
EMULATORS 79

EMULATORS

An emulator (specifically a logic emulator) is a completely
programmable hardware system, which can be programmed
to emulate a large digital design, and operate that design in
real time, as if it is real hardware. Logic emulators are used
for real-time design verification, debugging, and analysis, for
software development before actual hardware is available,
and for architectural experimentation and development.

Emulated logic designs as large as many millions of gates
can run at a multimegahertz clock rate, directly connected
to the surrounding hardware system and also running actual
applications and data. Internal signals are easily observed for
debugging analysis. Design changes can be made quickly,
without hardware modifications, and the emulator is repro-
grammed with the new version. Emulation covers orders of
magnitude more verification cycles than simulation, and its
ability to verify in the real system environment with real code
and data is unique. Emulators have become mainstream,
commercially available and supported development tools used
by hundreds of projects, for application-specific integrated cir-
cuit (ASIC) and full custom chip and board-level system de-
signs.

From tens to thousands of field-programmable gate array
(FPGA) chips, field-programmable interconnect device (FPID)
chips and static random-access memories (SRAMs) are com-
bined with software to translate, partition, and route logic
design netlists into the hardware, and they are also combined
with instrumentation for observation, testing, and debug.
Logic emulators are the first widely used large-scale dynami-
cally reprogrammable hardware systems. Emulators are
intrinsically able keep up with the explosive verification de-
mands of digital technology, even as design sizes double every
18 months according to Moore’s law, because they are based
in the same silicon technology that drives the design sizes
themselves.

DEFINITION

Specifically, a logic emulator is a system of three major com-
ponents: (1) programmable hardware, which consists of pro-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

80 EMULATORS

grammable logic and programmable interconnect, (2) com- vector memories, supporting thousands of channels for tens
or hundreds of thousands of vectors, with connections forpiler software, which automatically programs the hardware

according to a gate-level or higher-level-language description, streaming more vectors in and out of the host computer’s
disk storage.and (3) instrumentation and control hardware and software

to support operation of the emulated design. Emulators are usually used to verify a logic design after
some amount of software-based logic simulation has been
done. First, the design is loaded by the emulation compiler

USAGE
software. The user specifies how the design’s inputs and out-
puts should map to pins on the in-circuit cable, specifies any

Logic emulators are usually connected to a workstation com-
internal signals to be connected to the emulator’s logic ana-

puter or a local area network (LAN) of workstations. The de-
lyzer, and identifies critical paths and clock nets. Then the

sign compiler and the graphical user interfaces for run-time
compiler automatically translates the design into the binary

instrumentation and control generally run on one or more of
programming for the FPGAs and FPIDs in the hardware, and

these workstations. A typical system is shown in Fig. 1.
it creates an emulation design database for use in operation

The emulator may be connected to the target hardware, in
and in recompiles. If the user has input and output vector

the place that the emulated design will operate after it is
sets available from earlier simulation, these may be run on

built, and the entire system, including the emulated design,
the emulated version of the design to validate it. Then the

can then actually run in live hardware form. Commonly the
emulator is connected in-circuit to the target hardware, and

design for a custom chip or ASIC is being emulated, and the
the emulated design is operated in real time. The emulator’s

emulator is plugged into the socket which will hold the actual
built-in logic analyzer displays any internal signals that the

chip after fabrication.
user wishes to observe, using complex user-defined trigger

Since the hardware is programmable, the emulated cir-
conditions. Small design changes can be made by incremental

cuit’s speed is considerably lower than the real circuit’s speed.
recompilation, which takes less time than the initial full com-

Typical clock frequencies are between 100 kHz and 10 MHz,
pile. Once the user is satisfied with the design, it can be re-

depending on the emulation technology used. Many tech-
leased for fabrication. Even after the real chips are available,

niques have been developed to slow down the target system’s
the emulator provides a real-time in-system analysis environ-

clock rate to match the emulator. Otherwise, the circuit oper-
ment that provides internal visibility to the design.

ates the same way in emulation as in reality. The design may
be operated with real applications and real data, just as the
final permanent version of the hardware will be. TYPES OF EMULATORS

Logic emulators are also commonly used as ultrafast test
vector evaluators. Rather than being connected to other hard- There are currently two major types of logic emulators:
ware, a series of vectors of input values are applied to the FPGA-based and processor-based. Most emulators are based
inputs of the emulated design, and output vectors are col- on FPGA, FPID, and SRAM chips. Every gate, flip-flop, mem-
lected from its outputs. These vector sets might be either the ory cell, and wire in the emulated design is mapped onto a
test vectors needed for testing the chip after fabrication or specific programmable logic, memory, or interconnect ele-
predefined vector sets for compatibility and regression test- ment. FPGAs may be interconnected by FPIDs. Once the
ing. These vectors can be applied at very high speed, since hardware is programmed, it is a live instance of the design in
the emulated design is operating at hardware speed, so very actual hardware, a kind of automatically generated prototype.
large vector sets may be evaluated in a short time. Emulators FPGA-based emulators have the fastest operating speed, and
used for vector evaluation typically have very deep and wide they can emulate practically any logic structure or clocking

scheme in the input design.
The processor-based type of emulator is actually a very

high-speed hardware-accelerated logic simulator. Dedicated
parallel processors repetitively execute the logic equations of
the design. Input signals, from the in-circuit connection or
from vectors, are continuously translated into input data for
the processors, and processor output data are continuously
driven onto in-circuit or vector outputs. The processors are
fast enough to emulate real-time operation of the design. Pro-
cessor-based emulators generally have large capacities and
fast compile times, but they are much slower than FPGA-
based emulators, and they are not capable of emulating de-
signs with complex clocking or unclocked internal feedback
paths.

CAPABILITIES AND COMPARISONS

Design Verification Tools

Design source

LAN

Emulator

Target hardware

Emulation compiler,
run-time software

It is vital to verify the correctness of a chip design before it
is fabricated. Substantial amounts of time and money standFigure 1. Typical logic emulation system.

EMULATORS 81

between releasing the logic design to the chip foundry and simulator output in the form of vector files or waveform
operating the resulting chip in the system. Once operating, traces, but instead require actual observation. Extremely
internal signals are not directly available for observation and large amounts of output data are needed for even a small
analysis, so diagnosing errors after fabrication is often very amount of display operation. More and more systems, such as
difficult. Even the slightest design error must be corrected by audio and video compression, depend on qualities of human
going through another fabrication cycle, at considerable ex- perception. It is difficult to verify such designs with software
pense and delay. Studies have proven that a few months of simulation alone. Real-time operation is a natural character-
delay in getting a new product to market can cost a large istic of hardware emulation. It is directly capable of support-
fraction of the product’s total lifetime sales. The premium on ing real-time video displays, audio devices, and perception-
getting the first silicon fabricated correctly is high. based verification. There have been a number of cases where

Logic simulation programs, running on desktop worksta- a subtle design error was identified within an hour of emu-
tion computers, are widely used to verify designs. A logic sim- lated operation, by directly hearing or seeing its effect on the
ulator takes design netlist files, along with signal inputs in design’s output, which the users have said could never have
the form of vector data files, and calculates how the logic de- been caught in simulation.
sign would behave over time, given those inputs. The designer
observes the outputs predicted by the simulator to see if the Test System-Level Interactions
design is operating correctly. If incorrect operation is ob-

