal of the
fault-tolerance is to allow the system to provide satisfactory system supplier is to provide to the client in due time and
service despite faults. The following development activities cost a system that satisfies his needs. To this end, the system
can be identified: supplier carries out a number of activities, which may be dis-

tributed among three broad categories:
• Study of system behavior in the presence of faults. This

activity is aimed at articulating the fault hypotheses un- 1. Project management, which includes all the activities
der which the system will be developed. related to the overall organization of the project (plan-

ning, identification of tasks, attribution of responsibili-• System partitioning into fault independence regions and
error containment regions. This activity uses as input ties, management of cost and schedules, risk manage-

ment)the fault hypotheses.

302 FAULT TOLERANT COMPUTING

2. System development, which includes all the activities terms of FO/. . ./FS, meaning that the system must re-
main operational after the first fault(s) (fail operational),that participate directly in the creation of the system

(requirements, design, production, integration, verifi- and then put into a safe state (fail safe).
cation, validation) • The definition of the possible degraded modes.

3. Product assurance, which includes all the quality assur- • The ability of the system to be verified and possibly cer-
ance activities of the project tified.

The development process for a fault-tolerant system is not Furthermore, each function must be analyzed regarding its
very different in nature from the development of a less de- possible failure modes. For each failure mode, the severity
manding system. In fact, the main particularity is that the (linked to the consequences of the failure at system level) and
final product delivered to the client must demonstrate a very the probability of occurrence must be evaluated, thus feeding
high level of dependability. This implies that procedures need the risk-management process (which is then able to trigger
to be more strictly defined and adhered to. In particular, the the appropriate risk-reduction actions if necessary).
risk-management activity becomes an essential part of project The requirements concerning the use of particular meth-
management, and the system-development activities are car- ods and tools are also impacted when a fault-tolerant system
ried out according to more stringent methods and rules. is to be built. For example, a formal specification method may

The system-development activities have to be organized to be imposed for the development of some parts of the system,
manage the complexity of large industrial projects in a way possibly in conformance to some standards.
that allows the dependability of the final product to match the Finally, the early identification and specification of the ver-
client’s needs. This organization, also known as the system ification and validation requirements are essential to master
lifecycle, may vary from one project to another, but generally the dependability of the final system. These requirements
includes the following phases: must cover both static aspects (inspections, reviews, static

analysis) and dynamic aspects (structural tests, functional
Requirements definition and analysis test, simulations).
Design
Production and verification Design. The design activity consists in defining the system

architecture, and its decomposition into interacting hardwareIntegration and validation
and software components.

It is fundamental to clearly identify at each level of decom-Depending on the project size, these phases may be performed
position the fault hypotheses under which the fault tolerancerecursively, at different levels of decomposition of the system.
mechanisms are built. Indeed, the weaker the fault hypothe-They collectively participate in the construction of the de-
ses are, the more the necessary fault-tolerance mechanismspendability of the final system.
are complex. This is particularly true in the field of distrib-
uted computing systems. The identification of these faultRequirements Definition and Analysis. The requirements are
hypotheses and of the possible error propagation paths maydefined by the system supplier according to the client’s needs.
be supported by methods like FMECA or FTA.They constitute the agreed basis on which the system is to be

One key aspect of the design activities of a fault tolerantbuilt, and hence are of particular importance.
system is to decompose and structure the system in indepen-The requirements are stated at the system level, and then
dent parts allowing faults and/or errors to be confined:iteratively refined by taking into account the progressive de-

composition of the system. In particular, the ever-increasing
• Fault independence regions (FIR) define the differentcomplexity of components (both hardware and software) has

parts of the system between which faults occur indepen-an impact on the way the dependability requirements are
dently. In other words, faults affecting different FIRs arestated. Indeed, it no longer possible to assume a fault-free
supposed to be noncorrelated. This is part of the faultdesign as it was previously, when safety-critical systems were
hypotheses under which the system is built and againstimplemented using simple hardware components and little or
which the system will be verified.no software. In those systems, only physical faults were con-

sidered. Today, especially in systems designed to tolerate • Error containment regions (ECR) define the different
physical faults, the majority of observed errors are due to re- parts of the system between which errors cannot propa-
sidual design faults. gate. This nonpropagation is ensured not only by the sys-

So, in the field of fault-tolerant computing, the functional tem structure itself (in independent parts) but also by
requirements are completed by requirements concerning the adequate barriers against error propagation (necessary
dependability attributes of the final system. These depend- as soon as two ECRs have to interact).
ability-related requirements cover:

In some fault-tolerance approaches, FIRs and ECRs are
• The necessary trade-offs between availability objectives grouped together in what is then called Fault containment

(provide a continuous service) and the safety objectives regions (FCR). According to the number of FIRs, ECRs, or
(put the system in a safe state). In particular, the maxi- FCRs defined, and to their overall organization, several fault-
mum service interruption and/or the safe/unsafe system tolerance strategies can be envisaged (e.g., backward recov-
states must be defined. ery, forward recovery, or compensation). The choice of strat-

egy is often guided by the requirements concerning the maxi-• The number of faults to be tolerated, and their impact on
the system service. This requirement is often stated in mum duration of service interruption: if no such service

FAULT TOLERANT COMPUTING 303

interruption is allowed, or if its maximum duration is very
short, then compensation may be the only possible choice for
the error recovery scheme.

The design of a fault-tolerant system must facilitate as
much as possible the verification activities. This design strat-
egy is known as design for verification. The design drivers of
such a strategy are simplicity, rigorous design, clearly-defined
interfaces, and accessibility of any system variable that plays
an important role with respect to dependability (e.g., critical
output, error signal, . . .). If some components are reused
from earlier projects (or if some of them are commercial off-
the-shelf components), then their impact on the overall sys-
tem testability must also be assessed.

Production and Verification, Integration and Validation. The
production activities consist in effectively building the system
components according to the design. They are closely linked

OBC1
(master)

OBC1
(slave)

Intercomputer
alarm links

Remote
unit 1

(backup)

Mil. std. 1553B

Umbilical to
launchpad

…

Remote
unit n

(backup)

Remote
unit 1

(nominal)

…

Remote
unit n

(nominal)

to the verification activities, which are in charge of checking
Figure 9. Architecture of the Ariane 5 fault-tolerant on-board datathat the produced components actually fulfill their specifica-
handling system.tions. The verification activities must then be carefully de-

fined and followed for fault-tolerant systems, and their cover-
age regarding the different components and errors considered
must be evaluated.

In terms of fault handling, the on board computer systemThe last activities performed during system development
is centralized and can be seen as a pair of computers (OBC1are integration and validation. During the integration all the
and OBC2) cross-linked through a redundant Mil. Std. 1553system components are gathered to build the final global sys-
bus (63) to two identical functional chains (sensors and actua-tem. Then, the validation activities consist in checking that
tors) (Fig. 9). These buses connect the on-board computer poolthe system as a whole matches the client’s needs, especially
to all the Ariane 5 internal equipment, including interfacesfrom the viewpoint of its expected dependability level. Specific
to sensors and actuators. They operate in a nominal/standbyfault-injection campaigns may be used to validate the fault-
configuration. The pool is organized as a master computertolerant mechanisms built into the system.
(OBC1) and a slave one (OBC2). The master computer con-
trols the communications on the buses (nominal and standby)
and executes the flight software. The slave passively monitorsCASE STUDY
the communication buses to maintain a software context
should it need to take over from OBC1. OBC2 does not checkAs examples of a real-life implementation, we have chosen to
the behavior of OBC1; each computer has the capability ofpresent two complementary parts of the Ariane 5 data man-
self detecting an abnormal local situation, to passivate itselfagement system focusing on fault-tolerance issues: the on
and to inform the other that it has failed (details are givenboard computer system and the ground control center. It is
later).not intended to describe in full these two very complex sys-

Two phases can be defined for the system: from power-ontems but rather to provide the reader with a broad view of
to lift-off and from lift-off to payload delivery and mission ter-the fault-tolerance techniques employed, and how and where
mination. During the first phase, from a reliability stand-they are actually implemented.
point, it has to be ensured that the hardware is properly func-
tioning and that the flight software has been loaded correctly.

