
DYNAMIC PROGRAMMING 95

timization, rather than a technique for actually optimizing
the objective function. It transforms a problem into a different
form composed of a series of recursive subproblems frequently
more suitable for optimization. The task of breaking down a
given problem is a creative step for which no general method
is known. Once the problem is transformed, the actual optimi-
zation is carried out recursively by introducing the notation
of state which couples the underlying subproblems.

Historically, the first known use of dynamic programming
is traced back to Newton, who used this technique to solve a
problem proposed by one of the Bernoulli brothers. This tech-
nique was developed in the early 1950s by Richard Bellman
who also chose the name ‘‘dynamic programming’’ (1). Since
then, dynamic programming has been applied to a variety of
optimization problems, including optimal control (2), neural
networks (3), and communications (4).

The objective in dynamic programming is to minimize a
certain cost function which is a mathematical expression for
a desirable outcome. In this technique, decisions regarding a
certain problem are typically optimized in stages rather than
simultaneously. This generally signifies that the original deci-
sion problem is divided into a sequence of small subproblems
(stages) which then are handled more efficiently from the
computational viewpoint. In this process, we need to deter-
mine how to break our problem down into a sequence of sub-
problems, and we also need to know how to solve a specific
subproblem in the sequence, given that the solutions to all
previous subproblems are known. The main point is that deci-
sions can not be viewed in isolation because the desire for low
present cost must be balanced with the inevitability of high
future costs. At each stage, one selects a decision to minimize
the sum of the current stage cost and the best cost that can
be expected from future stages. The dependence between dif-
ferent stages is reflected through a set of states which connect
subsequent stages.

The big skill in dynamic programming and the art involved
is taking a problem and determining stages and states for an
efficient solution. To identify the stages we must imagine how
the problem can be analyzed sequentially. To carry out a
stagewise analysis, the state variables are introduced which
summarize the previous decisions compactly. The decision-
making process at each stage involves selecting one of the
alternatives of the stage. This is usually referred to as a stage
decision. Associated with each stage decision is a return func-
tion which evaluates the alternative selected by this decision
in terms of its contribution to the returns of the entire prob-
lem. By selecting an optimal feasible alternative for each
stage, then the selected set of alternatives comprises an opti-
mal policy for the entire problem. The solution is obtained in
an orderly manner by going from one stage to the next and is
completed after the final stage is reached. The computational
efficiency of dynamic programming stems from the fact that
the optimum solution is obtained by considering one stage at
a time.

PRINCIPLE OF DYNAMIC PROGRAMMING

Any problem which requires identifying the optimum of aDYNAMIC PROGRAMMING
function in N variables can be expressed in a standard form:
minimize or maximize f (x1, x2, . . ., xN) subject to given con-Dynamic programming is a mathematical technique for opti-

mizing a multistage decision process. It is an approach to op- straints on the values of x1, x2, . . ., xN. The list of functions

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

96 DYNAMIC PROGRAMMING

and types of problems which give rise to this format is quite outcomes from each decision and the optimal policy from the
resulting states.extensive: linear programming, geometric programming, net-

work optimization, and so on. One of the variant forms of the principle of optimality im-
plies that an optimal policy is independent of the past andWe shall alter this from one problem with N variables,

whose values we try to find simultaneously, to a succession of looks only to the future. This is an essential part of dynamic
programming, because it allows calculating policies recur-problems each associated with one of N stages. A stage here

signifies a portion of the decision problem for which a sepa- sively. It means that the identification of the state must be
sufficient to fully describe the system, so that this indepen-rate decision can be made. The resulting decision must also

be meaningful in the sense that, if it is optimal for the stage it dence may be observed and so that the problem is effectively
decomposed into a series of one-dimensional problems each ofrepresents, then it can be used directly as part of the optimal

solution to the entire problem. which depends on the solution to later problems but not on
the solution to earlier ones.As already mentioned, separation between successive

stages is achieved in dynamic programming by the concept of A common example of the application of dynamic program-
ming is in solving the so-called shortest path problem whichthe state. In each of these stages, we have problems to be

