640

DATABASES

DATABASES

The earliest use of a written language, with agreed symbols
standing for ideas, developed in Sumeria in about 3700 BCE.
There is evidence that by 3500 BCE temple clerks had started
recording wages, tributes, and stores by making impressions
on wet clay tablets using a stylus. Precise record keeping by
the state and the trader for purposes such as taxation and
trade started as soon as the enabling technology of writing
was available. In contrast, the first literature is believed to
have been developed in 2300 BCE.

Databases managed on digital computers are the modern
technology for precise record keeping. The first commercial
computer was installed during the 1950s; the first generalized
database system, called Integrated Data Store (IDS), was de-
signed at General Electric in 1961 and was in wide distribu-
tion by 1964. Database technology makes it possible to store,
search, and update large amounts of data quickly. It also
makes it possible for multiple users to manipulate the data
concurrently while access is limited to authorized users. Fur-
ther, databases provide some guarantees that the data will
not be corrupted or lost because of factors such as user errors
and system crashes.

Database technology plays a critical role in almost all com-
puter applications. It is a key component of the infrastructure
for the World Wide Web. Databases are used in application
areas such as business, engineering, medicine, law, science,
the liberal arts, and education. Database software is an im-
portant business area and was estimated between 5 billion
and 10 billion dollars in 1997.

This article is divided into five sections. The first section
provides an introduction to databases and introduces the ba-
sic concepts. The next section, “Data Models,” describes the
fundamental kinds of database systems. The third section,
“Transactions and Concurrency Control,” describes how a da-
tabase system guarantees the safety of data and permits con-
current manipulation by multiple users. The fourth section,
“System Architecture and Implementation Techniques,” de-
scribes how a database system answers questions posed
against the data. The last section describes some advanced
topics.

Basic Concepts

A database is a collection of related data stored on a computer
system and accessed by application programs. As an example,
consider a hypothetical mail-order company called MOCK
that maintains a database of its customers and the orders
placed by them. The database will contain data such as the
name, address, and phone number of each customer, the parts
ordered by each customer, and the status of each order. The

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 1999 John Wiley & Sons, Inc.

Users
Application
programs
DBMS software

: :
i v |
! System _ > Query i
! Catalog processor 1

1
; :
i v i
i b »| Data i
! H manager i

1

H ! i
1 1 1
i ! , !
i e > File i
1 manager |
i i
1 1
L 1

Stored data

.

Figure 1. A database system.

data are physically stored on storage devices such as disks
and managed by a sofware program called a database man-
agement system (DBMS), as shown in Fig. 1. Running a mail-
order business requires actions such as adding a new cus-
tomer, adding a new order for a customer, checking the status
of an order, or changing the status of an order when the prod-
uct is shipped to the customer. Such actions are performed by
running application programs that query or modify the da-
tabase.

When a new customer calls MOCK, the clerk receiving the
call will use an application program to store the customer’s
name, address, and phone number into the database. If the
customer orders some merchandise, the clerk will run an or-
der-entry application program. If the customer wants to know
the status of an order already placed, the clerk will run an
order-status application that finds orders given the name and
phone number of a customer. The database is thus used to
model and track some aspects of MOCK’s business. The
DBMS is a general-purpose software that can be used in any
application. The specific business needs of MOCK determine
the choice of data stored in the database, and some of the
actions needed to run the business are encoded as applica-
tion programs.

Why Use an Electronic Database System?

Use of an electronic database system can lead to dramatic
increases in productivity. A single clerk will be able to handle
a larger number of customer calls per hour when a database
system is used. Once MOCK has more than a few dozen cus-

DATABASES 641

tomers, a clerk can run an application program in less time
than it takes to find the customer’s file in a filing cabinet.

Data in a database system can be easily and correctly
shared. Even if clerks are in different cities, it is possible for
them to access records at the same time. Even when there is
a need for records of the same customer to be accessed simul-
taneously by two different clerks, a database makes that eas-
ily possible and ensures that the data remain consistent.