The Ariane 5 On Board Computer System There is also a system monitoring and control activity (under
ground control) to check the readiness of the vehicle beforeThe Ariane 5 data handling system is responsible for power
launch, and to guarantee the safety of the launchpad andmanagement (storage and distribution) and the operational
ground personnel.functions, that is, guidance, navigation, and sequencing.

During this phase, both OBCs act as slaves, with masterThe design drivers were: reliability, cost, mass, volume,
control of the communication buses provided from the ground.ease of verification, and thermal dissipation. It has to be em-
Hardware checking is based on self-test, result monitoring byphasized that this kind of system has a very short operational
the ground, and the previously mentioned computer self-lifetime, about one hour or less after lift-off. The acceptable
checking. Correct loading of the software is checked duringduration of service interruption is less than a tenth of a sec-
the load operation by means of a proprietary secured packetond. There are two reasons for this: first, the natural instabil-
protocol. This protocol checks that each packet has been cor-ity of the launch vehicle could lead to a quick destruction
rectly sent and received, and that the sequence of packets isthrough structural overloading and second, the accuracy of
in the right order. By allowing just a single faulty packet to bepayload injection is extremely critical. A classical approach
reloaded, the protocol can tolerate a defective communicationwould have been to implement a triplicated actively redun-
medium without missing the launch window. A global cyclicdant system with fault masking. Unfortunately, the already
redundancy checksum (CRC) ensures that the correct soft-mentioned design drivers did not allow for such a solution, so

a mixed scheme had to be chosen. ware has been loaded.

304 FAULT TOLERANT COMPUTING

When the so-called synchronized sequence is entered, just address). All parameters are statically defined to facilitate the
detection of protocol violations.before the effective launch, full control of the launcher is

The software is fully checked against the actual mission ongiven over to the on-board computers. Both computers switch
a simulator. In flight, only the outputs of the software areto the flight part of the software, OBC1 becomes master while
checked against precomputed limits. There is no dedicatedOBC2 remains slave.
piece of software added to check it. As the mission is fullyTo support this description, mechanisms for error detec-
known before launch, this is a reasonable approach. As in anytion, error confinement, and error recovery have been imple-
unique implementation, unrevealed specification faults or im-mented. Simply said, OBC1 executes the flight software, de-
plementation faults can lead to a catastrophic failure.tects faulty units, passivates them by turning them off and

To moderate this statement, it should be noted that the onswitches on the redundant chain. If OBC1 self-detects itself
board computer system has only a modest influence on thein error it passivates itself and sends a signal to OBC2
overall launcher reliability, as compared to the rate of me-through a dedicated link. OBC2 then switches to the master
chanical or propulsive system failure.state and uses the context previously built up by monitoring

of the communication buses to speed up software initializa-
The Ariane 5 Ground Control Centertion, turn OBC1 off, and then control the launcher. When only

one computer remains running, either OBC1 or OBC2, self- The ground center represents the largest component in the
passivation is inhibited since there is no longer anything to Ariane 5 ground segment (64). It handles all interface man-
be gained by attempting to recover from a computer failure. agement between the Ariane launcher and ground facilities

At the level of remote units, error detection is ensured ei- during integration, testing, and launch preparation phases. It
ther by self monitoring for intelligent units (e.g., inertial ref- controls both electrical interfaces (main power supply, con-
erence system or engine actuator control electronics), or by trol, and data acquisition) and fluids. It ensures information
the master OBC for dumb ones. The monitoring is based on exchange between on-board equipment and the ground, and
reasonableness checks such as a range test on measurements, controls the launch count-down during the five hours from
or a comparison between a model of the equipment and actual tank filling until the synchronized sequence before launch
measures. Both local checks on individual items of equipment and lift-off.
and global checks on the full launcher are carried out. For For operational considerations linked to the mission profile
example, one global reasonableness check verifies that the and other constraints, the control center has a fully decentral-
launch vehicle trajectory remains in a predetermined flight ized architecture. It is a real-time system distributed over
corridor. four sites more than 3 km apart and linked by an optical fiber

Since the system relies ultimately on the self-checking ca- network (Fig. 10).
pability of each computer, let us now take a look at the inter- A set of input/output (I/O) processors are in charge of in-
nal architecture of an OBC. The computer is composed of terfacing with the controlled process and are located near the

launcher. The control center manages and exploits more thanthree modules: power supply, processing unit, and input/out-
4000 wired inputs from and outputs to the process. These areput unit. The power supply is very classically built and elec-
managed by the electric power and housekeeping I/O pro-trical parameters such as output voltages are monitored.
cessors. The fluid I/O processors are responsible for emptyingShould one of these parameters break some predefined nomi-
and purging of launcher propellant gas. The 1553 I/O Pro-nal range, the power supply is turned off leading to a com-
cessor manages the on-board 1553 data bus during prelaunchputer stop which is easily detected by the other OBC. The
activities. Thirty-two workstations are in charge of the controlprocessing unit and the input/output unit are located on two
operations in the Launch Center 3 control room. A further tenseparate boards and communicate through a shared memory.
workstations, based in Evry (Metropolitan France), are usedEach of these units contains error detecting and correcting
for real-time surveillance of the operations carried out 7000(EDAC) memory, a watch dog, and an address violation detec-
km away in French Guyana.tor. Any of these devices can trigger a computer stop with an

The safety equipment and functional equipment of the con-associated context save operation for post mortem investiga-
trol center are completely independent. The aim of the safetytion. A computer is stopped by holding the CPU in the stop
equipment is to enforce the fail-safe (FS) criterion in case ofstate until the power is turned off by the surviving computer.
two failures. It includes the safety I/O processor (to acquireTo avoid an erroneous interruption of OBC1 by OBC2, OBC2
process data for safety monitoring), the safety operator work-checks that OBC1 has indeed passivated itself by verifying
station and the safety control panels (to interface with thethat there is no traffic on the bus. Furthermore, saturation of
safety automata executed by the safety I/O processor).the buses by a permanently emitting device is avoided by de-

For availability reasons, the following subsystems are du-fining a maximum message duration that is checked by every
plicated:communication device.

Electrical isolation and electrical fault containment at the
• The power supply subsystemunit level are provided by transformer bus coupling, a dedi-
• The networking subsystem (control network, service net-cated power supply switching unit with electronic switches

work, archiving network, safety network)acting as power fuses, and optical couplers between com-
• All the I/O processors (fluids I/O processors, 1553 I/Oputers.

processors, electric power and housekeeping I/O pro-At the 1553 bus level, the messages are checked for electri-
cessors, safety I/O processors)cal correctness (e.g., fall and rise time and voltage level), and

for protocol correctness (e.g., parity, response time, maximum • All the processing units except the evaluation unit,
which is only used during the off-line launch debriefingemission duration, and word numbers associated to each sub-

FAULT TOLERANT COMPUTING 305

Controlled process

Control operator
workstations

Safety network

Safety operator
workstations

Control network

Evaluation network

Supervision
unit

Service network

Archiving network

Electric power
& housekeeping

I/O processor

1553 I/O
processor

Fluids I/O
processor
(launcher)

Fluids I/O
processor
(ground)

Safety I/O
processor

Operation
control unit

Archiving
unit

Evaluation
unit

Figure 10. Architecture of the Ariane 5 fault-tolerant ground control center.

