
DIGITAL ARITHMETIC 411

DIGITAL ARITHMETIC

As the ability to perform computation has increased from the
early days of computers to the present so has our knowledge
of how to utilize the hardware and software to perform com-
putations. Digital computer arithmetic emerged from that pe-
riod in two ways: as an aspect of logic design and as the devel-
opment of efficient algorithms to use the available hardware.

Given that numbers in a digital computer are represented
as a string of zeroes and ones and that hardware can perform
only a relatively simple and primitive set of Boolean opera-
tions, all the arithmetic operations performed are based on a
hierarchy of operations that are built upon the very simple
ones.

What distinguishes computer arithmetic is its intrinsic re-
lation to technology and the ways things are designed and
implemented in a digital computer. This comes from the fact
that the value of a particular way to compute, or a particular
algorithm, is directly evaluated from the actual speed with
which this computation is performed. Therefore, there is a
very direct and strong relationship between the technology in
which digital logic is implemented to compute and the way
the computation is structured. This relationship is one of the
guiding principles in the development of computer arithmetic.

For simpler treatment, the subject of computer arithmetic
can be divided into number representation, basic arithmetic
operations (such as addition, multiplication, and division),
and evaluation of functions.

NUMBER REPRESENTATION

The only way to represent information in a digital computer
is via a string of bits (i.e., zeroes and ones). The number of
bits being used depends on the length of the computer word,
which is a quantity of bits on which hardware is capable of
operating (sometimes also a quantity that is brought to the
CPU from memory in a single access). First, we must decide
what relationship to use in establishing the correspondence
between those bits and a number. Second, we need to make
sure that certain properties that exist in the corresponding
number system are satisfied and that they directly correspond
to the operations being performed in hardware over the taken
string of bits.

This relationship is defined by the rule that associates one
numerical value designated as X (in the text we will use capi-
tal X for the numerical value) with the corresponding bit
string designated as x.

x = {xn−1, xn−2, . . ., x0}

where

xi ∈ {0, 1}

In this case, the associated word (the string of bits) is n bits
long.

When for every value X there exists one and only one cor-
responding bit string x, we define the number system as non-
redundant. If however, we could have more than one bit
string x that represents the same value X, the number system
is redundant.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

412 DIGITAL ARITHMETIC

Most commonly we use numbers represented in a weighted
number system where a numerical value is associated with
the bit string x according to the equation:

x =
n−1∑
i=0

xi × wi

where

w0 = 1

Table 1. The Relationship Between the Implicit Value and
the Explicit Value for X � 11011, r � 2

Expression for Numerical
Implied Attributes: Radix Implicit Value Xi as Implicit
Point, Negative Number a Function of Value Xi

Representation Explicit Value xe (in decimal)

Integer, magnitude Xi � xe 27
Integer, two’s complement �5Xi � �25 � xe

Integer, one’s complement �4Xi � �(25 � 1) � xe

Fraction, magnitude 27/32Xi � 2�5 xe

Fraction, two’s complement �5/16Xi � 2�4(�2�5 � xe)
Fraction, one’s complement �4/16Xi � 2�4(�2�5 � 1 � xe)

Source: Adapted from Ref. 1.

and

the implicit value and the explicit value is best illustrated bywi = wi−1 × ri−1 Table 1 (1).

Representation of Signed IntegersThe value ri is an integer designated as radix, and in a nonre-
dundant number system it is an integer equal to the number The two most common representations of signed integers are
of allowed values for xi. In general, xi could consist of more Sign and Magnitude (SM) representation and True and Com-
than one bit. The numerical value associated with x is desig- plement (TC) representation. Even though SM representation
nated as the explicit value of x. In conventional number sys- might be easier to understand and convert to and from, it
tems, the radix ri is the same positive integer for all the digit has its own problems. Therefore, TC representation is more
positions xi and with the canonical set of digit values: commonly used.

