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DATABASES

The earliest use of a written language, with agreed symbols
standing for ideas, developed in Sumeria in about 3700 BCE.
There is evidence that by 3500 BCE temple clerks had started
recording wages, tributes, and stores by making impressions
on wet clay tablets using a stylus. Precise record keeping by
the state and the trader for purposes such as taxation and
trade started as soon as the enabling technology of writing
was available. In contrast, the first literature is believed to
have been developed in 2300 BCE.

Databases managed on digital computers are the modern
technology for precise record keeping. The first commercial
computer was installed during the 1950s; the first generalized
database system, called Integrated Data Store (IDS), was de-
signed at General Electric in 1961 and was in wide distribu-
tion by 1964. Database technology makes it possible to store,
search, and update large amounts of data quickly. It also
makes it possible for multiple users to manipulate the data
concurrently while access is limited to authorized users. Fur-
ther, databases provide some guarantees that the data will
not be corrupted or lost because of factors such as user errors
and system crashes.

Database technology plays a critical role in almost all com-
puter applications. It is a key component of the infrastructure
for the World Wide Web. Databases are used in application
areas such as business, engineering, medicine, law, science,
the liberal arts, and education. Database software is an im-
portant business area and was estimated between 5 billion
and 10 billion dollars in 1997.

This article is divided into five sections. The first section
provides an introduction to databases and introduces the ba-
sic concepts. The next section, ‘‘Data Models,’’ describes the
fundamental kinds of database systems. The third section,
‘‘Transactions and Concurrency Control,’’ describes how a da-
tabase system guarantees the safety of data and permits con-
current manipulation by multiple users. The fourth section,
‘‘System Architecture and Implementation Techniques,’’ de-
scribes how a database system answers questions posed
against the data. The last section describes some advanced
topics.

Basic Concepts

A database is a collection of related data stored on a computer
system and accessed by application programs. As an example,
consider a hypothetical mail-order company called MOCK
that maintains a database of its customers and the orders
placed by them. The database will contain data such as the
name, address, and phone number of each customer, the parts
ordered by each customer, and the status of each order. The
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tomers, a clerk can run an application program in less time
than it takes to find the customer’s file in a filing cabinet.

Data in a database system can be easily and correctly
shared. Even if clerks are in different cities, it is possible for
them to access records at the same time. Even when there is
a need for records of the same customer to be accessed simul-
taneously by two different clerks, a database makes that eas-
ily possible and ensures that the data remain consistent.

Data in a database can be easily analyzed to determine
how well the business is running. A database system offers a
data manipulation language (DML) that permits the data to
be updated and questions to be posed against the data. For
instance, it is possible to write a query that counts the num-
ber of unfulfilled orders for each part. And if the company
wants to mail out expensive catalogs to customers who have
ordered more than a thousand dollars of merchandise in the
past year, a query can be used to generate the names and
addresses of those customers.

A database has a data dictionary that describes the con-
tents of the database. This makes the database self-describing
and makes it possible for a user of a program to determine,
for instance, the names of the fields available for each record
and the relationships between fields of different types of re-
cords. The schema is defined and modified by use of a data
definition language (DDL). It is important to distinguish be-
tween the schema and the actual data. The actual data are
sometimes termed the database instance for clarity. The data-
base schema rarely changes once the database has been de-
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signed, while the database instance is typically modified quite
frequently. The schema is created using the DDL and theFigure 1. A database system.
data are loaded, queried, or modified using the DML.

Different classes of users have different perspectives on
the logical structure of the data. A database management sys-data are physically stored on storage devices such as disks
tem permits the definition of many views of the data. A viewand managed by a sofware program called a database man-
can be a subset of the database or can contain data derivedagement system (DBMS), as shown in Fig. 1. Running a mail-
from the database. For example, a view can be defined thatorder business requires actions such as adding a new cus-
contains the total number of unfulfilled orders for each part,tomer, adding a new order for a customer, checking the status
which is the information needed by a parts supplier.of an order, or changing the status of an order when the prod-

A database can be used to enforce business rules. For ex-uct is shipped to the customer. Such actions are performed by
ample, if the company wants to ensure that a catalog isrunning application programs that query or modify the da-
mailed to every new customer, this can be done by havingtabase.
the new-customer application program send a message to theWhen a new customer calls MOCK, the clerk receiving the
person responsible for mailing catalogs.call will use an application program to store the customer’s