A common problem in developing large chip designs that runserved, the simulated internal circuit activity can be dis-
in complex systems is when the chip design meets specifica-played, design errors found, and corrections made to the de-
tions but fails in the system, due to misunderstandings orsign, rapidly. Once enough operation has been simulated to
unanticipated situations. A specification only represents itsgive confidence in the design’s correctness, it may be released
writer’s understanding, and misunderstandings between de-for fabrication.
signers result in system-level malfunctions. Sometimes other

Verification Coverage parts of a system aren’t well-specified. Frequently, real sys-
tem operation presents unanticipated situations that aren’tSimulation provides enough verification for designs with tens
covered in the test vectors. As complex chips interact in realof thousands of gates; but by the 1990s, designers were faced
systems, the number of combinations of operational situationswith verifying chip designs with hundreds of thousands and
explodes combinatorially. For example, in a networked virtualeven millions of gates, operating in systems with other such
memory computer system, there could be an error that onlychips. Simulation remains a valuable tool during the design
occurs when the Ethernet driver interrupts a page fault,process, for initially verifying each module of a design, and
which is servicing a floating-point exception. With logic emu-for doing the initial verification of the entire design. However,
lation, the design is being verified in the actual hardware en-many logic designs are now too large to completely verify us-
vironment in which it will be used. No human assumptionsing simulation alone. This is because the simulation workload
are involved in this verification. Trillions of cycles of verifica-is increasing much faster than the processing power of con-
tion are available to cover situational combinations. Verifica-ventional computers. Logic emulation is capable of providing
tion has much higher reliability as a result.the trillions of cycles required to fully verify current and fu-

ture logic designs.
Internal Design VisibilityWhen the size of a logic design doubles, the amount of com-

puting work to sufficiently simulate the design roughly qua- Once the chip design is fabricated and placed in a system,
druples. Doubling the number of gates roughly doubles the if it fails, internal probing is impossible. It may be hard or
amount of processor time required to simulate each cycle of impossible to get the simulator into the failing state, because
operation. But doubling the size of the design also roughly it depends on a complex set of conditions or takes many mil-
doubles the number of operation cycles needed to verify its lions of cycles of operation to get to. Internal nets may be
operation. The result is that the amount of processor work to connected to the emulator’s logic analyzer via the program-
fully verify a logic design by simulation goes up as the square mable interconnect, so the design’s internal operation may be
of the size of the design. As observed by Moore’s law, design observed and analyzed during real operation with real appli-
sizes grow by a factor of two every 18 months, four every 3 cations and data. This is a powerful capability for both chip
years, and 100 every 10 years. Thus simulation processor and system-level debugging. Emulators usually provide hun-
work grows by a factor of four every 18 months, 16 every 3 dreds or thousands of channels of logic analysis, providing
years, and 10,000 every 10 years. This is a much faster pace rich visibility inside the design. This unique capability is
than even the rapid growth in processor performance over the widely used, even after the design has been fabricated, to ana-
same time. lyze system-level bugs from inside the design, which is other-

Each logic gate is represented by programmable silicon in wise impossible. Some emulator users have found post-silicon
the logic emulator. As design sizes grow due to Moore’s law, emulation for analysis as valuable as the pre-silicon emula-
the capacities of FPGA and FPID chips also grow in the same tion for verification (1).
proportion. Logic emulation technology is intrinsically able to
keep up with design size growth, as well as maintain system
emulation cycle rates over 1 MHz. FPGA-BASED LOGIC EMULATORS:

HARDWARE ARCHITECTURE
Real-Time Operation

FPGA-based logic emulators (Fig. 2) typically have one orSome applications must be verified in real operation in real
time. Video display outputs cannot be verified by inspecting more board-level logic modules, each of which has a large

82 EMULATORS

gramming cells. Programmable I/O pin buffers line the
FPGA’s perimeter.

Computer-aided design (CAD) software is used to compile
arbitrary netlists into programming binaries. The FPGA com-
piler maps netlist gates into LUTs and flip-flops, partitions
them into logic blocks and places them in the array, maze-
routes the interconnect, and generates the binary program-
ming file.

Beyond the basic framework of logic blocks, programmable
interconnect, and I/O, additional features, such as memory
(either in dedicated blocks or by using the LUTs as read/write
random-access memory (RAM), interblock arithmetic carry
structures and wide decoders, and internal tri-state bus driv-
ers, are usually included.

The die area of an FPGA chip is dominated by the SRAM

Control
computer

FPGA FPGA

FPID

FPID

Logic analyzer/
pattern generator

FPID

FPGA

FPID

Network

Logic module Logic module

In-circuit
I/O

FPGA

FPID

FPID

programming cells and metal interconnect that make them
field-programmable. Actual speed and capacity vary over aFigure 2. Block diagram of an FPGA-based logic emulation system.
wide range depending on design characteristics. From 10 to
20 programming cells per equivalent logic gate are required.
Of these, typically only 10% define logic functions; the other
90% are needed for programmable interconnect. Conse-number of FPGAs; usually each module has FPIDs to in-
quently, the total area penalty of an FPGA over hardwiredterconnect them. The logic modules are often interconnected
logic in the same process is on the order of 15 to 30 times.by a system-level set of FPIDs. Several levels of programma-

Programmable interconnect also makes FPGAs slowerble memories, along with facilities to connect user-supplied
than hardwired logic. Worst-case delay through a logic blockhardware (such as a processor core), inside the emulation are
is in the 2 ns to 3 ns range, and interblock wiring delays ofoften included. Pattern generators to provide input vectors,
up to 10 ns or more are common (as of 1998). The speed pen-along with logic analyzers to capture result vectors, are also
alty is very design-dependent, but is substantial, in the 3
 tousually included, and they are specialized for the logic emula-
10
 range.tion application. An in-circuit input–output (I/O) cable con-

Because of the speed and area penalties of dynamic repro-nects the emulator to the larger hardware system in which
grammability, FPGA cost/performance is usually one to twothe emulated design is destined to be installed. One or more
orders of magnitude worse than that of an ASIC or full-cus-network-accessible control computers oversee all this hard-
tom chip made with a similar process. This translates into aware, programming the FPGAs and FPIDs and controlling
similar difference between the cost and performance of a logicthe instrumentation.
emulator and the chip being emulated. The cost is more than
justified by the logic emulator’s verification capabilities.

Logic
InterconnectMost emulators use reprogrammable FPGAs to emulate the

design’s logic gates and registers. An FPGA is a very flexible, The most challenging and important aspect of logic emulator
completely programmable logic chip (2,3). FPGAs contain pro- design is the interconnect architecture. Logic emulators must
grammable logic blocks, programmable interconnect, and pro-
grammable I/O pins. While some types of FPGAs use nonvola-
tile programming, naturally emulators only use electronically
reprogrammable FPGAs based on SRAM technology. To be
useful in an emulator, an FPGA needs to have reprogramm-
able logic gates and registers, a reprogrammable way to in-
terconnect them, and a way to freely program connections to
I/O pins.