Sign and Magnitude Representation. In SM representation,
i = {0,1, 2,3, . . ., ri − 1} for (0 ≤ i ≤ n − 1)

signed integer Xi is represented by sign bit xs and magnitude
xm (xs, xm). Usually 0 represents a positive sign (�), and 1
represents a negative sign (�). The magnitude of the numberAn example of a weighted number system with a mixed-radix
xm can be represented in any way chosen for the representa-would be the representation of time in weeks, days, hours,
tion of positive integers. The disadvantage of SM representa-minutes, and seconds with a range for representing 100
tion is that two representations of zero exist, positive and neg-weeks:
ative zero: xs � 0, xm � 0 and xs � 1, xm � 0.

r = 10,10,7, 24,60,60 True and Complement Representation. In TC representation,
there is no separate bit used to represent the sign. Mapping
between the explicit and implicit value is defined asIn digital computers, the radixes encountered are 2, 4, 10,

and 16, with 2 being the most commonly used radix.
The digit set xi can be redundant and nonredundant. If the

number of different values xi can assume is nx � r, then we
have a nonredundant digit set. Otherwise, if nx � r, we have

Xi =

xe xe <
C
2

xe − C xe >
C
2a redundant digit set. Use of the redundant digit set has its

advantages in efficient implementation of algorithms (multi- The illustration of the TC mapping is given in Table 2 (2). In
plication and division in particular). this representation, positive integers are represented in the

Other number representations of interest are nonweighted
number systems where the relative position of the digit does
not affect the weight, so that the appropriate interchange of
any two digits will not change the value x. The best example
of such number system is the Residue Number System (RNS).

We also define the explicit value xe and implicit value Xi of
a number represented by a bit string x. The implicit value is
the only value of interest to the user, whereas the explicit
value provides the most direct interpretation of the bit string
x. Mapping of the explicit value to the implicit value is ob-
tained by an arithmetic function that defines the number rep-
resentation used. It is a task of the arithmetic designer to
devise algorithms that effect the correct implicit value of the
result for the operations on the operand digits representing
the explicit values. In other words, the arithmetic algorithm
must satisfy the closure property. The relationship between

Table 2. True and Complement Mapping

xe Xi

0 0
1 1
2 2
— —
— —

C/2 � 1 C/2 � 1
C/2 � 1 �(C/2 � 1)

— —
— —

C � 2 �2
C � 1 �1

C 0

DIGITAL ARITHMETIC 413

ALGORITHMS FOR ELEMENTARY ARITHMETIC OPERATIONS

The algorithms for the arithmetic operation are dependent on
the number representation system used. Therefore, their im-
plementation should be examined for each number represen-
tation system separately, given that the complexity of the al-
gorithm, as well as its hardware implementation is dependent
on it.

Addition and Subtraction in Sign and Magnitude System

In the SM number system, addition/subtraction is performed
on pairs (us, um) and (ws, wm) resulting in a sum (ss, sm), where
us and ws are sign bits and um and wm are magnitudes. The
algorithm is relatively complex because it requires compari-

Table 3. Mapping of the Explicit Value xe into RC and DRC
Number Representations

xe Xi (RC) Xi (DRC)

0 0 0
1 1 1
2 2 2
— — —
— — —

��rn � 1 ��rn � 1 ��rn � 1
��rn ���rn �(��rn � 1)
— — —
— — —
— — —

rn � 2 �2 �1
rn � 1 �1 0

sons of the signs and magnitudes. Extending the addition al-
gorithm in order to perform subtraction is relatively easy be-
cause it involves only a change of the sign of the operand

True Form, whereas negative integers are represented in the being subtracted. Therefore, we will consider only the addi-
Complement Form. tion algorithm.