Dependability Requirements. Failure events are classified Fault-Tolerance Design. Two kinds of fault-tolerance tech-
niques are used in the control center equipment due to theaccording to five levels:
various operational or functional needs. Archiving units em-
ploy error detection and compensation (using ‘‘active’’ redun-1. Catastrophic event: loss of human life
dancy), whereas the operation control units and supervision2. Serious event: failure inducing a serious destruction of
unit use error detection and recovery (using ‘‘passive’’ redun-the ground-based facilities
dancy). In the latter case, only a part of the software is exe-

3. Major event: failure inducing damage to the launcher cuted within the standby unit, to continuously acquire dy-
or a postponement of the launch for more than one day namic context from the primary unit and to update the table

4. Significant event: failure inducing a postponement of of outstanding requests. With passive redundancy, the follow-
the launch for less than one day ing states are defined for each unit of a redundant pair:

5. Minor event: failure during the off-line launch de-
• Primary is the state of a unit able to control the processbriefing (after launch)

and to execute requests.
• Standby is the state of a unit ready to become active andThe control center must obey the FS/FS (fail safe/fail safe)

replace the currently active unit, when the latter hasrule for catastrophic events (i.e., safe with two consecutive
been passivated.faults). It must obey the FS criterion for serious or major

• Operational is the state automatically reached after theevents, and the FO criterion for significant events.
correct execution of the first loop of unit self-test.Depending on prelaunch phases, the control center must

be FS for operations before count-down and FO/FS (fail • Functional is the state automatically reached after load-
operational/fail safe) for several operations during count- ing the application software into the unit’s memory.
down. This implies: • Frozen is the state of a unit after passivation; all inter-

faces are inhibited, but the unit’s memory is not reset.
• For the first failure: continued operation or stop in a safe • Zero is the state of a unit after a reset.

state • Off is the state of an equipment when no power is sup-
plied.• For the second failure: stop in a safe state

306 FAULT TOLERANT COMPUTING

Some of the data needed for a standby unit to be able to be- an alarm in case of saturation. For critical acyclic tasks,
a periodic wake-up mechanism is also implemented.come primary cannot be acquired directly from the controlled

process. This data forms the dynamic context that must be These mechanisms are relied upon to detect failures of
the operating system and of the low level software.transmitted continuously by the primary unit to the standby

unit. • System level self-checking is carried out by the supervi-
A table of outstanding requests is used to determine sion unit that polls both the operator workstations and

whether or not a request has been executed by the primary the networks.
unit (so that, should the current primary fail, the new pri-
mary can decide whether to re-execute the request). Functional checking concerns hardware and low level soft-

Redundancy Management. A specific hardware board, called ware: power supply, memory parity, processing boards, net-
the reconfiguration board, is implemented in each redundant work controllers, internal buses, wired interfaces. The results
pair. This board carries out the following functions: of these functional checks is reported to the local supervisor

of the considered unit.
• Checking of unit state (primary, standby) and unit pas-

Fault Passivation. The passivation of a unit implies that all
sivation its interfaces with the network, the process and other equip-

• Reception of heartbeats from each unit ment must be inhibited. The unit is put into the frozen state.
• Switching of process control outputs To avoid error propagation, a unit is automatically passiv-

ated by the reconfiguration board if the MOSC is open. The• Transmission of health status to the twin unit
MOSC can be opened even due to a transient signal.• Transmission towards the supervision unit of the pri-

Redundancy Switching. When a redundant pair must be re-mary, standby, and health status bits
configured, the primary unit is first put into the frozen state,
and then into either the off state or the zero state. Then, theThe primary and standby status bits are set to true when a
standby unit becomes active and switches over the outputs tounit is in the corresponding state. The health status of a unit
the process.is assessed by a set of hardware and software monitoring

This redundancy switching is carried out automatically bymechanisms that are chained together to form the monitor
the reconfiguration boards of the primary and standby units.output synthesis chain (MOSC). The inputs and outputs of

Switching is initiated by the reconfiguration board of thethe reconfiguration board are directly wired independently of
primary unit when its MOSC opens (i.e., when an error hasthe equipment backplane bus.
been locally detected). It passivates the faulty primary unitThe reconfiguration board is self-monitored by an internal
and puts its health status bit to bad.watchdog that is rearmed periodically. The reliability of this

When the reconfiguration board of the twin unit recognizesboard is maximized by the use of military standard compo-
this bad health signal, it requests the local unit to GO-AC-nents, preliminary burn-in, noise-protected inputs, and so on.
TIVE. Under software control, the unit that was previouslyA failure modes, effects and cause analysis concluded that no
on standby then checks that it is now both primary and notsingle fault could induce inadvertent redundancy switching.
standby, and that its MOSC is closed. Analog outputs to theError Detection. Adequate means for error detection must
process are then switched without overlap, whereas switchingbe provided at both the unit level and system level. Three
of binary outputs must overlap to prevent glitches from beingkinds of mechanisms are used: self-tests, self-checking, and
sent to the process. This is achieved by interlocking of thefunctional checking.
output switching relays.For all detected errors, an alarm is generated. These

alarms are classified according to three levels:

SUMMARY AND FUTURE DIRECTIONSLevel A: message for logbook
Level B: warning light turned on

This section summarizes the state-of-the-art in fault-tolerant
Level C: unit passivation and redundancy switching computing and then provides some insights into the main

challenges and the related potential solutions that should be
Self-tests are used only at system initialization. Successful tackled by the turn of the century.
execution of the self-tests is a prerequisite for the equipment Most work on fault-tolerant computing has been concerned
to reach the operational state. with hardware defects, that is, accidental physical faults, re-

Self-checking is cyclic and carried out continuously while sulting from internal or external (environmental) causes.
the control center is operational. It may be at board level, unit These classes of faults are currently well mastered. Some of
level, or system level. the most significant advances are:

• Self-checking is provided on all boards of every unit in
• Error detecting and correcting codes, including also self-the control center.

checking circuits for which they are a direct extension
• For each duplicated subsystem, unit-level self-checking

• Error recovery procedures, either backward (retry) or for-is supported by a dedicated processing board. A back-
ward, and their relationship with exception handlingground task periodically resets a CPU watchdog and an-

other background task periodically monitors the calling • Distributed processing of errors and faults, and in partic-
ular the algorithms for reaching agreement in the pres-of all the cyclic tasks by checking their associated itera-

tion counters. The execution of acyclic tasks is checked ence of faults, including those leading to inconsistent be-
havior (Byzantine failures)by input and output queue monitoring with generation of

FAULT TOLERANT COMPUTING 307

To build a dependable system, the use of suitable fault toler- The problem of design faults is not exclusive to software;
it also affects hardware developments. The Intel Pentium mi-ance techniques should be complemented by a proper assess-

ment strategy, encompassing both fault removal and fault croprocessor provides well-known examples: a circuit first
marketed in May 1993, after being subjected to a significantforecasting. Here also, the most significant advances have

concerned hardware failures, namely: series of fault-removal procedures, was found to exhibit a de-
sign fault in its divider hardware during the summer of 1994.
Clearly, the development of modern microprocessors (more• The dependability evaluation of fault-tolerant systems
than 5.5 million transistors are quoted for the next Intel gen-based on probabilistic modeling, and in particular revela-
eration) is as difficult as the development of complex pieces oftion of the influence of the efficiency—the coverage—of
software. A detailed analysis of design faults in the Pentiumthe fault tolerance mechanisms (24);
II microprocessor has recently been reported in Ref. 65.• The experimental evaluation of fault tolerance by means

While tolerance of design faults (in hardware or software)of fault injection, that corresponds to the testing of a
has raised less attention, significant results have neverthe-fault-tolerant system regarding the specific inputs of
less been obtained. Two major types of techniques can besuch systems, that is, the faults (25).
identified to cope with software design faults, depending on
the considered objective: (1) either avoiding that the failure ofAs exemplified by several surveys of field data concerning
a task provokes the failure of the whole system, or (2) ensur-hardware-fault tolerant systems, in practice, fault tolerance
ing service continuity. In the first case, the goal is to be ableinduces a significant increase in the mean time to failure,
to detect rapidly an erroneous task and to abort it to avoidusually, from weeks to years. Referring such a result to the
the propagation of the error(s); accordingly, such an approachuseful life of a computer system, a practical interpretation is
is often termed fail-fast. In practice, error detection isthat, on the average, a fault-tolerant system will not fail due
achieved through defensive programming using executableto physical faults before it becomes obsolete. An important
assertions, and error processing is generally based on excep-consequence of the ability to tolerate hardware (physical)
tion handling. Since the software faults that are found arefaults is the logical modification of the ranking of the failure
often subtle faults whose activation is seldom reproducible, itcauses: design faults (especially, in software), are becoming
has also been found that such a simple approach combinedthe major source of failure followed by human–machine inter-
with error recovery techniques intended for hardware faultsactions (including both malicious faults and operator mis-
can prove to be very efficient for tolerating software faults.takes).