Data in a database can be easily analyzed to determine
how well the business is running. A database system offers a
data manipulation language (DML) that permits the data to
be updated and questions to be posed against the data. For
instance, it is possible to write a query that counts the num-
ber of unfulfilled orders for each part. And if the company
wants to mail out expensive catalogs to customers who have
ordered more than a thousand dollars of merchandise in the
past year, a query can be used to generate the names and
addresses of those customers.

A database has a data dictionary that describes the con-
tents of the database. This makes the database self-describing
and makes it possible for a user of a program to determine,
for instance, the names of the fields available for each record
and the relationships between fields of different types of re-
cords. The schema is defined and modified by use of a data
definition language (DDL). It is important to distinguish be-
tween the schema and the actual data. The actual data are
sometimes termed the database instance for clarity. The data-
base schema rarely changes once the database has been de-
signed, while the database instance is typically modified quite
frequently. The schema is created using the DDL and the
data are loaded, queried, or modified using the DML.

Different classes of users have different perspectives on
the logical structure of the data. A database management sys-
tem permits the definition of many views of the data. A view
can be a subset of the database or can contain data derived
from the database. For example, a view can be defined that
contains the total number of unfulfilled orders for each part,
which is the information needed by a parts supplier.

A database can be used to enforce business rules. For ex-
ample, if the company wants to ensure that a catalog is
mailed to every new customer, this can be done by having
the new-customer application program send a message to the
person responsible for mailing catalogs.

Databases also make it possible to make the data secure.
For example, MOCK may want to allow its suppliers to query
the database to check how many new orders have been placed
for their parts. However, the suppliers should not be allowed
to access the names and addresses of the customers them-
selves. A database system makes it possible to set up schemes
in which users are denied or allowed access to parts of the da-
tabase.

Another advantage of using a database system is that the
chances of business data being lost are reduced. Databases
implement sophisticated recovery schemes that make them
immune from many kinds of computer failures. Further, the
database can be copied and stored at another location to en-
sure against the computer system being destroyed by a fire
or flood.

Use of a database system requires initial investment in
setting up the database system and training personnel in its
use. A database system requires hardware and software pur-
chases, the data must be organized so that applications can

642 DATABASES

conveniently access the database, and application programs
need to be written. Also, there are maintenance costs in keep-
ing the computer system running and tuning the system
when the size of the database or the workload changes.

Actors in a Database Environment

The set up and use of a database system requires many kinds
of personnel in addition to the actual users.

Database designers first determine the needs of all poten-
tial users of the database. They then determine what (and
how) data are to be represented in the database. The data-
base schema can then be defined using the DDL. Often, the
schema is separated into logical and physical schemas. The
logical schema defines the structure of the database while the
physical schema defines the storage structures for the data.
For example, the database designer may decide that the data-
base needs to contain a table of customers and each customer
record must contain the fields name, address, and phone
number with name and address stored as variable length
strings and the phone number as a 10-digit integer. In de-
termining the physical storage, the database designer may
decide to build an index on the name field to permit quick
access for applications that retrieve customer records by spec-
ifying the name field. The database designer may also con-
struct logical views of the database that permit classes of us-
ers to see the data they need in the form they want.

System analysts and application programmers develop the
applications that will be run against the database. The sys-
tem analyst develops specifications of the applications and
the application programmer implements the specification as
a program.

Once the database has been set up, the database adminis-
trator (DBA) is responsible for day-to-day operations. The
DBA is responsible for authorizing access, monitoring use, ac-
quiring additional hardware or software, tuning the database
system, and fixing any problems that arise. The DBA may be
assisted by a staff that includes operators and maintenance
personnel.

DBMSs and Data Models

A DBMS implements a data model that defines how data will
be represented and manipulated. A data model defines a lan-
guage for representing data and the relationships between
data (the DDL) and a language for performing operations
against data (the DML). Here, we give an overview of the
various data models. The following section 2 provides a de-
tailed discussion. Data models can be compared along some
important dimensions. A data model is either value oriented
or object oriented. In object-oriented models, it is possible for
one object to have a reference to another object. Value-ori-
ented models permit references from one record to another
only through common values and are considered to be more
amenable to automated optimization of data access. Data
models differ in the mechanisms they provide to deal with
redundancy. Object-oriented models permit sharing of a sin-
gle copy while value-oriented models bank on appropriate da-
tabase design. Data models have differing ways of modeling
many-to-many relationships. An example of a many-to-many
relationship is that a part has many suppliers and a supplier
supplies many parts.