solved with only one variable. Then, we try to find the best is explained following by an example (5).
value of a particular decision variable for that stage. Because
it is not possible to know the consequences of the other N � SHORTEST PATH PROBLEM
1 decisions, it is generally essential to find the best value for
decision variables for several different states at each stage. Consider the graph shown in Fig. 1 where the nodes corre-
Thus, at any stage, a state summarizes the current ‘‘status’’ spond to a set of cities connected through some paths. There
of the system which permits a feasible decision for the current is a travel cost for each path. The total cost of a journey is
stage without having to ‘‘look back’’ and study the effect of obtained by adding the costs of its constituent paths. Assume
this decision on the stages previously considered. This usually that a traveler wishes to travel from city A to city J. We are
means that we have to solve more than N subproblems with looking for the route from A to J with the minimum overall
one variable. When solving each of these subproblems, we cost. The problem appears as a series of decision. In each city
must assume that the other variables have taken different visited, the traveler has a choice of several paths to take and
possible values or that different amounts of some resource are must decide on one of them. The dynamic programming for-
available when the decision is made at the stage being mulation is composed of four stages in which the states corre-
looked at. spond to the cities. The recurrence relationship which defines

For descriptive ease, it is often convenient to consider all the cost of a policy is as follows: If f*n (in) is the cost of an
dynamic programming problems as sequential in time. Then, optimal policy when there are n stages remaining and the
each variable corresponds to a decision made at a specific ep- decision is made in state in, then
och or moment. A simple example of a sequential decision
problem is How should production of an item be managed,
where the costs of production and storage vary, and the de-

f ∗
n (in) = min

in−1

[p(in, in−1) + f ∗
n−1(in−1)] (1)

mand is random? We assume that each stage of the problem
where p(a, b) is the cost of the path from a to b and f*o (J) �corresponds to a period of one week and the states for differ-
0 (J is the destination). We solve the problem starting from Jent stages correspond to the number of items in storage at
and moving backward to the starting point. At the last stage,the beginning of the corresponding week. Now assume that at
there are two possible states for the traveler, H and I. In eachthe start of the problem, the ‘‘system’’ had four items. A deci-
of these the traveler has no choice of destinations, but mustsion had to be made about the number (say, x1) to be produced
go to J directly. Thus,during the first week, and the random demand d1 during that

week means that the state of the system at the beginning of f ∗
1 (H) = 23 + f ∗

0 (J) = 23 + 0 = 23 (2)
the second week is 4 	 x1 � d1. Then, the second decision is
made. The random demand of the second week means that and similarly
the decision maker starts the third week in a new state, and
similarly in the fourth week. The straightforward approach to f ∗

1 (I) = 29 + f ∗
0 (J) = 29 + 0 = 29 (3)

solving the problem is to calculate the total cost of managing
this small company for four weeks with all of the possible When there are two stages left, the traveler can be in any of
decisions that might be made at the start of each week and the three states E, F and G. In each one, there is a choice of
all the possible random demands that could occur. However,
instead of such brute force methods of total enumeration, dy-
namic programming relies on a principle, the so-called princi-
ple of optimality, which facilitates identification of optimal
policies.

The principle of optimality (also known as Bellman’s prin-
ciple) says that, if we want to know the best decision which
can be made from a given state and stage of the problem,
we must consider each decision and each state to which that

A C F

GD

B

22

16

15

19 16

15
19 13

23

29
11

15

16

18
18

22

22

22

E

H

I

J

decision would lead (at the next stage). However, one does not
need to go any further than the next stage. After that an opti- Figure 1. Possible routes for the traveler. Letters A–J represent the

cities; the journey starts at A and ends at J.mal policy is followed which can be found by comparing the

DYNAMIC PROGRAMMING 97

two destinations, H and I. If the traveler goes from E to H, The relationship of such puzzles to dynamic programming
is evident as one considers that there is a sequence of deci-the cost of this stage is 16 and then the traveler follows the

optimal policy from H to J. If the traveler goes from E to I, sions to be made after each crossing. Suppose that we define
the state of the system using the number of people (E1, C1) onthen the traveler will pay 18 for the single stage, followed by

the cost of the optimal policy from I to J. So, we can calculate the first bank of the river where the two components denote
the number of explorers and cannibals, respectively. With theas follows:
empty raft there, there are (3 � E1, 3 � C1) on the opposite
bank. Assume that (e1, c1) and (e2, c2) denote the number of
(explorers, cannibals) on a forward and return journey, re-
spectively. Clearly, there is a restricted set of values for the

f ∗
2 (E) = min[16 + f ∗

1 (H), 18 + f ∗
1 (I)]

= min[16 + 23, 18 + 29]