With respect to how the complementation constant C is The algorithm can be described as
chosen, we can further distinguish two representations within
the TC system. If the complementation constant is chosen to if us � ws (signs are equal) then
be equal to the range of possible values taken by xe, C � rn in
a conventional number system where 0 � xe � rn � 1, then
we have defined the Range Complement (RC) system. If, on

ss = us and sm = um + wm

(the operation includes checking for the overflow)the other hand, the complementation constant is chosen to be
C � rn � 1, we have defined the Diminished Radix Comple-

if us � ws thenment (DRC), [also known as Digit Complement (DC)] number
system. Representations of the RC and DRC number repre-
sentation systems are shown in Table 3.

if um > wm : sm = um − wm, ss = us

else sm = wm − um, ss = wsAs can be seen from Table 3, the RC system provides for
one unique representation of zero because the complementa-
tion constant C � rn falls outside the range. There are two Addition and Subtraction in True and Complement System
representations of zero in the DRC system, xe � 0 and rn � 1.

Addition in the TC system is relatively simple. It is sufficientThe RC representation is not symmetrical, and it is not a
to perform modulo addition of the explicit values, therefore,closed system under the change of sign operation. The range

for RC is [���rn, ��rn � 1]. The DRC is symmetrical and has the
se = (ue + we) mod Crange of [�(��rn � 1), ��rn � 1].

For the radix r � 2, RC and DRC number representations
Proof is omitted.are commonly known as two’s complement and one’s comple-

In the RC number system, this is equivalent to passing thement number representation systems. Those two representa-
operands through an adder and discarding the carry-out oftions are illustrated by an example in Table 4 for the range
the most significant position of the adder, which is equivalentof values �(4 � Xi � 3).
to performing the modulo addition (given that C � rn).

In the DRC (DC) number system, the complementation
constant is C � rn � 1. Modulo addition in this case is per-
formed by subtracting rn and adding 1. It turns out that this
operation can be performed by simply passing the operands
through an adder and feeding carry-out from the most sig-
nificant digit position into the carry-in at the least significant
digit position. This is also called addition with end-around-
carry.

To subtract two numbers, simply change the sign of the
operand to be subtracted and then proceed with the addition
operation.

Change of Sign Operation

The change of sign operation involves the following operation:

Wi = −Zi

we = (−ze) = (−ze) mod C = C − Zi mod C = C − ze

Table 4. Two’s Complement and One’s
Complement Representation

Two’s One’s
Complement C � 8 Complement C � 7

Xi Xi

Two’s One’s
Xi xe Complement xe Complement

3 3 011 3 011
2 2 010 2 010
1 1 001 1 001
0 0 000 0 000

�0 0 000 7 111
�1 7 111 6 110
�2 6 110 5 101
�3 5 101 4 100
�4 4 100 3 —

414 DIGITAL ARITHMETIC

which means that change of sign operation consists of sub- the size of the operands (delay � log N). The concept of CLA
tracting the operand ze from the complementation constant is illustrated in Fig. 1. For each bit position of the adder, a
C. In the DRC (DC) system, complementation is performed pair of signals (pi, gi) is generated in parallel. It is possible to
simply by complementing each digit of the operand Zi with generate local carries using (pi, gi) as seen in the equations.
respect to r � 1. In case of r � 2, this result is the simple Those signals are designated as pi (carry-propagate) and gi
inversion of bits. (carry-generate) because they take part in the propagation

In case of RC system, the complementation is performed and generation of carry signal Ci�1. However, each bit position
by complementing each digit with respect to r � 1 and adding requires an incoming signal Ci�1 in order to generate the out-
one to the result. going carry Ci. This makes the addition slow because the

carry signal must ripple from stage to stage as shown in Fig.
Implementation of Addition 1(a). The adder can be divided into groups and the carry-gen-

erate and carry-propagate signals can be calculated for theCarry Look-Ahead Adder. The first significant speed im-
entire group (G, P). This will take an additional time equiva-provement in the implementation of a parallel adder was a
lent to AND-OR delay of the logic. However, now we can cal-Carry Look-Ahead Adder (CLA) developed by Weinberger and
culate each group’s carry signals in an additional AND-ORSmith in 1963 (4). The CLA is one of the fastest schemes used
delay. For the generation of the carry signal from the adder,for adding two numbers even today, given that the delay in-

curred to add two numbers is logarithmically dependent on only the incoming carry signal into the group is now required.