Early DBMSs were based on hierarchical models in which
the schema consisted of record types organized in hierarchies
by means of links. For example each order record could be
linked to the record of the customer who placed the order. The
hierarchical model naturally represents such one-to-many re-
lationships (many orders for each customer but not vice
versa). Many-to-many relationships can only be represented
indirectly. The network model is a generalization in which the
links are not restricted to be a hierarchy. In other words, the
network model allows the representation of multiple one-to-
many relationships for the same member record type as well
as a direct representation of many-to-many relationships.
Both hierarchical and network models provide a navigational
language that can be embedded in application programs writ-
ten in programming languages such as COBOL.

The relational model represents a database as a collection
of relations (i.e., tables). Each table consists of a collection of
rows, each of which represents a record. Relationships be-
tween records in different tables are represented by storing
matching values in the records. For example, customers may
be assigned a unique customer key that may be stored as a
field of the customer record (row). An order record may then
have a custkey field in which the key of the customer placing
the order may be stored. This method of modeling permits
not just one-to-many but many-to-many relationships to be
modeled. The relational model also offers a powerful DML
that permits sophisticated questions. A major advantage of
the relational model is the use of a declarative DML. In other
words, the DML permits a user to specify what operations
need to be performed against the data without specifying how
they will be done. The DBMS takes on the responsibility of
translating the user request into an efficient method of per-
forming the operations. This increases the productivity of the
application programmer. Further, application programs are
data independent. In other words, the physical storage of the
data may be changed without requiring modification of the
application programs.

The object-oriented data models combine facilities offered
by object-oriented programming languages with database con-
cepts. They offer features such as complex object types,
classes, encapsulation, inheritance hierarchies for classes and
types, and object identity. For example, the schema may de-
fine classes such as customers and orders. Operations such as
creating a new customer or adding an order for a customer
will be defined as operations (called methods) as part of de-
fining the classes rather than as application programs built
on top of the database. Further, the classes are encapsulated
in the sense that only the defined operations may be per-
formed against the data. The customer class may also be spe-
cialized into subclasses such as individual_customers and
corporate_customers. An important feature of an object-ori-
ented data model is object identity. The system is responsible
for generating and maintaining identifiers that can be used
to reference objects.

Object-relational models combine some features of object-
oriented data models with the relational model. Such systems
provide features such as the ability to add new data types to
a system as well as define complex types using the base types
as components. For instance, maps may be added as a new
data type along with functions such as finding the shortest
distance between two points. Complex types such as sets,
lists, and arrays may also be created. Types may also be cre-

ated as subtypes of existing types thus forming an inheritance
hierarchy. An object-relational system may also provide a rule
system in which condition-action rules get triggered by ac-
tions such as update, insertion or deletion of objects (1).

There is considerable interest in searching semistructured
data such as that made available by the emergence of the
World Wide Web. A common model is to treat a web page as
a sequence of words. A query consists of desired combinations
of words.The answer to the query is a set of web pages ranked
by how closely they match the desired combination of words.
Semistructured data models are also emerging that provide
more sophisticated ways of modeling and querying data that
do not have a regular structure.

Advanced Facilities in a DBMS

Some DBMSs offer advanced facilities such as high availabil-
ity, parallel execution, data distribution, and gateways.

High availability means that the database system has a
low failure rate. The availability of a system may be defined
as the fraction of the offered load that is processed with ac-
ceptable resonse time. A system is considered well managed
if it is available 99.9% of the time or, in other words, has no
more than 526 minutes of downtime per year. It is considered
fault-tolerant when the availability reaches 99.99% and
highly available at 99.999% (2).