= 39 (corresponding to deciding to go to H)
four numbers (e1, c1, e2, c2) because the raft cannot hold more
than two people and the number of explorers must not beSimilarly
exceeded by the number of cannibals on either bank. The dou-
ble crossing is regarded as a stage in the sequential problem.
We want to minimize the number of stages needed to achieve
the target state (0, 0) under an optimal policy:

f ∗
2 (F) = min[18 + f ∗

1 (H), 11 + f ∗
1 (I)]

= min[18 + 23, 11 + 29]

= 40 (corresponding to deciding to go to I)
f ∗(E1,C1) = 1 + min[f ∗(E1 − e1 + e2, C1 − c1 + c2)] (4)

and
with the minimum taken over all the permissible sets of val-
ues of the four variables (e1, c1) and (e2, c2). There are only a
limited number of feasible states for the problem, namely,

f ∗
2 (G) = min[15 + f ∗

1 (H), 13 + f ∗
1 (I)]

= min[15 + 23,13 + 29]

= 38 (corresponding to deciding to go to H)
(0,0), (0,1), (0,2), (0, 3), (1,1), (2,2), (3,1), (3,2), (3, 3) (5)

One stage earlier, there are three states in which the traveler and the recurrence relationship yields the following:
could be found, B, C, and D. We find that

f ∗
3 (B) = min[16 + f ∗

2 (E), 15 + f ∗
2 (F)]

= min[16 + 39,15 + 40] = min(55,55)

= 55 (it does not matter which decision is made)

f ∗
3 (C) = min[22 + f ∗

2 (E),16 + f ∗
2 (F), 22 + f ∗

2 (G)]

= min[22 + 39,16 + 40,22 + 38]

= 56 (corresponding to deciding to go to F)

f ∗(0, 0) = 0
f ∗(0, 1) = 1
f ∗(0, 2) = 1
f ∗(0, 3) = 1 + min[f ∗(2,2), f ∗(0, 2), f ∗(1,1)]
f ∗(1, 1) = 1
f ∗(2, 2) = 1 + f ∗(0,3)

f ∗(3, 1) = 1 + min[f ∗(3,2), f ∗(2, 2)]
f ∗(3, 2) = 1 + min[f ∗(3,1), f ∗(3, 3)]
f ∗(3, 3) = 1 + f ∗(3,2)

Solving these recursive subproblems results in f*(3, 3) � 6

f ∗
3 (D) = min[19 + f ∗

2 (F), 22 + f ∗
2 (G)]

= min[19 + 40,22 + 38]

= 59 (corresponding to deciding to go to F)

where the sequence of states (traced backward) is as follows:
One stage earlier, the traveler has a choice of three routes. (3, 3), (3, 2), (3, 1), (2, 2), (0, 3), (0, 2), (0, 0). This means that
These lead to a recurrence relationship: the raft must cross the river 11 times in total (five double

crossings plus a single final trip).

PRINCIPLE OF DECOMPOSITION

f ∗
4 (A) = min[22 + f ∗

3 (B),19 + f ∗
3 (C), 15 + f ∗

3 (D)]

= min[22 + 55,19 + 56,15 + 59]

= 74 (corresponding to deciding to go to D)

As already mentioned, the first step in every dynamic pro-
So we have found the optimum policy for the whole journey gramming problem is to transform the original problem into
which is the route A, D, F, I, J with a total cost of 74 units. some small subproblems. In mathematical notations, our ob-
We continue our discussion with a more advanced example jective is to decompose the problem
(5).

RIVER CROSSING

fN (xN) = min
dN,. . .,d1

g[rN (xN , dN), . . ., r1(x1, d1)]

subject to xn−1 = tn(xn, dn), n = 1, . . ., N

One of the popular puzzles frequently appears in the form of
into N equivalent subproblems each containing only one statearranging groups to cross a river. Usually, it is posed as a
variable (x�i s) and one decision variable (d�i s). To achieve thisstory such as the following. Three explorers are traveling in
decomposition, the function g(.) should have a special forma jungle with three cannibals. They reach a wide river and
which is explained in the following (6). Letbuild a raft big enough for two people. All six people want to

cross the river. However, there should never be more canni-
bals than explorers on either bank. How should the party
cross the river safely in the shortest possible time?

g[rN (xn, dN), rN−1(xN−1, dN−1), . . ., r1(x1, d1)]

= rN (xN , dN) + rN−1(xN−1, dN−1) + . . . + r1(x1, d1)