An FPGA has few actual gates at all. It is really an array
of programmable logic blocks, usually in the form of RAM
lookup tables (LUTs) and flip-flops, interconnected by metal
lines and RAM-controlled interconnect cells (Fig. 3). An LUT
is a 2n-by-1-bit RAM whose address inputs are connected to
the LUT signal inputs. It is programmed with a truth table
to act as an arbitrary n-input logic function. Typical FPGA
LUTs have three, four, or five inputs. One to four of these
LUTs and a similar number of flip-flops or latches are inter-

I/O pin

Logic block

Interconnect
cell

connected together with programmable multiplexers to form Figure 3. Generic representation of the internal architecture of an
a logic block. FPGA, showing a two-dimensional array of logic blocks and program-

Typically, a two-dimensional array of logic blocks is inter- mable I/O pins, interconnected by metal lines of various lengths, with
connected by metal lines of various lengths; these blocks pass programmable interconnect cells. The inset shows a simplified logic

block, with a lookup table and a flip-flop.either transistors or multiplexers, controlled by SRAM pro-

EMULATORS 83

Rent’s Rule Limitations. Unfortunately, there are a number
of limitations and disadvantages with the nearest-neighbor
architecture. FPGAs have a very limited number of I/O pins,
since chip bonding pads and packages are much larger than
the metal lines inside the chip. Logic emulators must also
deal with the fact that when a complete chip-level logic design
is automatically partitioned into many FPGA-sized pieces,
each piece will usually have many more pins than a complete
FPGA-sized design will. This is because logic designers natu-
rally organize their designs to match the constraints of the
chip packages they will reside in. Inside a chip-level module,
interconnections are rich. When this chip-level module is cut
by software into many FPGA-sized partitions, in a way un-
foreseen by the designer, each partition will cut many inter-

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

nal signal nets which must pass through FPGA pins. This
effect is quantified by Rent’s Rule (7), which is an empiricallyFigure 4. FPGAs in a nearest-neighbor interconnect. The bold lines
determined relation between the number of gates in a subpar-represent example design nets, along with the paths they follow
tition of a module and the number of pins required for thethrough intermediate FPGAs as they are routed from source to desti-

nation FPGAs. signals passing in and out of it. In FPGA-sized and board-
sized partitions for emulation applications, experience has
shown this form of Rent’s Rule applies:

always use multiple FPGAs, since a single FPGA can never P = KGr (1)
have as many gates as an ASIC or full-custom chip design,
made with the same process. This is because of the innate where P is the number of pins, G is the number of gates,
programmability of the FPGA. The pass transistors or multi- reduced to the equivalents of 2-input nand gates, r is the Rent
plexers that carry an FPGA’s signals, and the programming exponent, typically between 0.5 and 0.7, and K is a constant,
cells that control them, are much larger than a simple metal typically between 2.5 and 3.
line. This is always true, regardless of the semiconductor pro- Frequently the gate capacity of an FPGA in an emulator is
cess used. As silicon technology grows, the capacity of FPGAs limited more by this I/O pin constraint than by the FPGA’s
will grow. But the size of designs to be emulated will grow as internal logic capacity. Therefore, the I/O pins of an emula-
well, for the same reason. Therefore, logic emulators will al- tor’s FPGAs are a precious resource.
ways have multiple FPGAs. Nearest-Neighbor Interconnect Characteristics. Nearest-

These FPGAs must be interconnected in a way which is neighbor interconnected emulators use only FPGAs and few,
completely programmable, capable of interconnecting any if any, FPIDs. The printed circuit board is simple and inex-
logic design without introducing excessive delay or skew, scal- pensive, since the wiring is short and regular. Interconnects
able to a wide range of design sizes, and affordable. A number which need only one direct path between neighboring FPGAs
of architectures have been developed to address the multi- are fast and inexpensive.
FPGA interconnect problem. Since the FPGAs must be used for routing inter-FPGA sig-

nals, as well as for logic, each FPGA’s pins are in demand for
two purposes: routing signals in and out of the logic parti-Nearest-Neighbor Interconnect. A simple way to intercon-

nect an emulator’s FPGAs is to continue the FPGA’s two-di- tioned into the FPGA and through-routing inter-FPGA sig-
nals of other FPGAs. In practice, this pin demand is a severemensional array internal architecture and place a similar

array of FPGAs, connected in a ‘‘nearest-neighbor’’ fashion, constraint on using the available logic capacity, and FPGAs
are badly underutilized as a result. This overwhelms the sav-on the logic module board (Fig. 4). The interconnect I/O pins

of each FPGA are connected to pins of nearby FPGAs. Most ings from simple circuit boards and avoiding FPIDs, since
many times more FPGAs are required for a given emulationpins are connected to the pins of immediately neighboring

FPGAs. Some may be connected to the next-most neighboring capacity than the FPGA capacities alone would indicate.
Interconnection paths vary over a wide range, dependingFPGAs for longer distance runs across the array. Logic mod-

ules are connected to one another in a similar fashion. on the distance needed through the array. A placement pro-
gram is required as part of the emulation compiler, which canIn the nearest-neighbor interconnect (4), the FPGAs are

used both for emulating logic and for interconnecting signals. take a long time to execute. It is never able to keep all inter-
FPGA routes short, since logic circuits have a very irregularAfter the design has been technology-mapped into FPGA

primitive form and then broken into FPGA-sized partitions, topology, little constrained by wiring, since permanent wire
traces on chips are plentiful and inexpensive. Some routesthese partitions are placed into specific FPGAs in an opti-

mized placement to minimize the routing distances in the end up taking long and circuitous paths through many
FPGAs in the array, which results in very long interconnectarray of inter-FPGA nets.

The earliest commercial logic emulator, the Quickturn delays on some nets. Not only does this slow operation, but
the wide variance among net delays can induce incorrect be-RPM, used this architecture (5). It successfully emulated In-

tel’s first Pentium CPU design, running an operating system havior in some designs.
Emulation is most beneficial in verifying the largest de-and real applications many months before first silicon was

available (6). signs, but the long routing paths make it impractical to scale

84 EMULATORS

a nearest-neighbor interconnected emulator up to many hun-
dreds of FPGAs, which is needed to handle the largest chip
designs and multichip systems.

Full and Partial Crossbar Interconnects. The recognition that
interconnect architecture is the key problem in logic emula-
tion technology, because of the scarcity of FPGA pins and the
cost and delay of programmable interconnects, motivated de-
velopment of a different architecture. The partial crossbar in-
terconnect made large-scale, efficient logic emulation practi-
cal and is the most widely used architecture today.

FPIDs. With crossbar-type interconnects, the emulator’s
FPGAs are interconnected by FPIDs. FPGAs themselves may
be used as FPIDs, since they have an internal programmable
interconnect among their I/O pins. However, they require
CAD routing, and propagation delays may be difficult to
predict.

There are also special-purpose FPID chips. These usually
contain a single complete crossbar, which is an array of pro-
grammable switches than can interconnect all the pins of the
FPID. Programming a crossbar is a simple table-lookup oper-
ation, and propagation delays are usually constant regardless

FPGA 1

= Crosspoint
 switch

FPGA 2 FPGA 3 FPGA 4

of routing or fanout.
Figure 5. Four eight-pin FPGAs interconnected by a full crossbar.Full Crossbar Interconnect. To maximize the use of the All the crosspoint switches that make up the full crossbar are shown.