The second alternative assumes that at least another com-Thus, in spite of the progress made, fault-tolerant comput-
ponent is available that is able to perform the same task anding has still to cope with such fault classes. In the remainder
that was independently designed and implemented from theof this section, we successively discuss these problematic fault
same specification, according to the design diversity principle.classes and address the economic issues that are associated
Three basic approaches can be identified (20): recovery blocks,with a wider acceptance of fault-tolerant computing solutions.
N-version programming, and N-self-checking programming.
Such approaches can be seen as resulting from the applica-Problematic Fault Classes
tion to software of three classical hardware redundancy

As already identified, three main classes of faults still pose schemes (66): dynamic passive redundancy, static redun-
problems: design faults, malicious faults, and interaction dancy, and dynamic active redundancy.
faults (see Fig. 2). The following subsections provide a brief This is still an open (research) domain, and thus somewhat
discussion of these three sources of failures as well as the prone to controversy; a recent development can be found in
most promising solutions to cope with them. Ref. 67. Nevertheless, these results are already used in prac-

tical realizations, ranging from commercial systems (e.g., see
the early Tandem Non-Stop system architecture) for the fail-Design Faults. Although the concern of software design

faults has long since been identified and solutions have been fast fault tolerance approach, to highly critical applications
such as civil avionics or railways, for the design diversity ap-put forward, it is worth noting that design faults remain a

challenge for fault-tolerant computing. The problems encom- proach (see the Airbus example in the section ‘‘Error Compen-
sation’’). Similarly, design diversity is used to allow tolerancepass application software, executive software providing func-

tional services, and software dedicated to fault tolerance. In- of hardware design faults and of compiler faults [see, for ex-
ample, the diversified architecture of the Boeing 777 primarydeed, the implementation of fault tolerance—even if

restricted to physical faults—requires large volumes of code flight control computers (68)].
that may constitute 50% or more of the total volume of the
software of a fault-tolerant system. In each case, the main Malicious Faults. Malicious faults are having an increasing

impact on a wide variety of ‘‘money-critical’’ application do-issues result from the complexity of the functions to be com-
puterized that poses new software engineering challenges and mains. In France, insurance company statistics about com-

puter failures show that almost 62% of the incurred costsresults in an inflation of the size of the codes to be developed,
even in the case of embedded systems. More than 12 million could be traced to malicious faults (1996 data); furthermore,

this proportion has almost doubled during the last decade. Itof bytes were quoted for the Airbus A320; this size has risen
to over 20 million for the A340. The severe problems affecting is likely that such figures apply comparatively in other indus-

trial countries. Moreover, it was estimated by Dataquest inthe design of the Advanced Automation System (AAS) for air
traffic control and the deployment of the baggage-handling 1997 that industry would have to spend that year more than

$6 billion worldwide for network security. It was further esti-system of the Denver International Airport are illustrations
of these difficulties. mated that this spending would more than double by the end

308 FAULT TOLERANT COMPUTING

of the century, to reach almost $13 billion. It is worth noting tiality of information. On the contrary, it introduces a redun-
dancy that can be detrimental to confidentiality. For example,that these amounts only account for services provided by ex-

ternal agencies and disregard the related in-house costs. Such the mere replication of information leads to lower confidenti-
ality since each copy can become the target for an intruder.a problem will be further exacerbated by the development of

multimedia applications and the mutation of networks into These specific requirements have led to the development of
a particular fault-tolerance technique aimed at toleratingthe information freeways that will support them. Clearly, due

to their lack of efficiency and the resulting high costs, fault- both accidental faults and intrusions, the fragmentation–
redundancy–scattering (FRS) technique (70). The principle ofavoidance techniques alone can no longer cope with such

classes of faults; they will have to be complemented by fault- FRS is to break information into fragments so that isolated
fragments cannot provide significant information, to add re-tolerance techniques.

For instance, most security systems are developed around dundancy to these insignificant fragments, and then to sepa-
rate the fragments by scattering them in such a way that ana trusted computing base (TCB), that is, that part (hardware

and software) of the system that has to run securely for the intruder can only access isolated fragments.
Scattering can be topological (use of different sites or com-whole system to be secure. Conversely, if the TCB fails (due

to accidental or malicious faults), no security can be ensured. munication channels), temporal (transmission of fragments at
random times or combined with other sources of fragments),Fault tolerance can help to prevent such failures.

On the other hand, security relies in most cases on the or spectral (use of different frequencies in wideband commu-
nications). Another scattering technique is privilege scatter-correct behavior of some highly privileged persons: operators,

administrators, security officers, and others. If any of them ing, which requires the cooperation of several entities to carry
out an operation. Examples of such privilege scattering areacts maliciously, he or she could violate most security mea-

sures. Consequently, security can be enhanced if fault-toler- the separation of duty proposed by Clark and Wilson (71) or
the secret sharing proposed by Shamir (72).ance techniques are implemented to tolerate malevolence on

the part of these persons. The FRS technique has been successfully used to imple-
ment a secure distributed file storage, a distributed securityWhen dealing with security, two kinds of faults need to

be considered: malicious logic and intrusions. Malicious logic server, and a fragmented data processing server.
The distributed file storage consists of several storage sitesencompasses malevolent design faults, including trap-doors,

logic bombs, Trojan horses, viruses, and worms. As for other and user sites interconnected by a network. User sites are
workstations that can be considered as secure during a userdesign faults, tolerance of malicious logic has to be based on

design diversity (69). session since they can be easily configured to refuse any ac-
cess from the network. Storage sites are dedicated to the stor-Intrusions are deliberate interaction faults that attempt to

transgress the security policy of the system. The insertion of age of fragments. When a user file has to be stored, the file is
fragmented on the user site. The file is first cut into fixeda virus or the execution of a worm are particular cases of

intrusions. Intrusions can originate from external or internal length pages so that all the fragments of every file have the
same length. Each page is then ciphered, using cipher-block-intruders. External intruders are people not registered as us-

ers of the computing system. They thus have to deceive or by- chaining and a fragmentation key, and split into a fixed num-
ber of fragments. The fragments are given names by meanspass the authentication and authorization mechanisms. In-

ternal intruders are people who are registered as legitimate of a one-way hash function taking as parameters the name
of the file, the page number, the fragment number, and theusers, but who try to exceed or abuse their privileges. For

instance, internal intruders could attempt to read confidential fragmentation key. The fragments are then sent in a random
order to the storage sites using multicast communication. Adata or modify sensitive information to which they have no

authorized access. To do so, they have to by-pass the authori- distributed algorithm guarantees that the requested number
of copies is stored among the storage sites. Without knowingzation mechanisms. Abuse of privilege concerns some illegiti-

mate (but authorized) actions. For instance, a security officer the fragmentation key, an intruder is not able to recognize
from the fragment names how the ciphered page is to be re-can (but should not) create dummy users, or an operator can