98 DYNAMIC PROGRAMMING

which results in restate the problem as follows:

min d2
1 + d2

2 + d2
3

subject to x1 = x2 − d2, d1 = x1 ≥ 0

fN (xN)= min
dN,. . .,d1

[rN (xN ,dN)+rN−1(xN−1,dN−1)+. . .+r1(x1,d1)]

subject to xn−1 = tn(xn, dn), n = 1, . . ., N

Noting that (1) the Nth stage return does not depend on

x2 = x3 − d3, 0 ≤ d2 ≤ x2

x3 ≥ k, 0 ≤ d3 ≤ x3

dN�1, . . ., d1, and (2) for arbitrary real-valued functions
This is the appropriate form, becauseh1(u1) and h2(u1, u2),

min
u1 ,u2

[h1(u1) + h2(u1, u2)] = min
u1

[h1(u1) + min
u2

h2(u1, u2)] rn(xn, dn) = d2
n

xn−1 = tn(xn, dn) = xn − dn, n = 1, 2,3

We can rewrite the objective function in the following form:
The remaining restriction on the decision variables simply
limits the feasible combinations of (xn, dn) and, in that sense,
acts to our advantage. Having determined the appropriate
definitions for rn and tn, we can state the problem in terms of
the recursive equations of dynamic programming:

fN (xN) = min
dN

{rN (xN , dN) + min
dN−1,. . .,d1

[rN−1(xN−1, dN−1)

+ . . . + r1(x1, d1)]}
subject to xn−1 = tn(xn, dn), n = 1, . . ., N

Starting with the minimization over dN�1, . . ., d1 is the
crucial step in the decomposition. The minimum with respect
to dN, however, is still over rN�1, . . ., r1, because xN�1, depends

f1(x1) = min
d1=x1

d2
1,

fn(xn) = min
0≤dn≤xn

[d2
n + fn−1(xn − dn)] n = 2, 3, with x3 ≥ k

on dN through the stage transformation tN. From the defini-
tion of fN(xN), it follows that The critical step is the proper interpretation of stages, de-

cisions, returns, and transformations. We imagine that a non-
negative quantity x3, x3 � k, is divided into three quantities.fN−1(xN−1) = min

dN−1 ,...,d1

[rN−1(xN−1, dN−1) + . . . + r1(x1, d1)]
Each is placed into a separate box marked 3, 2, and 1, respec-
tively. Associated with each box is a decision, the quantity

So, there is a new form for fN(xN): put in the box, and a return, the square of the quantity in the
box. The total return is also determined by adding the returns
from each of the boxes.

We have identified the stages (the boxes), the decisions,
and the returns at each stage. We have used all information

fN (xN) = min
dN

[rN (xN,dN)+ fN−1(xN−1)]

subject to xN−1 = tN (xN , dN)

in the original problem except that the total quantity placed
We consider QN(xN, dN) � rN(xN, dN) 	 fN�1[tN(xN, dN)] as the in all three boxes equals x3. This constraint determines the

return function. Finally, in a recursive format, relationships among stages and consequently among the
stage transformations. We imagine that the division of the
quantity x3 is sequential. First, an amount d3, 0 � d3 � x3, is
placed in box three. The quantity remaining to be divided be-
tween stages two and one is x2 � x3 � d3. Likewise, d2, 0 �
d2 � x2 is placed in box two, and x1 � x2 � d2 remains. This

fn(xn) = min
dn

Qn(xn, dn), n = 1, . . ., N

Qn(xn, dn) = rn(xn, dn), n = 1
= rn(xn, dn) + fn−1[tn(xn, dn)], n = 2, . . ., N

remainder most be allocated to box one, so d1 � x1.
We continue the discussion with an example. Consider the The solution procedure begins by finding d1(x1) and f 1(x1).
optimization problem In terms of the multistage model, d1(x1) is the optimal alloca-

tion at stage one as a function of x1, and f 1(x1) is the optimal
return from stage one that results from an allocation of
d1(x1). Because we have already established that d1(x1) � x1,

min d2
1 + d2

2 + d2
3,

subject to d1 + d2 + d3 ≥ k, k > 0, d1, d2, d3 ≥ 0
(6)

there is no optimization, and f 1(x1) � x2
1. The next step is to

express the optimal one-stage return as a function of x2 and
To put this problem into the appropriate form of