FPGAs’ scarce I/O pins, and thus their logic capacity, the pins
should only be used for interconnections in and out of the
logic in each FPGA. A separate structure for interconnecting

switch count and in pins, in a technology comparable to thatFPGA pins is called for. This interconnect should be capable
of the FPGA.of automatically routing all logic design networks with nearly

Partial Crossbar Interconnect. A full crossbar can route100% success, with minimum and bounded delay, should be
much denser networks than are needed for normal logic de-scalable to interconnect up to thousands of FPGAs, and
signs. It can connect any pin with any or all other pins withshould be economical.
equal ease. Typical nets in logic designs connect an outputIn theory, a crossbar is the most complete and ideal in-
with a few inputs. A tiny fraction of crosspoint switches wouldterconnect. Crossbars are well known in communications
ever be turned on to route a logic design.technology, deriving originally from telephone central office

Since an FPGA can freely interconnect internal signals toswitches. A crossbar consists of a regular array of program-
any of its I/O pins, there is flexibility available in the FPGA,mable crosspoint switches, connecting each pin with all other
which is not taken advantage of by a full crossbar. The partialpins. By definition, a crossbar can route any network with
crossbar interconnect (8,9) takes advantage of both theseonly one stage of delay. Figure 5 shows a very simple example
facts.(to fit into the figure) of four FPGAs with eight I/O pins each,

Figure 6 shows the earlier full crossbar example of fourinterconnected by a full crossbar.
FPGAs, with eight I/O pins each, interconnected by a partialThe problem in practice is that the size of a crossbar in-
crossbar interconnect. In the partial crossbar interconnect,creases as the square of the number of pins. The number of
the I/O pins of each FPGA are broken into subsets. Only thecrosspoint switches S in a bidirectional crossbar, where each
crosspoint switches that interconnect FPGA I/O pins of theswitch can pass signals in either direction, which intercon-
same subset are used. In the figure, the FPGAs’ eight I/O pinsnects P pins, is
are broken into four subsets, A, B, C and D, of two pins each.
Each subset’s crosspoint switches have FPGA I/O pins inS = P(P − 1)/2 (2)
common, so they may be grouped together into crossbars.

Since the switches that connect pins of the same FPGA are Each resulting crossbar interconnects the pins of one subset
unnecessary, this can be reduced slightly. The number of of FPGA I/O pins.
crosspoint switches S in a bidirectional crossbar that in- Figure 7 has this same simple four-FPGA example, re-
terconnects N FPGAs with P pins each is drawn to show the partial crossbar interconnect in crossbar

form. Each subset’s crossbar is in the form of an FPID, which
interconnects two pins from each of the four FPGAs. AnyS = N(N − 1)P2/2 (3)
FPID may be used to route a net from one FPGA to others.
Choosing an FPID for the route determines which I/O pinTo interconnect 20 FPGAs, each with 200 I/O pins, as would

be used on a single board, a 4000 pin crossbar is required, subset is used on the FPGAs. For example, a net running
from FPGA 4 to FPGA 1 may be routed through any of FPIDswhich must have 7,600,000 crosspoint switches. For a system

of 400 FPGAs, each with 200 I/O pins, an 80,000 pin crossbar 1, 2, 3, or 4, using the FPGA I/O pins that connect to the
FPID selected. In the figure, subset C is the choice, so one ofis required, which must have 3,192,000,000 crosspoint

switches. This is far in excess of what is practical, both in the I/O pins from subset C is assigned to the net in FPGAs 1

EMULATORS 85

I/O, totaling 1200 for the board. Each 104-pin FPID has 5356
crosspoint switches, which is an easily built device. The total
of 267,800 crosspoint switches among all 50 FPIDs is 30 times
less than the full crossbar’s 7,998,000, plus it is broken into
easily packaged FPIDs.

Partial Crossbar Interconnect Characteristics. Partial cross-
bar interconnects maximize the use of the FPGAs’ logic capac-
ity by preserving an FPGA’s I/O pins for only nets that con-
nect with its own logic. It maintains the full crossbar’s ability
to route all nets with one stage of delay. Routing the network
is a simple tabular-based process, with some ripup and retry
at the end for dense cases, which is very successful in prac-
tice. Since the network is fully symmetrical, no placement
stage in the compiler is needed to decide which partition to
put in each FPGA. The partial crossbar interconnect is eco-
nomical and very scalable.

The penalties are (1) the extra cost and size of the FPIDs,
(2) the fact that many wires on the printed circuit board are
long, making it more expensive, and (3) the fact that direct
connections between FPGAs are not available.

Hierarchical Partial Crossbar Interconnects. Large multi-
board emulators with hundreds of FPGAs cannot be reason-

FPGA 1

A B C D A B C D A B C D A B C D

= Crosspoint
 switch

FPGA 2 FPGA 3 FPGA 4

ably interconnected by a single partial crossbar interconnect.
Figure 6. The same four FPGAs from Fig. 5, interconnected by a

Since each FPID is connected to every FPGA, the networkpartial crossbar interconnect. The FPGA’s pins are broken into four
cannot be broken into multiple boards without cutting a largesubsets of two pins each. Only the crosspoint switches that intercon-
number of wires. Instead, the partial crossbar interconnectnect pins in the same subset are used.
architecture can be applied recursively, in a hierarchical
fashion.

Each group of partial crossbar interconnected FPGAs andand 4, and FPID 3 is programmed to interconnect the wires
FPIDs is itself like a very large FPGA. It has I/O pins, on theleading from those two FPGA I/O pins. All the inter-FPGA
FPIDs; these pins can be freely used to connect with logicnets in a design are routed this way, one by one, largest first.
inside, as with an FPGA. A set of such groups can be intercon-Additional pins on each FPID are used for external I/O
nected by a second level of FPIDs, as shown in Fig. 8. Fourconnections in and out of the multi-FPGA network, for con-
first-level partial crossbar interconnected groups, each likenections to in-circuit cables, instrumentation, and additional
the one in Fig. 7, have their external I/O pins broken intointerconnect.
subsets of two each, which are interconnected by the second-Using a partial crossbar interconnect, the board-level ex-
level FPIDs. Each group could be on one board, and theample of 20 FPGAs with 200 pins each can be interconnected
boards interconnected in a card cage, by FPIDs on the back-by 50 FPIDs with 80 pins each for FPGA I/Os. The subset
plane itself, or on additional boards which are mounted atsize is four pins, which is a size that has been successful in
right angles to the FPGA boards on the other side of the back-production experience. Each FPID has four pins connected
plane. The number of external I/O pins in the group is deter-to each of the 20 FPGAs; and 24 pins remain for external
mined by applying Rent’s Rule to the expected logic capacity
of the group.

Nets which pass between FPGAs in different groups are
routed through three FPIDs: the one on the source board, the
second-level one, and the one on the destination board. This

FPGA 1

A B C D A B C D A B C D A B C D

FPGA 2 FPGA 3 FPGA 4

FPID 1 FPID 2 FPID 3 FPID 4

Figure 7. Four FPGAs in a partial crossbar interconnect. The same
FPGAs and interconnect from Fig. 6 are redrawn to show the partial

First-level FPGA + FPID groups

Second-level partial crossbar interconnect
crossbar interconnect in crossbar form, with the crosspoint switches
collected into FPIDs. Figure 8. Hierarchical partial crossbar interconnect.

86 EMULATORS

way, hundreds of FPGAs can be interconnected: Most routes visibility can be freely used during operation without interfer-
ing with the design.take a single stage of FPID delay, and the rest only need

three stages.
User-Supplied HardwareThe second-level FPIDs may also have additional pins for

external I/O connections. As many levels of hierarchy as Often the emulated design contains one or more modules that
needed may be used to interconnect a system of FPGAs of any already exist in hardware form. There is no point in consum-
size, efficiently and economically. ing emulator capacity for these, and usually their internal

The earlier example of 400 FPGAs with 200 pins each can logic designs are not available anyway. One example is an
be effectively interconnected by a two-level partial crossbar ASIC that contains a core, such as a processor or a bus inter-
interconnect. The earlier partial-crossbar interconnected face, which is available in ‘‘bonded-out’’ form as a real chip.
board of 20 FPGAs and 50 FPIDs, with 1200 external I/O Another is a board-level design containing off-the-shelf chips.
pins, is taken as the first-level group. Twenty such boards, Emulators contain facilities for these to be mounted on cards
making up the total of 400 FPGAs, are interconnected by a and connected to the hardware. Programmable connections
second level of 300 FPIDs, with 80 pins each, again connect- using FPIDs interface the fixed I/O pin locations of the user-
ing four pins to each of the 20 boards. There are 20 times supplied hardware to the emulator’s interconnect.
267,800 crosspoint switches in all the first-level FPIDs, plus
300 times 3160 crosspoint switches in the second-level FPIDs, Instrumentation
totaling 6,304,000, which is 506 times fewer than the full