A parallel database system has the ability to exploit multi-
processor computers to deliver higher performance. A shared-
memory multiprocessor (SMP) has several central processing
units (CPU) with a shared memory. A cluster consists of
many SMPs connected by a high-speed interconnect. Parallel
database systems implement special techniques such as parti-
tioning the data as well as the operations among processors
in order to get the work done faster.

A distributed database permits data to be stored on several
computers connected by a network. Such data management is
useful for enterprises that are geographically distributed. For
instance, customer data may be partitioned between the New
York and San Francisco sales offices of a company. It is also
possible for data to be replicated. Data replication may be
synchronous or asynchronous. With synchronous replication,
all copies of data are kept exactly synchronized and consis-
tent. If any copy is updated, the DBMS immediately applies
the update to all other copies within the same transaction.
With asynchronous replication, copies or replicates of data
will become temporarily out of sync with each other. If one
copy is updated, the change will be propagated and applied to
the other copies as a second step, within separate transac-
tions, that may occur with a time delay.

Gateways are a layer of software that emulate the inter-
face for a specific DBMS on top of another DBMS, thus mak-
ing it possible for tools or applications developed for one
DBMS to work with the other DBMS.

Database Standards

Standardization of database languages makes DBMS prod-
ucts interchangeable. It reduces the costs of training person-
nel and porting applications. Database management system
products that support the same standard interfaces may still
differ in implementation characteristics such as performance,
reliability, and availability, thus giving customers the ability
to choose the DBMS that best meets their needs. In practice,

DATABASES 643
DBMS products support the standard interfaces but also pro-
vide nonstandard extensions.

Standards may be created by national bodies such as
American National Standards Institute (ANSI), international
bodies such as International Organization for Standardiza-
tion (ISO), or industry consortia. A de facto standard may also
emerge if a specific product dominates the marketplace forc-
ing other vendors to conform to the interfaces defined by the
dominant product.

The Conference on Data Systems Languages (CODASYL)
set up a Data Base Task Group (DBTG), which defined stan-
dards for the network data model. The X3H2 committee of
ANSI has also proposed a standard network language called
Network Definition Language (NDL).

The Structured Query Language (SQL) has been standard-
ized by ANSI and ISO. The X3H2 committee of ANSI pro-
duced the SQL86 standard based on IBM’s implementation of
SQL in 1986. This was accepted by ISO as international stan-
dard in 1987. An extended standard, SQL-89, was produced
in 1989 and SQL2 (also called SQL-92) in 1992. Versions of
SQL have also been adopted as standards by X/OPEN and
FIPS.

The SQL3 standard, an extension of SQLZ2, is expected to
standardize object-relational systems and is currently being
developed by ANSI. The ODMG-93 standard for object-ori-
ented databases was developed by members of the Object Da-
tabase Management Group (ODMG), a consortium of object-
oriented database companies.

Database Market Place

Setting up a database system requires the purchase of several
pieces of hardware and software and expertise to put all the
pieces together and to write any custom software (such as
application programs). One approach to setting up a database
system is one-stop shopping. A single vendor supplies all the
needed components, puts them together, and makes the sys-
tem operational. A different approach is a mix and match ap-
proach in which components are independently purchased
and then integrated to form a full system.

The one-stop shopping approach has the advantage of re-
ducing the risk of the system not working as expected. The
single vendor can be held responsible for any problems. Fu-
ture maintenance and enhancements can come from the same
vendor. One-stop shopping results in simplified decision mak-
ing and is attractive to companies that desire low technology
risks.

The disadvantage of one-stop shopping is that the cus-
tomer gets only the technology that the vendor is willing to
supply at the price set by the vendor. Further, once the initial
investment has been made, the customer can be locked into
proprietary technology from the vendor and cannot benefit
from new technologies or lower pricing from other vendors.

The mix and match or open systems approach makes it
possible to choose each component independently based on
the best match for the need at hand. This often results in
technically superior solutions or reduced costs. However, it
requires the customer either to take on the responsibility of
integrating all the chosen components or obtain the services
of a system integrator. It also makes it difficult to trouble-
shoot problems and to maintain and enhance the system.