d2. Because

min r1(x1, d1) + r2(x2, d2) + r3(x3, d3)

subject to xn−1 = tn(xn, dn), n = 1, 2, 3
x1 = x2 − d2

f1(x1) = (x2 − d2)2

we introduce the state variables (x0, x1, x2, x3) and replace d1 the return from stage two is d2
2. Thus, the total return from	 d2 	 d3 � k by x3 � k, x2 � x3 � d3, x1 � x2 � d2, and x0 �

stages two and one, given that stage one is operated optimallyx1 � d1. This is legitimate, because by adding these four equa-
as a function of its input, is given bytions, we obtain d1 	 d2 	 d3 � k � x0. So that d1 	 d2 	 d3

� k, it is sufficient that x0 � 0, or equivalently, d1 � x1. Be-
cause d1 � x1 � 0, d2 � x2, and similarly d3 � x3. We can Q2(x2, d2) = d2

2 + (x2 − d2)2 (7)

DYNAMIC PROGRAMMING 99

The optimal return from two stages as a function of x2 is given the die up to three times. When you have seen the value on
the die after the first roll, x1, you decide whether to roll itby
again or not. If you decide to stop, then you are paid x1 dol-
lars. Similarly, if you roll the die a second time, scoring x2,f2(x2) = min

0≤d2≤x2

[d2
2 + (x2 − d2)2] (8)

you are paid x2 dollars if you stop. However, if you roll the die
for the third time, scoring x3, you receive x3 � 3. You want to

Setting the partial derivative of Q2 with respect to d2 to zero, play in the best way possible, which is interpreted as an ob-
the necessary condition for a minimum is given by jective of maximizing your ‘‘expected’’ income from the game.

After the first roll (and the second if you continue), you are
faced with a decision: stop or continue. This decision corre-

∂Q2

∂d2
= 2d2 − 2(x2 − d2) = 0 (9)

sponds to a stage in a sequential process, whose states are
defined in terms of the score in front of you when you make a

This condition is also sufficient because the second derivative decision. If you continue, the state which you reach at the
is positive. The unique solution is d2 � x2/2 and f 2(x2) � next stage depends on the roll of the die, which is random (all
x2

2/2 � (x3 � d3)2/2. Continuing for n � 3, in exactly the same six states have the same probability of occurring). In this
manner, case, one can approach the problem by replacing the return

values corresponding to each event (a probabilistic conse-
quence of a decision) by its probability times the correspond-

f3(x3) = min
0≤d3≤x3

[d2
3 + (x3 − d3)2/2] (10)

ing deterministic value, and progressing recursively, similar
to the case of the standard dynamic programming.By partially differentiating, we obtain the solution d3 � x3/3

The previous examples of multistage decision processes, in-which yields f 3(x3) � x2
3/3. Clearly f 3 is minimum when x3 � k,

corporating uncertainty in the behavior of the state variableso
and/or the criterion function, are random decision processes
or, as they are more commonly called, stochastic decision pro-
cesses. The procedure of solving such problems is further ex-

f3(k) = k2/3,d∗
3 = k/3,x∗

2 = k − k/3 = 2k/3,

d∗
2 = x∗

2/2 = k/3,and x∗
1 = k/3 = d∗

1
(11)

plained in the following example (8).

In the problem just considered, we actually solved

STOCHASTIC SHORTEST PATH

A map of the city, together with the costs of various arcs, is

min
∑N

n=1 d2
n

subject to
∑N

n=1 dn ≥ k, dn ≥ 0
shown in Fig. 2. We imagine that we have been hired as a
consultant to a forgetful traveler who wishes to go from A toIn view of these results, it would be plausible to guess that,
B at minimum cost. If we instruct the traveler to go diago-for any positive integer n, dn(xn) � xn/n and fn(xn) � x2

n/n. To
nally up, the traveler remembers our advice and does so withshow this, we proceed by induction:
probability ��. With probability ��, the traveler does the opposite
(takes the downward arc). Likewise, if our instruction is to
move diagonally downward, the traveler complies with proba-

fn+1(xn+1) = min
0≤dn+1≤xn+1

[d2
n+1 + (xn+1 − dn+1)

2/n] (12)

bility ��, but moves upward with probability ��. The traveler
Setting the partial derivative equal to zero, behaves this way at each vertex. Consequently, no matter

dn+1 − (xn+1 − dn+1)/n = 0 (13)

which is satisfied only by dn	1 � xn	1/(n 	 1), resulting in
fn	1(xn	1) � x2

n	1/(n 	 1). We have proved that the minimum of
the sum of squares of N variables whose sum is equal to or
greater than a constant k is k2/N.