Two main facilities are usually provided for connecting thecrossbar would require. Interconnects of this type and size
programmable logic and interconnect with inputs and out-have been used very successfully in production logic emula-
puts: (1) in-circuit cables for real-time operation in the targettors, containing over 1000 large FPGAs.
hardware and (2) logic analyzer/pattern generator facilities
for running test vector sets and for observing signals during

Memory real-time operation.
In-circuit cables directly connect the emulated design withOften designs to be emulated include random access memory

the actual target hardware that the design will run in once it(RAM) and read-only memory (ROM). These memories can
is fabricated. The emulated hardware receives signals fromtake a very wide variety of shapes and sizes from design to
and drives signals to its live, running hardware surroundings.design. Emulator hardware usually includes a range of facili-
When the emulated design is to be a packaged chip, adaptersties to emulate all memories in the design.
are available to plug the in-circuit cable into the actual socketMost LUT-based FPGAs offer the ability for logic block
of the actual board where the chip will be. Alternatively, someLUTs to be used directly as small RAMs, instead of for logic.
emulation users choose to build an emulation-specific proto-These are small, usually only 16 or 32 bits each, but they are
type board for the target, and they provide flat cable connec-very flexible. Very tall or wide memories can be constructed
tors for in-circuit cables. Programmable FPIDs interface theout of smaller RAM primitives, with additional logic pro-
fixed in-circuit I/O pin locations with the emulator’s in-

grammed into other logic blocks for decoding addresses and
terconnect.

multiplexing data outputs. The main limitation is total size. Emulators usually include pattern generators and logic an-
A few thousand bits of memory, along with the logic required alyzers. They are used in stand-alone operation, without the
to assemble it into one memory block, can consume an entire in-circuit connection, to drive the emulated design with test
FPGA. vector inputs and capture test vector outputs for analysis and

Conventional SRAM chips are also included to emulate comparison. While this capability is similar to that of a simu-
larger memories more efficiently than FPGAs can. They are lator, the emulator’s megahertz speed allows very large vector
connected to FPGAs and FPIDs in many ways in different sets, for regression and compatibility testing, to be run in a
emulators, to take actual SRAMs with a fixed number of far shorter time than on a simulator. The logic analyzer is
words and bit width and make them emulate a wide variety also used during in-circuit operation as debugging instrumen-
of different memories in designs. tation. Internal signals may be identified, and automatically

More and more multiported memories are coming into use, routed out to logic analyzer channels.
where the same memory array can be read and/or written to, Logic emulation places different demands on logic ana-
in many locations at once. Memories in full-custom chip de- lyzers and pattern generators than ordinary benchtop opera-
signs often have extreme bit widths and large numbers of tion with conventional instruments. Since emulation speeds
ports, features that are not directly realizable in FPGA or are slower than real hardware, the capture rate can be lower,
standard SRAM devices. Emulation of these memories can be typically no more than 20 MHz. Only simple logic levels need
a complex task. Multiporting can be emulated by rapidly to be observed. On the other hand, many hundreds of chan-
time-multiplexing a single or dual-ported RAM. Each port is nels, with very complex triggering conditions, are called for to
serviced in a ‘‘round-robin’’ fashion at a high enough rate use the rich visibility into design internals that the emula-
(compared with the speed of the emulated design’s clock) that tor’s programmable interconnect can provide. In contrast,
multiport operation is accomplished. standard benchtop instruments are very fast, have relatively

Control and visibility features are also generally included few channels, and would call for cumbersome cabling to con-
to load and unload data to and from the memories and to nect to the emulator. Therefore, most emulators include built-
provide interactive visibility into the memories, in the man- in logic analyzer and pattern generator facilities, tightly inte-
ner of a debugging console. If the visibility port is emulated as grated with the emulator’s interconnect, with hundreds or

thousands of channels and hundreds of thousands of vectorsan additional port of a multiport memory, then the debugging

EMULATORS 87

of depth. Emulation compilers program the interconnections tion, maps it into the FPGA logic technology, analyzes it for
potential timing problems, partitions it into boards andto these instruments automatically, and they allow a well-

integrated emulation run-time environment to be used with FPGAs, places the FPGAs if necessary, routes the board-level
interconnect, and then runs a chip-level place and route forthe same signal names as in the design source.
each FPGA and FPID, finally creating a comprehensive emu-
lation database for the design containing the FPGA and FPIDControl Facilities
programming binary bitstreams and reference information

One or more local control microcomputers directly control the about the design to support the user’s debugging at run-time.
FPGA and FPID programming process, control and access the Some emulation compilers now can accept a register-transfer-
pattern generator, logic analyzer, and memory visibility level representation in a hardware description language
ports, run diagnostic programs on the hardware, and do any (HDL), such as Verilog or VHDL. They have an additional
other low-level control, visibility, programming, or diagnostic front-end synthesis step, and create additional HDL linkage
functions. They are usually connected to the local area net- information in the emulation database for use at run-time.
work (LAN) for communication with the users’ run-time con- The compiler must do all this completely automatically, com-
trol and debugging programs. Usually one or more program- pletely reliably, and making efficient use of the hardware ca-
mable clock generators are provided as sources for clock pacity. Since the emulation user is only interested in using
signals for the emulated design, pattern generator, and/or the emulation, not in internal details of the FPGAs and
logic analyzer. FPIDs, complete automation is desired, making this a more

challenging task than the usual chip design tool faces.
Compilation begins with a front-end design reader andFPGA-BASED LOGIC EMULATORS:

checker. It reads in the design files, which may be a largeSOFTWARE ARCHITECTURE
hierarchical collection of netlists, and builds a completely ex-
panded single-level version of the design in the emulation da-Compiler Software
tabase. Usually one or more ASIC or cell libraries are called

The logic emulator’s design compiler is among the largest and for by the design. The emulation compiler includes these li-
most complex of all electronic design automation tools. Its braries and expands library elements out to the fully primi-
major components and execution flow are shown in Fig. 9. tive level. The design is checked for internal consistency. Nets
The compiler accepts an input design, expressed as many files which are to be connected to in-circuit cable pins, or to logic
in many different libraries and/or hardware description lan- analyzer or pattern generator channels, are called out by the
guages, assembles a single fully expanded design representa- user and included in the design database at this stage. Some

compilers include an HDL synthesis capability, which is dis-
cussed in the section entitled ‘‘advanced topics.’’

Technology mapping is done to translate from the ASIC or
cell-specific logic primitives into FPGA-compatible primitives.
For example, if the FPGA-level place and route tool only rec-
ognizes logic gates with five inputs or less, larger gates in the
design are broken down into FPGA-acceptable smaller ones.
Most FPGAs do not directly include transparent latch primi-
tives, so if necessary latches in the design are translated into
an equivalent network of cross-coupled gates. If the design
includes nets with multiple drivers, such as tri-state or bidi-
rectional nets, some emulation compilers will translate those
nets into a logically equivalent unidirectional sum-of-products
form. Even if the FPGA has internal tri-state buffers avail-
able, using them often severely constrains internal logic
placement in the FPGA, thereby impacting logic capacity.
Such nets often span many FPGAs, and maintaining tri-state
form is difficult to accomplish across many FPGAs and
FPIDs. Translation into sum-of-products form makes the net
like any other, so it can be efficiently partitioned and inter-
connected. The technology mapping stage also does a design
rule check to flag illegal logic networks, and it eliminates or
optimizes unused or constant logic inputs and outputs to min-
imize the size of the network.