644 DATABASES

Database Applications

Database applications may be classified into multiple catego-
ries based on the kinds of operations performed on the data.
Applications are also classified based on the business area
they model, or on the architecture used in constructing the
application.

Application Classification Based on Workload. On-line trans-
action processing (OLTP) applications typically retrieve, up-
date, insert, or delete single records. Examples are banking
transactions such as depositing or withdrawing money, charg-
ing a purchase to a credit card, or making an airline reserva-
tion. While individual requests are quite simple, an OLTP
system must be able to support a large number of concurrent
users while providing low response times. It must also ensure
that the data remain safe when the computer system fails
and that each user gets a consistent view of the data they
access.

Data are typically collected in a database by OLTP applica-
tions and analyzed by decision-support system (DSS) applica-
tions. These applications pose complex queries that require
scanning large portions of the database. For example, a query
might find the average account balance for customers of dif-
ferent age groups. Two important classes of DSS applications
are data mining and on-line analytic processing (OLAP).

Data mining deals with methods for finding trends or pat-
terns in data. For example, a store may want to determine
which products are commonly purchased together. This infor-
mation may be useful in determining how to place products
on shelves or develop promotional programs.

On-line analytic processing applications provide a busi-
ness-oriented view of the data. Rather than deal with data as
consisting of tables with rows and columns, OLAP tools pres-
ent a multidimensional view of data. For example, sales data
may be viewed as total sales for a product for each geographi-
cal region for each time period. Product, region and time pe-
riod are dimensions on which sales data may be viewed. For
instance, time period may be considered at the granularity of
years, quarters, months, or weeks, thus yielding a hierarchy.
So sales data may be subjected to queries such as “find the
total sales for all products for each quarter in the northern
sales region.”

Benchmarks. A benchmark consists of a workload and a set
of metrics. It is used for quantitative comparison of alternate
configurations of hardware and software. As an example, the
TPC-C benchmark, defined by Transaction Processing Council
(TPC), models OLTP applications. The workload consists of
five types of transactions that might be run by a wholesale
supplier using a database to manage orders. The benchmark
produces two metrics, tpmC, which measures performance as
the number of transactions the system can run per minute
and price/performance as $/tpmC.

Common uses of benchmarks are to compare competing
DBMSs on the same hardware, competing hardware for the
same DBMS, and new releases of a DBMS with the old
product.

A good benchmark must be relevant to the application in
the sense that the workload should represent the typical oper-
ations and the metrics should be meaningful measures of per-
formance and price/performance. The benchmark must be un-

derstandable to people with a nontechnical background for it
to gain credibility. Finally, the benchmark should be designed
so that it can be run on many different systems and architec-
tures and should apply to small and large systems.

The Transaction Processing Council is a consortium of ven-
dors that defines database benchmarks and standard ways
for measuring and reporting results. It also defines the pro-
cess for certifying a result and sets guidelines for how the
results may be used. For more information on benchmarks
the reader is referred to Refs. 3 and 4.

Application Architectures. A typical application may be re-
garded as consisting of three components: presentation, appli-
cation logic, and database. The presentation refers to the user
interface and the application logic refers to the tasks and
rules that implement the needs of the business. Depending on
how well the software is separated into the three components,
application architectures may be broadly classified as mono-
lithic, two tier and three tier.

Early database applications were built for mainframe com-
puters. Users typically had dumb terminals on their desks.
Terminals were connected to a central mainframe computer
and communication between the computer and terminal was
character based. Applications were monolithic and resided en-
tirely on the mainframe.

In the 1980s, distributed computing became popular and
the terminal was replaced by desktop computers that had
graphics and could run programs. This has led to architecture
of applications with two tiers with the presentation layer sit-
ting on the desktop (the client) and the database running on
a separate shared server. The application logic can either be
part of the client or the server, yielding the fat-client and fat-
server variants of the two-tier architecture. Since a server ca-
ters to the needs of a large number of clients, the fat-client
architecture has the advantage of reducing the load on the
server. However, it requires one copy of the application logic
to be placed at each client. This is problematic from the per-
spective of security, availability, and system maintenance.
For instance, all machines may need to be upgraded simulta-
neously when a new version of the application becomes avail-
able. The fat-server architecture places the application logic
with the database server. This logic may either work on top
of the database or reside inside the database as stored proce-
dures.