c4

c1 = g0 + p0 c0

c2 = g1 + p1 c1

c3 = g2 + p2 c2

c4 = g3 + p3 c3

c3

cout

cout

cin

F3

a3 b3

a1 b1

g p

a0 b0

g p

a2 b2

g p

a3 b3

g p

G P

c2

c2 c1c3

cout

cin

F2

a2 b2

c1

cout

cin

F1

a1 b1

C0

cout

cin

C0
cin

F0

a0 b0

c4 = g3 + p3 g2 + p3 p2g1 + p3p2p1g0 + p3p2p1p0C0

G P

c4 = G+ P c0

(a)

(b)

S S S S

Figure 1. The Carry Look-Ahead Adder structure: (a) generation of carry, generate, and propa-
gate signals; and (b) generation of Group signals, G, P and intermediate carries.

DIGITAL ARITHMETIC 415

Therefore, the rippling of the carry is limited only to the
groups. In the next step, we may calculate, generate, and
propagate signals for the group of groups (G*, P*) and con-
tinue in that fashion until we have only one group left gener-
ating the Cout signal from the adder. This process will termi-
nate in log N steps, given that we generate a tree structure
for a generation of carries. The computation of carries within
the groups is done individually as illustrated in Fig. 1(a),
and this process requires only the incoming carry into the
group (3).

The logarithmic dependence on the delay (delay � log N)
is valid only under the assumption that the gate delay is con-
stant without depending on the fan-out and fan-in of the gate.

VBA

Cin=1

MUX3

S3

1 0

Cin=0

Cin=1

Cout

Cout

MUX1

S2S1

1 0

MUX2
1 0

Cin=0

CLA

VBA

VBA

CLA

In practice, this is not true. Even when the bipolar technology
Figure 2. 26-bit Carry-Select Adder.(which does not exhibit strong dependence on the fan-out) is

used to implement CLA structure, the further expansion of
the carry-block is not possible given the practical limitations

operates on positive n-bit long integers X and Y resulting inof the fan-in of the gate.
the product P, which is 2n bit long:In CMOS technology, this situation is much different,

given that CMOS gate has strong dependency not only on fan-
in but on fan-out as well. This limitation takes away many of
the advantages gained by using the CLA scheme (6). How-

P = XY = X ×
n−1∑
i=0

yir
i =

n−1∑
i=0

X × yir
i

ever, by clever optimization of the critical path and appro-
This expression indicates that the multiplication process ispriate use of dynamic logic, the CLA scheme can still be ad-
performed by summing n terms of a partial product: X � yiri.vantageous, especially for the adders of a larger size.
This product indicates that the ith term is obtained by a sim-
ple arithmetic left shift of X for the i positions and multiplica-

Conditional-Sum Addition. Another one of the fast schemes tion by the single digit yi. For the binary radix r � 2, yi is 0
for adding two numbers, which predates CLA, is Conditional- or 1 and multiplication by the digit yi is very simple to per-
Sum Addition (CSA) proposed by Sklansky in 1960 (5). The form. The addition of n terms can be performed at once, by
essence of the CSA scheme is the realization that we can add passing the partial products through a network of adders
two numbers without waiting for the carry signal to be avail- (which is the case of full hardware multiplier) or sequentially,
able. Simply, the numbers are added in two instances: one by passing the partial product through an adder n times. The
assuming Cin � 0 and the other assuming Cin � 1. The re- algorithm to perform multiplication of X and Y can be de-
sults: Sum0, Sum1 and Carry0, Carry1 are presented at the scribed as
input of a multiplexer. The final values are being selected
when Cin arrives at the ‘‘select’’ input of a multiplexer. As in
CLA, the input bits are divided into groups that are added
‘‘conditionally.’’

p(0) = 0

p (j+1) = 1
r

(p (j) + rnXyj) for j = 0, . . ., n − 1
It is apparent that starting from the Least Significant Bit