Often designs to be emulated include RAM and ROM mem-
ories. These memories can take a very wide variety of forms
from design to design. In addition to the number of locations
and their bit width, memories have different numbers and
types of write enables and output enables. During technology

Design reader

HDL synthesis (opt.)

Technology mapper

D
A
T
A
B
A
S
E

System partitioner

System placer (if needed)

System router

Binary chip programming files

FPGA
compilers

FPID
compilers

Input design

mapping, a memory compiler can automatically generate the
FPGA logic block or board-level SRAM primitives required toFigure 9. Major components and execution flow of the FPGA-based

logic emulation compiler. emulate the particular memory in the source design. It will

88 EMULATORS

also add information about the memory to the design data- Once each FPGA and FPID has its logic content, intercon-
nect, and I/O pins fully defined, then each chip is ready forbase, for use by the memory visibility tool at run-time.
chip-level compilation. The FPGA vendor’s placement, rout-Once a complete netlist of FPGA-compatible primitives is
ing, and bit generation software is generally used, bound intoavailable, it must be broken into board-level and chip-level
the compiler such that it is not separately visible to the emu-partitions by the system-level partitioner. The partitioner’s
lation user. FPIDs are easily compiled, since they are usuallyjob is to map primitives into FPGA chips and into board-level
built with a single full crossbar. Since each chip-level compilecollections of FPGA chips, optimizing according to size, pin
job is independent, they may be done in parallel. When thecount, and timing constraints. The number of chips and
emulation user has a number of workstations available acrossboards must be minimized while observing the logic capacity
the LAN, some emulation software can farm the jobs out ontoand number of I/O pins available in each FPGA and the I/O
the network for parallel execution. If any FPGA compile jobspins available in each board. Better partitioners will also seek
fail to complete, again the compiler must go back and incre-to minimize the number of interchip I/O pin cuts imposed on
mentally repartition, replace, and reroute the design, to placetime-critical design nets. The partitioner may also have a role
less demand on that particular FPGA. Finally the binary pro-in timing correctness management (for details see the section
gramming files for each chip are stored in the emulation data-entitled ‘‘Advanced Topics’’).
base, and the design is ready to be emulated.Multilevel multiway partitioning of millions of primitives

into thousands of partitions is well known to be a very diffi-
Run-Time Softwarecult computing problem (10), for which there is no known

technique to directly arrive at the optimum result in polyno- When the emulated design is ready to be downloaded into the
mial time (i.e., it is an NP-hard problem). Emulation compil- hardware and operated, a number of programs running on
ers use a combination of the heuristic techniques developed users’ workstations across the LAN can be run to program
in the academic and industrial communities over the years, and run the emulation and instrumentation. A controller pro-
which arrive at acceptably near-optimal solutions in a reason- gram will direct the emulator’s control computer what files to
able time. Min-cut (11) and ratio-cut (12) techniques work download into the FPGAs and FPIDs to program them with
from the top down, cutting the whole network into smaller the desired design. It will also define and control any pro-
and smaller partitions. Clustering techniques work from the grammable clock inputs that may be used. For pure in-circuit
bottom up, building partitions out of tightly interconnected emulation, this is all that is needed.
primitives. Either or both approaches are generally used, al- To run the logic analyzer, a graphical logic analyzer front-
ternately and in sequence. Simulated annealing optimization end program is used. It can control which of the predefined
is often done at the end to improve the results. observable internal and external signals are to be captured,

Once the design is partitioned, the partition must be and it can set the trigger conditions for starting the capture.
placed onto specific FPGAs and boards. The difficulty of this Once triggered, interactive graphical waveform or tabular dis-
step depends completely on the interconnect architecture. plays may be used to observe the signals and save them to

output vector files. Likewise, if the emulation is driven by vec-Since the partial crossbar interconnect is completely symmet-
tors from the pattern generator, input vector files can be se-rical, any placement of partitions into FPGAs is equally valid,
lected and loaded with this user interface and then displayedso no placement step is needed. When a nearest-neighbor ar-
in parallel with the captured logic analyzer vectors. Some em-chitecture is used, placement is critical to maintaining any
ulators include the facility to automatically compare capturedhope of accomplishing the routing task without needing too
output vector files with predefined reference vector files andmany FPGA pins for long-distance inter-FPGA routing. The
flag any differences. This is useful for validating the emula-placement program must be very sophisticated and powerful,
tion against previous simulation, as well as for running re-demanding a substantial amount of run-time.
gression tests to revalidate after changing the design.System-level interconnect routing is the final system-level

compiler step. The partial crossbar interconnect router works
by ordering the nets according to difficulty, mainly fanout, FPGA-BASED LOGIC EMULATOR EXAMPLE
and then assigning them one by one to subsets, specific
FPIDs, and specific I/O pins, keeping track in a table. Once A representative FPGA-based logic emulator is the System
most of the nets have been routed, there may be routing fail- Realizer, of Quickturn Design Systems. The System Realizer
ures, where each of the source and destination FPGAs have can emulate up to 250,000 gates in its benchtop form, or up
I/O pins still available, but they are not all in the same sub- to 3,000,000 gates in the full-size system. Emulation speeds
set. This can be cured by ripping up previously routed nets up to 8 MHz are typical. Its Quest II compiler and run-time
and rerouting. In extreme cases, a maze router completes the software can accept designs in structural Verilog, EDIF, TDL,
routing by taking multiple-stage paths through both FPIDs NDL, or any of over 50 ASIC libraries. With the HDL–ICE
and FPGAs to complete the final routes. In the nearest-neigh- version, it can accept designs in synthesizable register-trans-
bor interconnect, the routing problem is more like that found fer-level Verilog or VHDL. It maintains the HDL view of the
in a gate array or printed circuit-board router, and similar design throughout the compilation and run-time process.
maze-routing techniques are used. If the router fails to find System Realizer hardware (Fig. 10), introduced in 1995, is
routes for all nets, the emulation compiler will go back to the based on the Xilinx XC4013 FPGA and a full-custom 168-pin
placement stage (if a nearest-neighbor interconnect is used) FPID, with a two-level partial crossbar interconnect. Each
or back to the partitioning stage, to modify the placement FPGA has 1152 four-input LUTs, which can also be used as
and/or partitioning to improve its routability, and routing is 16-bit RAMs, 576 three-input LUTs, and 1152 flip-flops. The

250,000 gate logic module is a pair of boards, each with arerun.

EMULATORS 89

tion-specific, highly parallel hardware processors, it is possi-
ble for the simulator to run fast enough to be used in-circuit
like an FPGA-based logic emulator. Inputs are continuously
converted into input data for the processors, and processor
output data are continuously converted into outputs. Pro-
cessor-based emulators generally have large capacities and
fast compile times, but they are much slower than FPGA-
based emulators, and they are not as effective at emulating
designs with complex clocking.