(but should not) halt a computer at some inappropriate in- built (due to the one-way function). Hence, even if he obtains
the N fragments of a given page, he would have to attempt tostant, causing a denial of service. Such intrusions are possible

only because the least privilege principle is not perfectly im- rebuild about half the N! possible fragment arrangements and
carry out the same number of cryptanalyses to reconstituteplemented: otherwise, no illegitimate action would be au-

thorized. the original page. In this case, the fragmentation technique
multiplies the strength of the cipher by a coefficient of theIntrusions and accidental faults may have the same ef-

fects, that is, that of modifying or destroying sensitive infor- order of the factorial of the number of fragments. Similar
techniques have been proposed by Rabin (73) and the applica-mation or even disclosing confidential information. However,

there are two main differences between tolerating accidental tion of these techniques over the Internet has been proposed
by Anderson (74).faults and tolerating intrusions. First, accidental faults are

rare events, so there is a very low probability that two inde- The FRS technique has also been successfully applied to
the management of system security functions, that is, userpendent parts of the system be faulty at the same time. A

single fault assumption is thus often justifiable and can be registration, authentication, authorization (control of access
to objects or to servers), audit, key management. Certainused to simplify the fault tolerance implementation. Con-

versely, several attacks by the same intruder can simultane- pieces of information are confidential and must be fragmented
(e.g., fragmentation keys), while others can simply be repli-ously affect different parts of the system and the single fault

assumption may not be reasonable. Second, tolerance of acci- cated (e.g., user identity). To tolerate intrusions, including in-
trusions by system administrators, these functions are imple-dental faults is not aimed at the preservation of the confiden-

FAULT TOLERANT COMPUTING 309

mented in a distributed security server composed of a set of to increase the dependability of a human–machine system,
but the complete elimination of human operator faults is notsites, each administered by different people. This calls for the

use of majority vote protocols and threshold algorithms to en- a realistic objective. Indeed, the human operator is frequently
confronted with delicate and urgent situations requiring com-sure that, as long as there exists a majority of nonfaulty sites

(from the point of view of both accidental faults and intru- plex knowledge. Under stress, it is unreasonable to expect a
human operator to act without any kind of error. It becomessions), the security functions are properly carried out and no

confidential information is disclosed. A similar approach has therefore important to study means allowing the tolerance of
human faults in the same way as for other classes of faults.been proposed by Mike Reiter (75).

FRS can also be applied to the processing of confidential Current tolerance methods for operator faults are essen-
tially based on the contribution of the human as a support forinformation by untrusted computers. In this case, the frag-

mentation relies on the structure of the information handled. the tolerance, either by the operator himself, or through the
pool of operators (both for masking erroneous commands andBy following an object-oriented approach, fragmentation con-

sists in iterating the application design by decomposing the for analyzing troublesome situations). However, there is some
recent work on how to use the technical system as a supportconfidential objects until objects that do not handle confiden-

tial information are obtained. The confidential links between for the tolerance of operator faults. In the case of systems
possessing redundancy for tolerating physical and/or designthese objects are kept on the user site, the nonconfidential

objects are made redundant and disseminated on the pro- faults, it may be interesting to see how this redundancy can
be used to allow some tolerance of human faults.cessing sites. To correct the modifications induced by acciden-

tal faults or intrusions, redundancy can be applied during the
design by using the notion of inheritance or defined at a pro- Economic Challenges
gramming metalevel, using reflection (76).

Fault-tolerant solutions based on redundant architectures
have been widely deployed in industry: first in specific do-Interaction Faults. The use of dependability concepts, and
mains such as space and telecommunications, and then, fol-more precisely the use of fault-tolerance techniques, for the
lowing the general trend of computerization, in all major in-tolerance of hardware and software faults are now common-
dustrial sectors.place in critical systems. Because of this evolution, faults oc-

In this current context, dependability requirements andcurring during human–machine interaction are having an in-
economic challenges are increasingly mixed; accordingly, thecreasing impact on the dependability of critical systems that
massive solutions—especially the essentially proprietaryinvolve human operators (human–machine systems). Fur-
hardware-based ones—are no longer acceptable. It followsthermore, technical progress has induced important changes
that compromises must be found that encompass the develop-in the operator involvement: the human operator is less im-
ment of low-cost fault tolerance solutions and the increasingplied in manual activity, but must increasingly carry out com-
role of software. Cost-effectiveness is indeed a major concernplex mental tasks. As a consequence, many accidents are
in the development of a fault-tolerant computer system. Injudged to be caused by human error.
particular, to cope with the high cost incurred by massive ap-The statistics concerning the causes of accidents affecting
proaches, more cost-effective techniques such as control flowcommercial flights clearly illustrate the increasing impact of
checking, or algorithmic-based fault tolerance techniqueshuman faults: although the number of accidents has continu-
have been proposed.ously decreased over the years, human faults have become

In the sequel, we discuss three major aspects that are ofthe primary cause of accidents (77). In particular, the statis-
concern: the provision of cost-effective solutions for temporarytics published annually by Boeing concerning commercial
faults, the use of already-developed or commercial off-the-flights in the United States rate these causes as high as 70%
shelf components (COTS) in the design of fault-tolerant sys-of the accidents for the years 1985 to 1995 (78). Such high
tems, and the incentive for developing COTS components fea-proportions are also identified in all other application do-
turing specific characteristics for supporting fault tolerance.mains where operators are needed to interact with a compu-

terized system. In Ref. 79, the author indicates that human
faults are a primary cause of about 80% of all major accidents Tolerance of Temporary Faults. The vast majority of the

faults observed in operation can be regarded as soft, that is,in aviation, power production, and process control.
Even if a significant proportion of interaction faults can be perceived as temporary faults (1). Accordingly, a cost-effective

processing would require that the soft nature of the fault betraced to design faults (poor design of the human–machine
interface, lack of assistance by the system to the operators), explicitly accounted for before any unnecessary action (e.g.,

passivation) be undertaken. Indeed, such an action could behuman operator faults present a considerable threat. It is
therefore necessary to take into account the role and charac- costly both in performance and resources. For example, com-

mercial airlines report a rate of 50% of unjustified mainte-teristics of the human operator during the design of a hu-
man–machine system. This observation has led to various nance calls for on-board digital and electronic equipment.

Simple threshold-based counter mechanisms (e.g., countingstudies that consider the problems of human reliability dur-
ing a complex system operation. Most work has aimed to re- successive error occurrences) can significantly improve the

balance between error processing and fault treatment deci-duce occurrences of human faults by methods that attempt to
eliminate the conditions that can induce human faults. Har- sions.

Similarly, due to the very soft nature of many of the soft-monization of the allocation of tasks between the human and
the machine, and the design of human–machine interfaces ware design faults activated in operation, it is very likely that

such faults can be better tackled by using defensive program-considering the user criteria are examples of potential meth-
ods for reducing human faults. These methods are important ming techniques than through design diversity.

310 FAULT TOLERANT COMPUTING

Commercial-Off-the-Shelf Components. The use of COTS system. For example, this approach has been imple-
mented using coding techniques. It relies on a precom-components in fault-tolerant systems is not in itself a new

problem. However, COTS components are now finding their pilation of the application source code to augment it
with instructions to calculate a signature for each oper-way into very critical systems. Indeed, it is often no longer

economically feasible to consider purpose-designed, non- ation as a separable arithmetic code. The signatures
that are calculated at run-time are checked to verifyCOTS components, so designers of critical systems must find

ways of accommodating them (e.g., see Ref. 80). From a soft- that they respect the code. Any fault (design or other-
wise) in the COTS software and hardware componentsware viewpoint, components of concern in safety-related ap-

plications include both packages that may form an integral used to generate and execute the run-time application
code will, with a very high probability, alter or halt thepart of the final application (e.g., operating systems—

including the microkernel technology, databases, etc.) and stream of code-words generated at run-time and cause
the checker to put the outputs of the system into a safetools used in the production of end-application software (e.g.,

compilers, code generators, etc.). state (83,84).
There are several issues at stake. For example, COTS com-

ponents usually have limited self-checking capabilities, re- For non-critical COTS components, whether or not they fulfill
their intended role is secondary to ensuring that they do notsulting in a rather restricted error-detection coverage. An-

other issue, concerning hardware COTS components, is that detrimentally affect the execution of critical services. One
fundamental mechanism for confining the effects of failuresthey may not be able to stand up to the severe constraints of

some specific environments (e.g., radiation dose accumulation of noncritical COTS components is that of integrity level man-
agement. This allows COTS components of the most recentin space). However, the major issue with COTS components is

undoubtedly that of residual design faults. Indeed, the salient generation to be used, for example, to provide a state-of-the-
art graphics display or network service. However, such com-characteristic of such components is the uncertainty that pre-

vails about their origins and therefore their quality (81). Us- ponents must be placed at a low integrity level so that their
interactions with more critical components at higher integritying components of unknown pedigree quite evidently intro-

duces a formidable barrier to their acceptance for use in levels are rigorously policed. Integrity level management im-
plies the use of spatial and temporal firewalls to partitionhighly critical applications.