The 1990s have seen the development of three-tier applica-
tions in which all three components are clearly separated and
may be put on different machines. Databases reside on the
bottom tier on powerful server machines such as mainframes
and high-end workstations. The middle tier consists of work-
stations and hosts the application logic; it may also include
the consolidation of data from multiple databases into a data
warehouse. The top tier consists of the presentation services
and usually runs on personal computers.

Packaged Applications. Building and maintaining sophisti-
cated applications is sometimes regarded as an expensive and
risky undertaking. This has motivated many companies to
buy packaged applications rather than build custom applica-
tions. The supplier of the packaged application takes on the
responsibility of maintaining the application and of enhanc-
ing it as the needs of the business change. Since a packaged
application must cater to the needs of a wide variety of com-

panies, these packages are built to be flexible, which requires
extensive customization of the package before it can be put
into operation. An example of a packaged application is a hu-
man-resources package, which might provide functionality
such as managing resumes of applicants, salary and benefits
for employees, and pensions for retirees. Packages may also
ensure compliance with the law and incorporate taxation
rules.

DATA MODELS

At the early development of database systems, it was almost
axiomatic that there were three important data models: hier-
archical, network, and relational. This view is slowly losing
ground as the relational model becomes the most popular
data model and other new semantic data models emerge.
With this perspective, we will present the relational data
model in some depth and provide only brief overviews of the
network and hierarchical models, which are mainly of histori-
cal importance. Object-oriented and object-relational systems
will be discussed in somewhat more detail.

Relational Data Model

The relational data model was proposed by E. F. Codd (5)
in 1970. He also introduced relational algebra and relational
calculus as the mathematical foundation for manipulating
data stored in relations. Codd received the 1981 ACM Turing
Award for his work on the relational data model. The primary
reasons for the popularity of the relational model are its pre-
sentation of data in familiar tabular form and its powerful
declarative data manipulation language. The relational data
model is based on a simple and uniform data construct known
as a relation. The results of operations defined on relations
are themselves relations; thus, these operations can be com-
bined and cascaded easily. As shown in Fig. 2, a relation can
be viewed in a tabular form where a row represents a collec-
tion of related values of a real-world entity.

Basic Concepts. The mathematical concept behind the rela-
tional model is the set-theoretic relation, which is a subset
of the Cartesian product of a list of domains. A domain D is
set of atomic values; the requirement that elements of do-
mains be atomic means that they are not divisible into compo-

PART (partkey, name, manufacturer, type, size, price)

L

DATABASES 645
nents within the framework of a relational data model. The
atomicity of domains leads to first normal form of the classical
relational data model. A relation schema R(A,, A,, . . ., A,)
contains a relation name R and the list of attributes, A;, A,,
. . ., A,; each attribute name A;, is defined over some domain
D;. A relation schema describes a relation. The degree of a
relation is the number of attributes n in its schema. The rela-
tion R, therefore, is a set of n-tuples; each tuple is an ordered
list of n-values (vy, vy, . . ., U,), where v(1 =i = n) is an
element from domain D; of attribute A;. A relation is a set;
hence its elements (i.e., tuples) are distinct and have no in-
herent ordering associated with them.

A Ekey (also called unique key) of a relation is the minimal
subset, which is not necessarily proper, of attributes of the
relation schema such that no two tuples in the relation con-
tain the same combination of values for these attributes; a
key value therefore uniquely identifies a tuple. Note that the
key is determined from the semantics of key attributes, not
from its current values in the relation. A relation may, in gen-
eral, have several keys, one of which is designated as the pri-
mary key. We use the convention that attributes that form
the primary key of a relation schema are printed in boldface,
as shown in Fig. 3.