Logic simulation executed by the processor-based emulator
is reduced to simulating only two logic states, zero and one,
and only complete clock cycles, not nanoseconds of gate delay.
A levelized compiled code simulation algorithm is used (13).
The algorithm works by simulating one clock cycle at a time.
Starting with stored values of the clocked register outputs

Up to 22 logic boards

Logic
analyzer
pattern

generator

Configurable
memory
modules

Second-level
crossbar boards

Additional systemsIn-circuit
cables

and external inputs, the logic gates are all evaluated, level byFigure 10. Block diagram of the Quickturn System Realizer logic
level, down to the combinational logic network’s outputs,emulation system hardware.
which are the clocked register inputs and external outputs.
These values are loaded into register and external output

single-level partial crossbar interconnect of FPGAs and storage, and the process repeats for the next cycle.
FPIDs. About 1200 of the FPID external I/O pins on each To ensure correct evaluation, the logic networks are lev-
board are connected together, making a directly connected elized according to their position in the signal flow. Gates are
board pair. Of the remaining I/Os, 900 are available for con- assigned to levels, such that all inputs to a gate in any given
nection to in-circuit cables, the logic analyzer and/or pattern level have been evaluated in previous levels (see Fig. 11). In
generator, and 2500 go to the backplane. this example, gates a and b are driven only by register out-

In the full-size version, up to 22 logic boards are intercon- puts and external inputs, so they may be evaluated first.
nected by a second-level partial crossbar, made up of addi- Gates d and e drive register inputs, so they must be evaluated
tional FPIDs on boards on the other side of the backplane last. Gate c must be evaluated before d and e, but after a.
from the logic modules, and crosswise to them, to facilitate Three levels are needed, and the gates are assigned to them
the partial crossbar wiring pattern. This system interconnects as shown.
nearly 1000 large FPGAs, with no more than three FPIDs The compiler analyzes the logic network for such depend-
between any two pins. Fourteen thousand external I/Os are encies to assign each gate to a level and find the minimum
available for interconnection of multiple systems for even number of levels needed. It also seeks to balance the number
larger capacity. of gates in each level, to minimize the amount of hardware

Built-in logic analyzer and pattern generator facilities can needed to execute the simulation. Usually there is a choice of
connect to over 2000 design signals, and generate and capture levels to which a gate may legally be assigned. In the exam-
vectors to a depth of 128,000 vectors, at up to 16 MHz. Com- ple, gate b could be in either level 1 or level 2, since its inputs
plex trigger conditions with up to eight sequential events may are all primary, and its output is not needed until level 3.
be defined. Another form of visibility uses the FPGAs’ inter-
nal readback scan chains to allow observation and recording Hardware Architecture
of all signals in the design, at a slow or single-step emulation

Processor-based emulation hardware consists of a very largeclock rate. Small memories are emulated by the LUT RAMs
number of very simple processors, each of which can evaluatein the FPGAs. Larger ones are emulated by configurable
one gate, enough storage bits to hold the register contentsmemory modules (which can hold up to 14 Mbytes), and they
and external I/O values, and a communications network thatemulate memories with as many as four write ports and 16
allows logic values to pass from one gate to the next. Ifread ports. All memories may be initialized, read, and written

during emulation.
The Quest II compiler automatically compiles multimillion

gate designs into this hardware in a single pass. It does tim-
ing analysis on the clock systems in the emulated design to
guarantee correct-by-construction timing (see section entitled
‘‘Timing Correctness’’). Quest II can compile designs at a rate
of 100,000 gates per hour. Its incremental capabilities can
change an internal logic analyzer connection in a few minutes
and can recompile a 5000 gate design change in less than
an hour.

PROCESSOR-BASED LOGIC EMULATORS

Algorithm

D Q

Input

Registers Registers
Levels

1
Levels

2
Levels

3

Clock

a

c

d

ebD Q

D Q

D Q

If a simulation algorithm is sufficiently simplified and exe- Figure 11. Levelization of logic gates for evaluation by the processor-
based logic emulator.cuted, not by a conventional microprocessor but by applica-

90 EMULATORS

enough gate processors are available to evaluate all the gates Quest II compiler front-end, including VHDL and Verilog em-
ulation, and the same run-time debug tools as the FPGA-in a level at once, then that level can be simulated in one

hardware clock cycle. Thus, the three-level example can be based System Realizer. It can compile a one-million-gate de-
sign in less than one hour on a single workstation.simulated in three hardware clock cycles for every emulated

clock cycle in the design. If there are more gates in a level CoBALT hardware is based on a 0.25 �m full custom chip,
which has 64 logic processors, each of which can evaluate anythan processors available, the level can be split into two lev-

els. This way more emulation logic capacity is available in three input logic gate. Each board has 65 processor chips.
Each chip has direct connections to all 64 other chips, forexchange for emulation speed.

All the hardware is controlled by a single, extremely wide rapid communications between the processors in different
chips. The hardware clock rate, and thus the instruction rate,instruction word with a small field for each gate processor,

each storage bit, and each stage in the communications net- is 100 MHz.
work. Since the simulation algorithm evaluates all the gates
the same way every cycle, there are no data dependencies in

ADVANCED TOPICSthe program and no conditional branches in the instruction
set. The simulation executes as a single short loop, with one

HDL Emulationinstruction per logic level and one iteration per emulated
clock cycle. Lately some logic emulators have developed the ability to

Since all the gates are evaluated only once per emulated handle designs in register-transfer-level (RTL) hardware de-
clock cycle in a forward sequence, emulated designs may not scription language (HDL) form, instead of being restricted to
contain internal feedback loops, since they won’t be evaluated designs represented at the structural gate level. This reflects
correctly. Because a loop of processor instructions corresponds the increasing practice of doing RTL designs and using reli-
directly to an emulated clock cycle, there can only be one em- able synthesis tools that translate the RTL down to the gate
ulated clock signal or, at most, a set of clocks that are all level. HDL logic emulators accept the same synthesizable
locked to the same master clock. Designs with multiple unre- subsets of VHDL and/or Verilog that the silicon-targeting
lated clocks cannot be emulated with a single processor- synthesis tools accept. They internally synthesize the HDL
based emulator. into a form that is optimized for emulation. At run-time, the

emulator’s debugging tools operate at the HDL level as well,
Software Architecture allowing the user to identify signals and modules with the

same names used in the source HDL code.Software for compiling designs into a processor-based emula-
tor is similar, even identical, to that of the FPGA-based emu-

Synthesis. Logic synthesis in a logic emulation compilerlator, down through the technology mapping, which targets
has a different set of requirements than a synthesis tool thatthe gate-level processor primitives rather than the FPGA’s.
is targeted to silicon. Rather than synthesizing to gates, itThen the logic network is levelized and scheduled onto spe-
synthesizes directly into the FPGA’s logic primitives, such ascific processors and logic levels. The communications network
the LUT, for which the cost depends only on the number ofis scheduled to make sure the proper signals are available to
LUTs, not their logic functions. The emulation HDL compilerthe proper processors at the right times. If conflicts occur in
is set for rapid execution time, rather than taking a long timecommunication requirements between signals in the same
to get the smallest possible logic size or the fastest possiblelevel, signals are held in intermediate storage, gates are
logic delay. For example, using the Quickturn HDL-ICE sys-moved to other levels, and/or additional levels are introduced,
tem, on design modules in the 30,000 to 80,000 gate range,to achieve successful communication of all signals between
synthesis for emulation takes one half hour or less, comparedtheir processors and levels. Resolving this for a large design
with six to twelve hours for the silicon-targeting synthesiscan be a challenging and time-consuming compiler task. The
tool. Design change iterations take much less time as a result.resulting instructions may then be loaded into the hardware

for execution. Since this process is still simpler and faster
Operation. The compiler saves the HDL source code andthan multi-FPGA partitioning, routing, and all the FPGA-

source variable and module names in the emulation database,level place and route jobs, the execution time of the compiler
and it keeps track of the mapping between source code ele-can be much shorter for the processor-type emulator.
ments and their emulated form. During operation, the user
interface to the logic analyzer and pattern generator displaysExample
the HDL source code files and source module structure. Sig-