Various techniques can be deployed at the architectural components of different levels of criticality. Communication
between components of different levels of criticality can belevel to help reduce the burden of validating COTS compo-

nents, according to the criticality of the roles of the consid- authorized, as long as it is mediated by a strictly enforced
integrity policy (85).ered components:

There must be an approach to validation of COTS compo-
nents that is consistent with the criticality of the supported• Critical COTS components, that is, COTS components
services. In this respect, the paradox with using COTS compo-playing roles on which critical services must depend
nents is that, on the one hand, their large-scale usage in-• Non-critical COTS components, that is, COTS compo-
creases the confidence that one may have in their general re-nents residing in an architecture supporting critical ser-
liability but, on the other hand, this same large-scale usagevices, but not necessary for the provision of those services
argument may not constitute a sufficient safety case for using
COTS in critical applications. Thus, one is faced with provid-For critical COTS components, at least three strategies can
ing further validation of components over whose design onebe considered for tolerating potential design faults:
has had no control.

There is currently little assistance from standards and
1. Use diversified redundant COTS components to supply guidelines on justifying the quality of COTS components, in-

a service that is tolerant of design faults. This strategy cluding the IEC (57). However, a recent aviation standard,
is used in the Boeing 777 flight control system to pro- the DO-178B (58) offers some pointers on experience-based
vide protection against design faults in COTS hard- justification to objectively support the large-scale usage argu-
ware, Ada run-times and Ada compilers (68). ment of COTS software. Some of the objective arguments that

2. Diversify the usage patterns of identical redundant can be advanced to reduce the lack of information on the pro-
COTS components to decorrelate the activations of re- duction process include (81): product service history (experi-
sidual design faults. This diversification of usage can be ence-based arguments), use of certified products (e.g., vali-
used to argue the case for using identical COTS compo- dated compilers), and intensive statistical testing.
nents in redundant channels. For example, the two re- Statistical testing is feasible in applications where auto-
dundant channels of the ELEKTRA system (82) are matic comparison with expected outputs is possible. For ex-
identically designed triple modular redundancy (TMR) ample, benchmarks have been developed to analyze and com-
systems using the same COTS processor type and the pare the behavior of commercial operating systems in the
same COTS microkernel. However, the application presence of erroneous service requests. Such analyses can be
codes executed by each channel are totally different so useful to tailor or to wrap the operating system in such a way
it can be argued that any design faults in the underly- that it can handle the benchmarks properly. Indeed, de-
ing COTS components will be activated in an uncorre- limiting the way a COTS package is used positively impacts
lated fashion. the feasibility of certification. In spite of their merits, these

approaches are tedious and can be invalidated when upgrad-3. Use timing and execution checks in application software
to provide an end-to-end verification of the correct exe- ing to a new version of the product (that may frequently be

necessary to preserve the supplier’s support).cution of the underlying COTS hardware and software

FAULT TOLERANT COMPUTING 311

General-Purpose Components with Fault-Tolerance Features. To conclude, the following quotation from Ref. 80 seems
particularly fitting: ‘‘After 30 years of study and practice inThe high overhead associated with the design of redundant

architectures is another important economic challenge. One fault tolerance, high-confidence computing still remains a
costly privilege of several critical applications. It is time topotential solution to this problem lies in the incorporation of

built-in self-test facilities in the design of the components, explore ways to deliver high-confidence computing to all us-
ers. . . . Fault tolerance is our best guarantee that high-con-possibly at the expense of some performance degradation. The

needed features may encompass the processing of both physi- fidence systems will not betray the intentions of their builders
and the trust of their users by succumbing to physical, design,cal and design faults and thus concern either hardware or

software components. or human–machine interaction faults, or by allowing viruses
and malicious acts to disrupt essential services.’’For hardware components, so far, besides the case of the

iAPX 432� launched in the early 1980s—and maybe because
of the associated commercial flop—the microprocessor indus- BIBLIOGRAPHY
try has been quite reluctant to firmly engage itself in such a
direction (e.g., see Ref. 80). Nevertheless, the significant rate 1. D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems—
of improvement in clock speed achieved by new commercial Design and Evaluation, Burlington, MA: Digital Press, 1992.
microprocessors (more than 30% per year) should make this 2. A. Avizienis, Design of fault-tolerant computers, AFIPS Conf.
approach more practical and thus allow a real market to de- Proc., 31: 1967, pp. 733–743.
velop. Often, undocumented machine-specific registers exist 3. J.-C. Laprie, Dependable computing: concepts, limits, challenges,
in modern microprocessors [e.g., the Intel Pentium (86) or in Spec. Issue, 25th Int. Symp. Fault-Tolerance Comput. FTCS-25,
the IBM POWER2 (87)] that can provide high-precision Pasadena, CA, 1995, pp. 42–54.
counting and/or accurate performance monitoring; by using 4. J.-C. Laprie, Software-based critical systems, Proc. 15th Conf.
those embedded software-accessible registers, one could easily Comput. Saf., Reliab. Security SAFECOMP’96, Vienna, Austria,
derive enhanced observability for the purpose of error de- 1996, pp. 157–170.
tection. 5. C. V. Ramamoorthy et al., Software engineering: problems and

Similar features would be highly desirable for software perspectives, IEEE Comput., 17 (10): 191–209, 1984.
components as well; these would consist, for example, in the 6. Information Technology Security Evaluation Criteria, Harmonized
incorporation of encapsulation mechanisms supporting defen- Criteria of France, Germany, the Netherlands, and the United

Kingdom: Commission of the European Communities, 1991.sive programming and interface error detection (by elaborat-
ing, for example, on the notion of wrappers elicited from the 7. D. P. Siewiorek and D. Johnson, A design methodology for high

reliability systems: The Intel 432, in D. P. Siewiorek and R. S.security arena as identified by Voas in Refs. 88 and 89). The
Swarz (eds.), The Theory and Practice of Reliable System Design,availability of specific programming languages features can
Burlington, MA: Digital Press, 1982, pp. 621–636.also significantly help in supporting fault-tolerant computing

8. D. Powell et al., The Delta-4 approach to dependability in open[e.g., the exception handling facilities in Ada or the reflection
distributed computing systems, 18th Int. Symp. Fault-Tolerantproperties of certain object-oriented languages that can be
Comput. Syst. FTCS-18, Tokyo, 1988, pp. 246–251.used to implement user-transparent fault-tolerance mecha-

9. L. Lamport, R. Shostak, and M. Pease, The Byzantine generalsnisms (90)].
problem, ACM Trans. Prog. Lang. Syst., 4 (3): 382–401, 1982.