Entity integrity constraints states that no primary key
value can be fully or partially null; null is a special value that
implies missing or unavailable information. Since primary
key values are used to identify a tuple in a relation, A null
value cannot be allowed. a set of attributes in relation R1
is said to satisfy the referential integrity constraints with
respect to relation R2 (R1 and R2 are not necessarily distinct),
if the following hold:

1. the attributes in R1 have the same domains as the pri-
mary key in R2;

2. the values of the attributes in a tuple in R1 either have
the same values as the primary key in some tuple in R2
or are null.

The set of attributes in R1 is called a foreign key, which is
said to reference the primary key in R2. The foreign key refer-
ence between relations represents a relationship between
real-world entities. Note that in the relational model both
entities and relationships are represented by relations.

SUPPLIER (suppkey, name, address, phone, acctbal)
/

PARTSUPP (partkey, suppkey, availgty, supplycost)

CUSTOMER (customerkey, name, address, phone)

ORDER (orderkey, custkey, status, orderdate, totalprice)

~

J

A
\ A 4

LINEITEM (linenumber, orderkey, suppkey, partkey, status, discount, shipdate, price)

Figure 2. The database schema.

646 DATABASES

PART
partkey name manufacturer type size price
P1 bolt anderson copper 7 0.45
P2 nut universal anodized 9 1.21
P4 screw clark burnished 11 1.11
P5 cog universal plated 5 5.35
SUPPLIER
suppkey name address phone acctbal
S12 Jackson 11 Main St, S.F. 4155551212 900.00
S13 Onan 10 3rd Ave, S.J. 4085554321 896.98
S14 Levine NULL 2125554379 789.11
S15 Smith 9 55th St., N.Y. NULL 55.12
S16 Chen NULL 5107773412 127.87

PARTSUPP

partkey suppkey availqty supplycost

P1 S12 100 12.85

P1 S13 85 25.64

P2 S12 65 12.89

P2 S14 90 15.00

P5 S15 110 13.99

Figure 3. Relational database content.

Relation schemas are shown in Fig. 3. In relation PART,
partkey is the primary key. The primary key for relation
PARTSUPP is the combination of attributes suppkey and
partkey. The domains of the attributes, partkey and size,
are character string and integer respectively. The degree of
the relation PART is 6. The arrows in Fig. 3 represent foreign
key to primary key references; for example, partkey in
PARTSUPP is a foreign key that references the primary key
partkey in PART. The relation PARTSUPP represents a rela-
tionship—which supplier supplies which parts—between
parts and suppliers indicated by PARTSUPP’s foreign key ref-
erences to PART and SUPPLIER.

An example of relation PART is shown in Fig. 2. Each tuple
in relation PART corresponds to a particular part in the real
world. The various attribute values in a tuple describe that
part. A tuple in PART is <P2, nut, universal, anodized, 9,
1.21>, where “P2” is the partkey of the part and “nut” is the
name of the part, and so on. Similarly, relation SUPPLIER
represents information about suppliers. A tuple in relation
PARTSUPP, <P1, S12, 100, 12.85>, indicates that supplier
S12 supplies part P2 in quantity 100 and the cost of this ship-
ment is $12.85.

Data Manipulation in the Relational Model. The DMLs, rela-
tional algebra and relational calculus, provide the theoretical
basis for expressing operations on relation. In relational alge-
bra, specialized algebraic operators are applied to relations in
order to express queries. In relational calculus, queries are
expressed by writing logical formulae that the tuples in the
result must satisfy. Relational algebra and relational calculus
can be shown to be equivalent in their expressive powers. Any
relational data manipulation language that has as much ex-
pressive power as relational algebra (or relational calculus)

is called a relationally complete language. A declarative (i.e.,
nonprocedural) query language allows users to describe what
they want without having to specify the procedure for retriev-
ing the result. Relational calculus is considered somewhat
more declarative than relational algebra.