(LSB) position, the hardware complexity starts to grow rap- It can be easily proved that this recurrence results in p(n) �
idly. Therefore, in practice, the full-blown implementation of XY.
the CSA is not often seen. Various modifications of the multiplication algorithm exist,

However, the idea of adding the Most Significant Bit one of the most famous is the Modified Booth Recoding Algo-
(MSB) portion conditionally and selecting the results after the rithm described by Booth in 1951. This algorithm allows for
carry-in signal is computed in the LSB portion is attractive. the reduction of the number of partial products, thus speeding
Such a scheme (which is a subset of CSA) is known as Carry- up the multiplication process. Generally speaking, the Booth
Select Adder. A 26-bit Carry-Select Adder consisting of two algorithm is a case of using the redundant number system
13-bit portions is shown in Fig. 2. with the radix higher than 2.

Implementation of Multiplication AlgorithmMultiplication Algorithm

The speed with which the multiplication operation is per-The multiplication operation is performed in a variety of
forms, in hardware and software. In the beginning of the com- formed is of utmost importance in Digital Signal Processors

(DSP) today as well as in the general-purpose processors.puter development, any complex operation was usually pro-
grammed in software or coded in the microcode of the ma- Therefore, research in building a fast parallel multiplier has

been going on since the first such paper was published bychine. Some limited hardware assistance was provided. Today
you are more likely to find full hardware implementation of Wallace in 1964 (7). In his historic paper, C. S. Wallace intro-

duced a way of summing the partial product bits in parallelthe multiplication based on speed and the reduced cost of
hardware. However, in all of them, multiplication shares the using a tree of Carry-Save Adders, which became generally

known as a Wallace Tree.basic algorithm with some adaptations and modifications to
particular implementation and number system used. For sim- A suggestion for speed improvement of such process of add-

ing partial product bits in parallel followed in the paper pub-plicity, we will describe a basic multiplication algorithm that

416 DIGITAL ARITHMETIC

(known as carry-in). The output of such a 4-2 module consists
of one bit in the position j and two bits in the position j � 1.
This structure does not represent a counter (even though it
became erroneously known as a 4-2 counter), but rather a
compressor, which would compress four partial product bits
into two (while using one bit laterally connected between ad-
jacent 4-2 compressors). The efficiency of such a structure is
higher (it reduces the number of partial product bits by one-
half). The speed of such a 4-2 compressor has been deter-
mined by the speed of three XOR gates in series (in the rede-
signed version of 4-2 compressor) making such a scheme more
efficient than the one using 3 : 2 counters in a regular Wallace
Tree. The other equally important feature of using 4-2 com-
pressor is that the interconnections between such cells follow
a more regular pattern than in the case of a Wallace Tree.

Booth Encoding. Various ways for reducing the number of
partial products exist; one of the most famous is the Booth
Recoding Algorithm described by Booth in 1951 (9). This algo-
rithm allows for the reduction of the number of partial prod-
ucts by roughly one-half, thus speeding up the multiplication
process. Generally speaking, the Booth algorithm is a case of
using the redundant number system with the radix higher
than 2.

Booth’s algorithm (9) is widely used in the implementation
of hardware or software multipliers because its application
makes it possible to reduce the number of partial products. It
can be used for both sign-magnitude numbers as well as two’s
complement numbers with no need for a correction term or a
correction step.

A modification of the Booth algorithm was proposed by
Mac Sorley (10) in which a triplet of bits instead of two bits
is scanned. This technique has the advantage of reducing the
number of partial products by half regardless of the inputs.
This result is summarized in Table 5.