An example of the processor-based emulator is the concurrent nals are selected and identified by their source code names.
broadcast array logic topology (CoBALT) system, of Quickturn This greatly simplifies the debugging task compared with
Design Systems. The capacity of a single CoBALT system is dealing with the postsynthesis gate-level version of the
between 500,000 and 8,000,000 gates. Typical emulation clock design.
rates are between 250 kHz and 1 MHz. Each CoBALT board
includes 2 Mbytes of on-chip memory and up to 8 Mbytes of

Timing Correctness
additional memory cards, for emulating design memories. Co-
BALT can be operated in-circuit, can be vector-driven, or can Since an emulated design is translated from its silicon-tar-

geted form into FPGAs and FPIDs, the logical function can bebe operated in co-simulation with another simulator. Its logic
analyzer and pattern generator system has up to 2048 chan- maintained to be identical, but the internal delays must be

different. In particular, the proportion of delay between logicnels per board, each with a depth of up to 512,000 vectors.
CoBALT’s software is completely integrated with the same and interconnect is fundamentally different. In permanent

EMULATORS 91

More sophisticated emulation compilers (14) can conduct
clock tree and timing analysis to avoid or even correct such
delay imbalances and to determine a safe clock frequency to
ensure correct emulation. Given information about which de-
sign nets are primary clock inputs, clock enables, and so on,
each clock tree—that is, each tree of logic that feeds into a
clock input—is automatically identified and analyzed. If the
possibility of a clock path delay exceeding a data path delay
is identified, then additional delay elements are programmed
into the FPGAs and/or FPIDs in the data path. This will cor-
rect the imbalance and avoid hold-time violations.

Since interconnect delays are introduced when logic is split
between FPGAs, clock tree logic that drives many clocks can
be duplicated in each FPGA where the clocks appear, so the
clock tree need not suffer inter-FPGA delays. Some emulators
provide a special FPGA for clock tree logic, with low-skew
clock distribution paths from the clock tree FPGA to the other
FPGAs, again to avoid unnecessary delay in the clock paths.
The partitioner may also be called upon to manage clock tree
networks, maintaining clock tree logic uncut in the same chip
with clock logic and duplicating clock tree logic when nec-

Data Out

Clock

DA

D Q D Q

Excess interconnect delay = X

A B

clockA

DB

clockB(without X)

clockB(with X)

Out (correct)

Out (incorrect)

Hold-time violation

essary.

Figure 12. Example of a hold time violation in an emulated design,
introduced by excessive delay in a gated clock path. The timing dia-

OTHER USES OF THE TERMgram illustrates the correct operation, without excess delay X, in the
first five waveforms. The lower two waveforms show the clock delayed

The term emulation has become primarily associated withby X, the hold-time violation between input and clock, and the incor-
rect output that results. logic emulation, but the term is also used in a number of

other senses in the computing field. An in-circuit emulator
(ICE) is a debugging tool, which replaces a microprocessor
chip with a plug and cable to a benchtop device or PC. It is

silicon, the logic delays usually are longer than the wire de- usually used to debug an embedded control application where
lays, although this balance is shifting as processes shrink far a screen and keyboard are not otherwise available. The ICE
below 1 �m feature size. In the emulator, interconnect delays allows debugging and monitoring of the microprocessor’s soft-
in the FPGAs and FPIDs dominate, since signal paths pass ware execution. In-circuit emulators are passing out of com-
through many programmable switches between logic blocks. mon usage, because microprocessors now provide built-in de-

Built-in low-skew clock distribution networks in the bugging facilities which connect to a PC, and benchtop logic
FPGAs and the emulation system hardware ensure that clock analyzers can interpret processor instructions, bus states,
delays are minimal and uniform, so the internal delays and data.
mainly affect only the data paths. In fully synchronous de- An instruction set emulator is software, which executes in-
signs with a single clock, the only problems excess data path structions of a different instruction set than the one that is
delays can cause are setup time violations on flip-flop inputs, native to the hardware doing the execution, to run programs
when the clock arrives early, before the data are ready. These written for a different processor. An example would be an in-
are easily cured by slowing the clock frequency. struction set emulator that runs on the processor of a Macin-

However, many designs have logic in the clock paths (i.e., tosh computer and emulates Intel x86 instructions, to allow
gated clocks), asynchronous feedback, multiple unrelated software written for the PC to run on the Macintosh.
clock domains, and other deviations from pure synchronous
timing. Delay differences can introduce hold-time violations,
when the clock in one stage arrives late due to logic delays, BIBLIOGRAPHY
after the previous stage has been clocked and has already
changed that stage’s input data (see Fig. 12). Flip-flop B is 1. J. Gateley, Logic emulation aids design process, ASIC & EDA,

July: 1994.clocked by a gated clock. The path from the clock at A to the
clock at B is designed to be faster, in the real implementation, 2. S. Trimberger (ed.), Field-Programmable Gate Array Technology,

Boston: Kluwer, 1994.than the data path from A to B. But suppose that in emula-
tion the clock path to B is cut by the partitioner, and a sub- 3. S. Brown et al., Field-Programmable Gate Arrays, Boston:

Kluwer, 1992.stantial delay X is introduced, which makes the clock path
too slow. When the clock edge occurs at A, the resulting 4. S. Sample, M. D’Amour, and T. Payne, Apparatus for emulation

of electronic hardware system, US patent 5,109,353, 1992.change in the data input arrives at B before the same clock
edge has arrived at B, resulting in error. Clock frequency ad- 5. S. Walters, Computer-aided prototyping for ASIC-based systems,

IEEE Design & Test, 8 (1): 4–10, 1991.justments cannot cure hold-time violations, since they are en-
tirely due to imbalance between the internal clock and data 6. A. Wolfe, Intel’s Pentium parry, Electron. Eng. Times, December

5: 1, 1994.paths.

92 ENCAPSULATION MATERIALS AND PROCESSES

7. E. Rymaszewski and R. Tummala, Microelectronics Packag-
ing—An overview, in R. Tummala and E. Rymaszewski (eds.),
Microelectronics Packaging Handbook, New York: Van Nostrand
Reinhold, 1989, p. 13.

8. M. Butts, J. Batcheller, and J. Varghese, An efficient logic emula-
tion system, Proc. IEEE Conf. Comput. Design, October 1992, p.
138.

9. M. Butts and J. Batcheller, Method of using electronically recon-
figurable logic circuits, US Patent 5,036,473, 1991.

10. N.-C. Chou et al., Circuit partitioning for huge logic emulation
systems, Proc. 31st Des. Autom. Conf., June 1994, p. 244.

11. C. Fiduccia and R. Mattheyses, A linear time heuristic for im-
proving network partitions, Proc. 19th Des. Autom. Conf., 1982,
pp. 175–181.

12. Y.-C. Wei and C.-K. Cheng, Ratio cut partitioning for hierarchical
designs, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
10: 911–921, 1991.

13. M. Denneau, The Yorktown simulation engine, Proc. 19th Des.
Autom. Conf., IEEE, 1982, pp. 55–59.

14. W.-J. Dai, L. Galbiati, and D. Bui, Gated-clock optimization in
FPGA technology mapping, Proc. Electron. Des. Autom. Test Conf.,
Asia, 1994.

MICHAEL BUTTS

Quickturn Design Systems, Inc.

EMULATORS. See RAPID PROTOTYPING SYSTEMS.