Relational Algebra. Relational algebra has five primitive op-
erations: union (U), set difference (—), Cartesian product (X),
projection (m), and selection (o). There are three additional
nonprimitive operations—intersection, join, and division—
that are defined in terms of the primitive operators. The op-
erands of relational algebra are relations; the result of these
operations is also a relation; this is called the closure property
of relational algebra. The closure property facilitates composi-
tion of a sequence of operations. Operations such as union,
set difference, and Cartesian product originate from the set
theory; the others have been devised specifically for the rela-
tional model. We will not define all the operations here, but
present a brief sketch of a few of them. A detailed discussion
of relational algebra operations can be found in Ullman (6).

The selection operation retrieves a subset of tuples from a
relation, which satisfies a given predicate; the selection sym-
bol, o, is followed by a Boolean expression. The projection op-
eration chooses specified attributes from a relation and dis-
cards the remaining attributes; the projection symbol, 7, is
followed by a list of attributes. The Cartesian product opera-
tion combines two relations by concatenating each tuple from
one relation with every tuple in the other relation. The join
operation is defined in terms of a Cartesian product of two
relations followed by a selection predicate on the resulting
relation. Thus the join operation combines two relations on
the values of some of their attributes. A query is expressed as
a sequence of relational algebra operations. The sequence of
operations in relational algebra seems to specify a partial
strategy for evaluating the query.

Consider a query that retrieves the name and type of the
parts that are supplied by the supplier whose suppkey is S12.
This information comes from relations PART and PARTSUPP;
the attribute that is used for joining them is partkey in both
relations. This query can be expressed in relational algebra
as the following:

Tlname, type

{Usuppkey:/512/[UPART,partkey:PARTSUPP.partkey(PART X PARTSUPP)]}

Relational Calculus. In relational calculus, we write declar-
ative expressions to specify the query. Relational calculus is
a formal query language based on the branch of mathematical
logic called first-order predicate calculus. There are two ways
in which the predicate calculus can be applied to relational
data manipulation language. These are called fuple rela-
tional calculus and domain relational calculus. The dif-
ference between the two is that in tuple relational calculus,
variables in the formulae range over tuples in a relation. In
domain relational calculus, variables range over domains of
attributes. The formulation of the above query in tuple rela-
tional calculus takes the following form.

{X.name,X.type | PART(X) ~ [(3JY)PARTSUPP(Y) A
X.partkey = Y.partkey A Y.suppkey = ’S12’]} |

Relational query languages such as SQL and QUEL are es-
sentially based on tuple relational calculus. A graphic query

language called Query By Example (QBE) borrows its basic
notions from domain relational calculus. For further informa-
tion on this topic, see Ullman (6) and Maier (7).

Query Language SQL. Structured Query Language (SQL),
formerly known as SEQUEL, was developed by IBM for an
experimental relational database system called System R. It
is now the most commonly used query language for commer-
cial relational database systems (8,9). As a declarative query
language, SQL provides a syntactical sugaring of the tuple
relational calculus. SQL contains statements for query, up-
date, and data definition; that is, it is both a DDL and a DML.

SQL uses the term table, which is similar to relation; the
difference is that a table in SQL permits duplicate rows; a
tuple is also called row and an attribute is called column.

The basic SQL queries are a select statement of the form:

SELECT Rj,Al, ...,
FROM R1, ..., Rn
WHERE <predicatex>

Rk.Ar

SELECT, FROM, and WHERE are SQL keywords. Here, R1,
. . ., Rn is a list of relations (tables), which forms the from
clause Rj.Al, . . ., Rk.Ar, the select clause, is a list of attri-
butes (columns). The qualified attribute of the form R.A refers
to the attribute A of relation R; it is used to distinguish be-
tween attributes of the same name in different relations. The
relations in the select clause are a subset of the relations
listed in the from clause. The <predicate> is a Boolean ex-
pression involving logical connectives conjunction (and), dis-
junction (or), and negation (not) and comparison operators =,
=, #, etc., and qualified relational attributes. The <predi-
cate> specifies a selection condition (i.e., Boolean expression)
for tuples to be retrieved. There is a notational conflict be-
tween relational algebra and SQL; the keyword SELECT in
SQL corr