STOCHASTIC MULTISTAGE DECISION PROCESS

One of the beauties of the dynamic programming method is
that stochastic multistage decision processes are often treated
similarly to the way we deal with deterministic processes (7).
The basic assumptions are not changed significantly, beyond
the introduction of randomness. In all multistage processes
considered so far, the consequences of any particular decision
that might be made were assumed to be known explicitly.
However, in many cases there are decision processes in which
we do not explicitly know the results of our actions until after

0

0

0

0

0

0

0

0

12

A B

10
75

84

0

300

1200

x3

x4

x5

x1

x2

12
12

we have taken them. A very simple example illustrates this.
Suppose that you are gambling against a generous opponent Figure 2. The possible paths from city A to B with different probabil-

ities and costs.who describes a game with a fair die as follows: You can roll

100 DYNAMOMETERS

8. S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamicwhat our instructions are, we cannot be sure of the path our
Programming, New York: Academic Press, 1977.employer will follow, but our advice will certainly determine

the probabilities of various results. We wish to minimize the
S. NIKNESHANexpected cost of the trip, assuring us that if the traveler re-
A. K. KHANDANIpeats the journey a great many times, encountering different
University of Waterloocosts on different trips, the average cost is minimized.

To determine the best path, we consider all eight possible
sequences of three decisions each and choose the one with the
minimum expected cost. Note that the decision sequence D, DYNAMIC RECONFIGURATION. See INTEGRATED
U, D (Downward, Upward, Downward) that optimizes the de- SOFTWARE.
terministic version of this problem has probability ���� of actu- DYNAMICS OF MAGNETIC PARTICLES. See MAG-
ally yielding the path consisting of a D, U, D transition. This

NETIC PARTICLES.path has cost 0. There is a probability of ��� of an U, U, D path
DYNAMICS, ROBOT. See ROBOT DYNAMICS.of cost 10, and a probability of ��� of a D, U, U path of cost

1200, and soon. Multiplying each of the eight appropriate
costs by their respective probabilities and adding, we obtain
an expected cost EDUD given by

EDUD = 27
64

× 0 + 9
64

× (10 + 12 + 1200) + 3
64

× (12 + 10 + 10) + 1
64

× 1210 = 192
1
4

(14)

where the first, second, third, and fourth terms correspond to
obeying all three instructions, obeying two of them (occurring
in three ways), obeying one of them (again occurring in three
ways), and obeying none of them.

To find the sequence of decisions which results in the opti-
mum expected value of the cost, we proceed as follows: First
we assign a cost to each branch equal to the probability of
taking that branch (given a specific decision) times the value
of the deterministic cost of the branch. In this case, if we are
at state x3, the expected cost is equal to zero for both deci-
sions. If we are at state x4, we instruct the traveler to do
downward and the expected value of the corresponding cost
is equal to: 1200 � (��) 	 0 � (��) � 300. Similarly, if we are at
state x5, the expected cost is equal to 12 for both decisions.
Proceeding one stage backward, we conclude that the optimal
decision at states x1, x2 is to move upward, downward, respec-
tively. These decisions result in an average cost of 300 � (��)
	 0 � (��) � 75 and 300 � (��) 	 12 � (��) � 84, for the states
x1 and x2, respectively. Finally, the best decision at point A is
to move downward resulting in an average cost of (75 	 10)
� (��) 	 84 � (��) � 84.25.

BIBLIOGRAPHY

1. R. E. Bellman, Dynamic Programming, Princeton, NJ: Princeton
University Press, 1957.

2. D. P. Bertsekas, Dynamic Programming and Optimal Control, Bel-
mont, MA: Athena Scientific, 1995.

3. D. P. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming,
Belmont, MA: Athena Scientific, 1996.

4. A. J. Viterbi, Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm, IEEE Trans. Inf. Theory,
IT-13: 260–269, 1967.

5. D. K. Smith, Dynamic Programming, New York: Ellis Horwood
Limited, 1991.

6. G. L. Nemhauser, Dynamic Programming, New York: Wiley, 1967.

7. S. M. Ross, ‘‘Introduction to Stochastic Dynamic Programming,’’
New York: Academic Press, 1983.