10. H. Mine and Y. Koga, Basic properties and a construction model
GENERAL CONCLUSIONS for fail-safe logical systems, IEEE Trans. Electron. Comput., EC-

16: 282–289, 1967.
The ubiquity of computer systems, the trend toward the de- 11. M. Nicolaı̈dis, S. Noraz, and B. Courtois, A generalized theory of

fail-safe systems, 19th Int. Symp. Fault Tolerant Comput. FTCS-velopment of more open and interconnected systems, the in-
19, Chicago, 1989, pp. 398–406.crease in their complexity, their distribution, and widely var-

12. R. D. Schlichting and F. B. Schneider, Fail-stop processors: anying size (constellation of satellites, air traffic networks,
approach to designing fault-tolerant computing systems, ACMhigh-speed communication networks, multimedia applica-
Trans. Comput. Syst., 1 (3): 222–238, 1983.tions, electronic trade, human–machine interactions, com-

13. A. Avizienis, Fault tolerance, the survival attribute of digital sys-puter-assisted medicine, microsystems, etc.) are some of the
tems, Proc. IEEE, 66: 1109–1125, 1978.new challenging targets for fault-tolerant computing. Two

14. C. E. Landwher et al., A taxonomy of computer program securitymajor issues have to be accounted for when addressing these
flaws, ACM Comput. Surv., 26 (3): 211–254, 1994.challenges:

15. A. Avizienis and J. P. J. Kelly, Fault-tolerance by design diver-
sity: concepts and experiments, Computer, 17 (8): 67–80, 1984.1. Fault tolerance is not just redundancy: although redun-

16. T. A. Anderson and P. A. Lee, Fault Tolerance—Principles anddancy is the basic dimension, the proper management
Practice, Englewood Cliffs, NJ: Prentice-Hall, 1981; see also P. A.of the redundancies is essential to the success or failure
Lee and T. Anderson, Fault Tolerance—Principles and Practice,

of a fault-tolerant system, and such management relies Vienna: Springer-Verlag, 1990.
heavily on the fault and error assumptions considered. 17. W. C. Carter and P. R. Schneider, Design of dynamically checked

2. Fault tolerance is not merely common sense: it consti- computers, IFIP’68 Congr., Amsterdam, The Netherlands, 1968,
tutes an engineering activity that has to follow precise pp. 878–883.
rules; the still widespread misunderstanding that con- 18. J. Wakerly, Error Detecting Codes, Self-Checking Circuits and Ap-
fines fault tolerance to common sense might explain the plications, New York: Elsevier/North-Holland, 1978.
failures of several systems and naive entrepreneurs 19. S. S. Yau and R. C. Cheung, Design of self-checking software, 1st

Int. Conf. Reliab. Softw., Los Angeles, 1975, pp. 450–457.that have engaged themselves in this field.

312 FAULT TOLERANT COMPUTING

20. J.-C. Laprie et al., Definition and analysis of hardware-and-soft- 42. M. J. Litzkow, M. Livny, and M. W. Mutka, Condor—A hunter
of idle workstations, 8th Int. Conf. Distributed Comput. Syst.ware fault-tolerance architectures, Computer, 23 (7): 39–51, 1990.
ICDCS-8, San Jose, CA, 1988, pp. 104–111.21. W. R. Elmendorf, fault-tolerant programming, 2nd Int. Symp.

43. J. Bartlett, J. Gray, and B. Horst, Fault tolerance in tandem com-Fault Tolerant Comput. FTCS-2, Newton, MA, 1972, pp. 79–83.
puter systems, in A. Avizienis, H. Kopetz, and J.-C. Laprie (eds.),22. B. Randell, System structure for software fault tolerance, IEEE
The Evolution of Fault-Tolerant Systems, Vienna: Springer-Ver-Trans. Softw. Eng., SE-1: 220–232, 1975.
lag, 1987, pp. 55–76.

23. B. W. Lampson, Atomic transactions, in B. W. Lampson (ed.),
44. J. Gray, Why do computers stop and what can be done about it?Distributed Systems—Architecture and Implementation, Berlin:

5th Symp. Reliab. Distrib. Softw. Database Syst., Los Angeles,Springer-Verlag, 1981, Lect. Notes Comput. Sci., No. 105, pp.
1986, pp. 3–12.246–265.

45. D. Brière and P. Traverse, AIRBUS A320/A330/A340 electrical24. W. G. Bouricius et al., Reliability modeling for fault-tolerant com-
flight controls—a family of fault-tolerant systems, 23rd Int. Conf.puters, IEEE Trans. Comput., C-20: 1306–1311, 1971.
Fault-Tolerant Comput. FTCS-23, Toulouse, France, 1993, pp.

25. J. Arlat et al., Fault injection for dependability validation—a 616–623.
methodology and some applications, IEEE Trans. Softw. Eng., 16:

46. A. Avizienis et al., The UCLA DeDiX system: A distributed test-166–182, 1990.
bed for multiple-version software, 15th Int. Symp. Fault-Tolerant

26. M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, Fault injection tech- Comput. FTCS-15, Ann Arbor, MI, 1985, pp. 126–134.
niques and tools, IEEE Comput., 40 (4): 75–82, 1997.

47. W. W. Peterson and E. J. Weldon, Error-Correcting Codes, Cam-
27. E. Jenn et al., Fault injection into VHDL models: the MEFISTO bridge, MA: MIT Press, 1972.

tool, in B. Randell et al. (eds.), Predictably Dependable Computing 48. L. Lamport and N. Lynch, Distributed computing: models and
Systems, Berlin: Springer-Verlag, 1995, pp. 329–346. methods, in J. van Leeuwen (ed.), Handbook of Theoretical Com-

28. K. K. Goswami, R. K. Iyer, and L. Young, DEEND: A simulation- puter Science, Amsterdam: Elsevier, 1990, ser. B, pp. 1159–1199.
based environment for system level dependability analysis, IEEE 49. M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of
Trans. Comput., 46: 60–74, 1997. distributed consensus with one faulty process, J. Assoc. Comput.

29. W. N. Toy, Fault-tolerant design of local ESS processors, Proc. Mach., 32 (2): 374–382, 1985, originally published as MIT Tech.
IEEE, 66: 1126–1145, 1978. Rep. MIT/LCS/TR-282, 1982.

30. D. Avresky et al., Fault injection for the formal testing of fault 50. C. Fetzer and F. Cristian, Fail-awareness: An approach to con-
tolerance, IEEE Trans. Reliab., 45: 443–455, 1996. struct fail-safe applications, 27th Int. Symp. Fault-Tolerant Com-

put. FTCS-27, Seattle, WA, 1997, pp. 282–291.31. J. Christmansson and P. Santhaman, Error injection aimed at
fault removal in fault tolerance mechanisms—criteria for error 51. D. L. Mills, Internet time synchronization: The network time pro-
selection using field data on software faults, Proc. 7th Int. Symp. tocol, IEEE Trans. Commun., 39: 1482–1493, 1991.
Softw. Reliab. Eng. ISSRE’96, White Plains, NY, 1996, pp. 52. G. Coulouris, J. Dollmore, and T. Kidberg, Distributed Systems:
175–184. Concepts and Design, Reading, MA: Addison-Wesley, 1994.

32. A. Mahmood and E. J. McKluskey, Concurrent error detection 53. N. A. Lynch, Distributed Algorithms, San Francisco: Morgan
using watchdog processors—a survey, IEEE Trans. Comput., 37: Kaufmann, 1996.
160–174, 1988. 54. V. Hadzilacos and S. Toueg, Fault-tolerant broadcast and related

33. J.-M. Ayache, P. Azéma, and M. Diaz, Observer: A concept for problems, in S. Mullender (ed.), Distributed Systems, New York:
detection of control errors in concurrent systems, 9th Int. Symp. ACM Press, 1993, pp. 97–145.
Fault-Tolerant Comput. FTCS-9, Madison, WI, 1979, pp. 79–85. 55. D. Powell, Distributed fault-tolerance—lessons from delta-4,

34. C. Hennebert and G. Guiho, SACEM: A fault-tolerant system for IEEE Micro, 14 (1): 36–47, 1994.
train speed control, 23rd Int. Conf. Fault-Tolerant Comput. FTCS- 56. S. B. Davidson, H. Garcia-Molina, and D. Skeen, Consistency in
23, Toulouse, France, 1993, pp. 624–628. partitioned networks, ACM Comput. Surv., 17 (3): 341–370, 1985.