The recoding is performed within two steps: encoding and

b20

a b Cin
CoutS

19 18

a b Cin

17 16

a b Cin

14 1315

a b Cin

11 1012

a b Cin

8 79

a b Cin

5 46

a b Cin
Cout S

Cout S

Cout S

Cout S

Cout S

Cout S

Cout S

Cout S Cout S

Cout S Cout S Cout S

Cout Cout Cout Cout Cout S S S S S

2 b13

a b Cin

a b Cin a b Cin

a b Cin

a b Cin

a b Cin

a b Cin

a b Cin

a b Cina b Cin a b Cin

selection. The purpose of the encoding is to scan the triplet of
Figure 3. Wallace Tree.

bits of the multiplier and define the operation to be performed
on the multiplicand, as shown in Table 1. This method is ac-
tually an application of a sign-digit representation in radix 4.lished by Dadda (8). In this paper, Dadda introduced the no-
The Booth-MacSorley algorithm, usually called the Modifiedtion of a counter structure that will take a number of bits p

in the same bit position (of the same ‘‘weight’’) and output a
number q that represents the count of ones in the input.
Dadda has introduced a number of ways to compress the par-
tial product bits using such a counter, which later became
known as Dadda’s counter.

The quest for making the parallel multiplier even faster
continued for almost 30 years. The search for producing a
fastest ‘‘counter’’ did not result in a general structure that
yielded a faster partial product summation than that which
used Full-Adder (FA) cell or 3 : 2 counter. Therefore, using a
Wallace Tree was almost prevalent in the implementation of
the parallel multipliers. In 1981 Weinberger disclosed a struc-
ture that he called the 4-2 carry-save module. This structure
contained a combination of FA cells in an intricate intercon-
nection structure, which yielded faster partial product com-
pression than the use of 3 : 2 counters.

The structure actually compresses five partial product bits
into three; however, it is connected in such a way that four of

To j+2
From j−1

Horizontal
critical path

Vertical critical path
the inputs are coming from the same bit position of the weight
j whereas one bit is fed from the neighboring position j � 1 Figure 4. 4 : 2 Compressor.

DIGITAL ARITHMETIC 417

This recurrence relation yields

z(n) = rn(Y − XQ)

Y = XQ + z(n)r−n

which defines the division process with remainder Z � z(n)r�n.
The selection of the quotient digit is done by satisfying that
0 � Z � X at each step in the division process. This selection
is a crucial part of the algorithm and the best known are re-
storing and nonrestoring division algorithms. In the former
algorithm, the value of the tentative partial remainder z(j) is

Table 5. Modified Booth Recoding

Add to
xi�2 xi�1xi Partial Product

000 �0Y
001 �1Y
010 �1Y
011 �2Y
100 �2Y
101 �1Y
110 �1Y
111 �0Y

restored after the wrong guess is made of the quotient digit
qj. In the latter, this correction is not done in a separate step
but rather in the step following. The best-known division al-

Booth algorithm or simply the Booth algorithm, can be gener- gorithm is the so-called SRT algorithm, which was indepen-
alized to any radix. dently developed by Sweeney, Robertson, and Tocher. Algo-

Booth recoding necessitates the internal use of two’s com- rithms for higher radix were further developed by Robertson
plement representation in order to efficiently perform sub- and his students, most notably Ercegovac.
traction of the partial products as well as additions. However,
the floating-point standard specifies sign magnitude represen-

FURTHER READINGtation, which is followed by most of the nonstandard floating-
point numbers in use today. The advantage of Booth recoding

For more information about specific arithmetic algorithmsis that it generates only half of the partial products as com-
and their implementation, consult: Kai Hwang, Computerpared to the multiplier implementation, which does not use
Arithmetic: Principles, Architecture and Design, New York:Booth recoding. However, the benefit achieved comes at the
John Wiley & Sons, 1979. Also see, E. Swartzlander, Com-expense of increased hardware complexity. Indeed, this imple-
puter Arithmetic, Vols. I & II, Los Alamitos, CA: IEEE Com-mentation requires hardware for the encoding and for the se-
puter Society Press, 1980. Publications in IEEE Transactionslection of the partial products (0, �Y, �2Y). An optimized en-
on Electronic Computers and Proceedings of the Computercoding is shown in Fig. 5.
Arithmetic Symposiums by various authors are also very good
sources for detailed information on particular algorithm orDivision Algorithm
implementation.