35. D. J. Taylor, D. E. Morgan, and J. P. Black, Redundancy in data 57. Functional safety: Safety-related systems, Draft International
structures: Improving software fault tolerance, IEEE Trans. Standard IEC 1508, Int. Electrotech. Commission, Geneva, Swit-
Softw. Eng., SE-6: 383–394, 1980. zerland, IEC Document N�65A/179/CDV, June 1995.

36. J. J. Horning et al., A program structure for error detection and 58. Software considerations in airborne systems and equipment cer-
recovery, in G. Goos and J. Hartmanis (eds.), Operating Systems, tification, RTCA, Inc., Washington D.C., Advisory Circular
Berlin: Springer-Verlag, 1974, pp. 172–187. N�D0-178B, January 1992.

37. K. M. Chandy and L. Lamport, Distributed snapshots: Determin- 59. W. Kriedte, ECSS—A single set of European space standards, Eu-
ing global states of distributed systems, ACM Trans. Comput. ropean Space Research & Technology Centre (ESTEC), Noord-
Syst., 3 (1): 63–75, 1985. wijk, The Netherlands, 1996.

60. J.-C. Laprie et al., Dependability Guidebook, Toulouse: Cépaduès-38. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Editions, 1995, in French.Control and Recovery in Database Systems, Reading, MA: Addison-

Wesley, 1987. 61. Military Handbook N�217F, Reliability Prediction of Electronic
Equipment, Department of Defense, USA.39. R. Koo and S. Toueg, Checkpointing and rollback recovery for

distributed systems, IEEE Trans. Softw. Eng., SE-13: 23–31, 62. J.-C. Laprie and K. Kanoun, Software reliability and system re-
1987. liability, in M. R. Lyu (ed.), Handbook of Software Reliability En-

gineering, New York: McGraw-Hill, 1996, pp. 27–69.40. D. Manivannan, R. H. B. Netzer, and M. Singhal, Finding consis-
tent global checkpoints in a distributed computation, IEEE 63. Military Standard N�1553B, Interface standard for digital time
Trans. Parallel Dist. Syst., 8: 623–627, 1997. division command/response multiplex data bus, Department of

Defense, USA.41. J.-M. Hélary, A. Motefaoui, and M. Raynal, Communication-in-
duced determination of consistent snapshots, 28th Int. Symp. 64. J.-L. Dega, The redundancy mechanisms of the Ariane 5 opera-

tional control center, 26th Int. Symp. Fault-Tolerant Comput.Fault-Tolerant Comput. FTCS-28, Munich, Germany, 1998, pp.
208–217. (FTCS-26), Sendai, Japan, 1996, pp. 382–386.

FEATURE EXTRACTION 313

65. A. Avizienis and Y. He, The taxonomy of design faults in COTS 90. J.-C. Fabre and B. Randell, An object-oriented view of frag-
mented data processing for fault and intrusion tolerance in dis-microprocessors, Dig. FastAbstracts 28th Int. Symp. Fault-Toler-

ant Comput. FTCS-28, Munich, Germany, 1998, pp. 52–53. tributed systems, in Y. Deswarte, G. Eizenberg, and J.-J. Quis-
quater (eds.), 2nd Eur. Symp. Res. Comput. Security ESORICS 92,66. W. C. Carter, Hardware fault tolerance, in T. Anderson (ed.), Re-
(Toulouse, France), Berlin: Springer-Verlag, 1992, pp. 193–208.silient Computing Systems, London: Collins, 1985, pp. 11–63.

67. L. Hatton, N-version design versus one good version, IEEE Soft-
J. ARLATware, November/December, pp. 71–76, 1997.
Y. CROUZET68. Y. C. B. Yeh, Dependability of the 777 primary flight control sys-
Y. DESWARTEtem, 5th IFIP 10.4 Work. Conf. Depend. Comput. Crit. Appl.
J.-C. LAPRIEDCCA-5, Urbana-Champaign, IL, 1995, pp. 3–17.
D. POWELL69. M. K. Joseph and A. Avizienis, A fault tolerance approach to com-
LAAS-CNRSputer viruses, 1988 Symp. Security Privacy, Oakland, CA, 1988,

pp. 52–58. P. DAVID

J. L. DEGA70. Y. Deswarte, L. Blain, and J.-C. Fabre, Intrusion tolerance in
distributed systems, Symp. Res. Security Privacy, Oakland, CA, C. RABÉJAC
1991, pp. 110–121. H. SCHINDLER

71. D. D. Clark and D. R. Wilson, A comparison of commercial and J.-F. SOUCAILLES

military computer security policies, Symp. Security Privacy, Oak- Matra Marconi Space France
land, CA, 1987, pp. 184–194.

72. A. Shamir, How to share a secret, Commun. Assoc. Comput.
Mach., 22 (11): 612–631, 1979. FAULT-TOLERANT SYSTEMS ANALYSIS. See RELIA-

73. M. O. Rabin, Efficient dispersal of information for security, load
BILITY OF REDUNDANT AND FAULT-TOLERANT-SYSTEMS.balancing and fault tolerance, J. Assoc. Comput. Mach., 36 (2):

FAX. See FACSIMILE EQUIPMENT.335–348, 1989.
FDDI. See METROPOLITAN AREA NETWORKS.74. R. J. Anderson, The eternity service, Int. Conf. Theory Appl.

Cryptol. PRGOCRYPT’96, Prague, 1996.

75. M. K. Reiter, Secure agreement protocols: Reliable and atomic
group multicast in rampart, ACM Conf. Comput. Commun. Secu-
rity, 1994, pp. 68–80.

76. J.-C. Fabre et al., Implementing fault-tolerant applications using
reflective object-oriented programming, 25th Int. Conf. Fault-Tol-
erant Comput. FTCS-25, Pasadena, CA, 1995, pp. 489–498.

77. B. Ruegger, Human Error in the Cockpit, Swiss Reinsurance Com-
pany, 1990.

78. Statistical Summary of Commercial Jet Aircraft Accidents, Seattle,
WA: Boeing Commercial Aircraft Group, 1996.

79. E. Hollnagel, Human Reliability Analysis: Context and Control,
Computers and People Series, London: Academic Press, 1993.

80. A. Avizienis, Towards systematic design of fault-tolerant sys-
tems, Computer, 30 (4): 51–58, 1997.

81. I. J. Sinclair, The Use of Commercial Off-The-Shelf COTS Software
in Safety-Related Applications, Glasgow: Real-Time Engineering
Ltd., 1995, HSE Contract Res. Rep. No. 80/1995.

82. H. Kantz and C. Koza, The ELEKTRA railway signalling system:
Field experience with an actively replicated system with diver-
sity, 25th Int. Symp. Fault-Tolerance Comput. FTCS-25, Pasa-
dena, CA, 1995, pp. 453–458.

83. P. Forin, Vital coded microprocessor principles and application
for various transit systems, Proc. IFAC Conf. Control, Comput.,
Commun. Transp. CCCT’89, Paris, 1989, pp. 137–142.

84. J. A. Profeta et al., Safety-critical systems built with COTS, IEEE
Comput., 29 (11): 54–60, 1996.

85. E. Totel et al., Supporting multiple levels of criticality, 28th Int.
Symp. Fault-Tolerant Comput. FTCS-28, Munich, Germany, 1998,
pp. 70–79.

86. T. Mathisen, Pentium secrets, Byte, 19 (7): 191–192, 1994.

87. E. H. Welbon et al., The POWER2 performance monitor, IBM J.
Res. Develop., 38 (5): 545–554, 1994.

88. Colloquium on COTS and Safety Critical Systems, London: Insti-
tute of Electrical Engineers, 1997, Dig. No. 97/013.

89. F. Salles, J. Arlat, and J.-C. Fabre, Can we rely on COTS micro-
kernels for building fault-tolerant systems, 6th Workshop Future
Trends Distrib. Comput. Syst., Tunis, Tunisia, 1997, pp. 189–194.