Division is a more complex process to implement because, un-
like multiplication, it involves guessing the digits of the quo-

DEFINING TERMStient. Here, we will consider an algorithm for division of two
positive integers designated as dividend Y and divisor X,

Algorithm. The decomposition of the computation intowhich result in a quotient Q and an integer remainder Z ac-
subcomputations with an associated precedence relationcording to the relation given by
that determine the order in which these subcomputa-
tions are performed (2).Y = XQ + Z

Number Representation System. A defined rule that associ-
ates one numerical value xe with every valid bit stringIn this case, the dividend contains 2n integers, and the divi-
x.sor has n digits in order to produce a quotient with n digits.

The algorithm for division is given with the following re- Nonredundant Number System. The system where for each
currence relationship (2): bit string there is one and only one corresponding nu-

merical value xe.
Redundant Number System. The system in which the nu-

meric value xe could be represented by more than one
z(0) = Y

z(j+1) = rz(j) − XrnQn−1− j for j = 0, . . ., n − 1
bit string.

Explicit Value xe. A value associated with the bit string
according to the rule defined by the number representa-
tion system being used.

Implicit Value Xi. The value obtained by applying the
arithmetic function defined for the interpretation of the
explicit value xe.

Carry Look-Ahead Adder. An implementation technique of
addition that accelerate the propagation of the carry
signal, thus increasing the speed of addition operation.

Wallace Tree. A technique for summing the partial product

Xi−1

Xi+1

Xi

S1

S2

S3

S4

Buffers

M
U
X

1

0

S

M
U
X

1

0

S

bits of a parallel multiplier in a carry-save fashion using
full-adder cells.Figure 5. Booth Encoder.

418 DIGITAL AUDIO BROADCASTING

Dadda’s Counter. A generalized structure used to produce
a number (count) representing the number of bits that
are ‘‘one.’’ It is used for efficient reduction of partial
product bits.

4 : 2 Compressor. A structure used in the partial product
reduction tree of a parallel multiplier for achieving
faster and more efficient reduction of the partial product
bits.

Booth-MacSorley Algorithm. Algorithm used for recoding
of the multiplier such that the number of partial prod-
ucts is roughly reduced by a factor of 2. It is a special
case of the application of the redundant number system
to represent the multiplier.

SRT Algorithm. Algorithm for division of binary numbers,
which uses redundant number representation.

BIBLIOGRAPHY

1. A. Avizienis, Digital computer arithmetic: A unified algorithmic
specification, Symp. Comput. Automata, Polytechnic Institute of
Brooklyn, April 13–15, 1971.

2. M. Ercegovac, Arithmetic algorithms and processors, Digital Sys-
tems and Hardware/Firmware Algorithms, New York: Wiley,
1985.

3. S. Waser and M. Flynn, Introduction to Arithmetic for Digital
Systems Designers, New York: Holt, Rinehart and Winston, 1982.

4. Weinberger and J. L. Smith, A Logic for High-Speed Addition,
Circulation 591, National Bureau of Standards, pp. 3–12, 1958.

5. Sklanski, Conditional-sum addition logic, IRE Trans. Electron.
Comput., EC-9: 226–231, 1960.

6. V. G. Oklobdzija and E. R. Barnes, Some optimal schemes for
ALU implementation in VLSI technology, Proc. 7th Symp. Com-
put. Arithmetic, University of Illinois, Urbana, IL, June 4–6,
1985.

7. C. S. Wallace, A suggestion for a fast multiplier, IEE Trans. Elec-
tron. Comput., EC-13: 14–17, 1964.

8. L. Dadda, Some schemes for parallel multipliers, Alta Frequenza,
34: 349–356, 1965.

9. A. D. Booth, A signed binary multiplication technique, Quart. J.
Mech. Appl. Math., IV, 1951.

10. O. L. Mac Sorley, High speed arithmetic in binary computers,
Proc. IRE, 49 (1): January 1961.

VOJIN G. OKLOBDZIJA

University of California

DIGITAL ARITHMETIC. See BOOLEAN FUNCTIONS.