Databases also make it possible to make the data secure.name, address, and phone number into the database. If the
For example, MOCK may want to allow its suppliers to querycustomer orders some merchandise, the clerk will run an or-
the database to check how many new orders have been placedder-entry application program. If the customer wants to know
for their parts. However, the suppliers should not be allowedthe status of an order already placed, the clerk will run an
to access the names and addresses of the customers them-order-status application that finds orders given the name and
selves. A database system makes it possible to set up schemesphone number of a customer. The database is thus used to
in which users are denied or allowed access to parts of the da-model and track some aspects of MOCK’s business. The
tabase.DBMS is a general-purpose software that can be used in any

Another advantage of using a database system is that theapplication. The specific business needs of MOCK determine
chances of business data being lost are reduced. Databasesthe choice of data stored in the database, and some of the
implement sophisticated recovery schemes that make themactions needed to run the business are encoded as applica-
immune from many kinds of computer failures. Further, thetion programs.
database can be copied and stored at another location to en-
sure against the computer system being destroyed by a fire

Why Use an Electronic Database System?
or flood.

Use of a database system requires initial investment inUse of an electronic database system can lead to dramatic
increases in productivity. A single clerk will be able to handle setting up the database system and training personnel in its

use. A database system requires hardware and software pur-a larger number of customer calls per hour when a database
system is used. Once MOCK has more than a few dozen cus- chases, the data must be organized so that applications can
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conveniently access the database, and application programs Early DBMSs were based on hierarchical models in which
the schema consisted of record types organized in hierarchiesneed to be written. Also, there are maintenance costs in keep-

ing the computer system running and tuning the system by means of links. For example each order record could be
linked to the record of the customer who placed the order. Thewhen the size of the database or the workload changes.
hierarchical model naturally represents such one-to-many re-
lationships (many orders for each customer but not viceActors in a Database Environment
versa). Many-to-many relationships can only be represented

The set up and use of a database system requires many kinds indirectly. The network model is a generalization in which the
of personnel in addition to the actual users. links are not restricted to be a hierarchy. In other words, the

Database designers first determine the needs of all poten- network model allows the representation of multiple one-to-
tial users of the database. They then determine what (and many relationships for the same member record type as well
how) data are to be represented in the database. The data- as a direct representation of many-to-many relationships.
base schema can then be defined using the DDL. Often, the Both hierarchical and network models provide a navigational
schema is separated into logical and physical schemas. The language that can be embedded in application programs writ-
logical schema defines the structure of the database while the ten in programming languages such as COBOL.
physical schema defines the storage structures for the data. The relational model represents a database as a collection
For example, the database designer may decide that the data- of relations (i.e., tables). Each table consists of a collection of
base needs to contain a table of customers and each customer rows, each of which represents a record. Relationships be-
record must contain the fields name, address, and phone tween records in different tables are represented by storing
number with name and address stored as variable length matching values in the records. For example, customers may
strings and the phone number as a 10-digit integer. In de- be assigned a unique customer key that may be stored as a
termining the physical storage, the database designer may field of the customer record (row). An order record may then
decide to build an index on the name field to permit quick have a custkey field in which the key of the customer placing
access for applications that retrieve customer records by spec- the order may be stored. This method of modeling permits
ifying the name field. The database designer may also con- not just one-to-many but many-to-many relationships to be
struct logical views of the database that permit classes of us- modeled. The relational model also offers a powerful DML
ers to see the data they need in the form they want. that permits sophisticated questions. A major advantage of

System analysts and application programmers develop the the relational model is the use of a declarative DML. In other
applications that will be run against the database. The sys- words, the DML permits a user to specify what operations
tem analyst develops specifications of the applications and need to be performed against the data without specifying how
the application programmer implements the specification as they will be done. The DBMS takes on the responsibility of
a program. translating the user request into an efficient method of per-

Once the database has been set up, the database adminis- forming the operations. This increases the productivity of the
trator (DBA) is responsible for day-to-day operations. The application programmer. Further, application programs are
DBA is responsible for authorizing access, monitoring use, ac- data independent. In other words, the physical storage of the
quiring additional hardware or software, tuning the database data may be changed without requiring modification of the
system, and fixing any problems that arise. The DBA may be application programs.
assisted by a staff that includes operators and maintenance The object-oriented data models combine facilities offered
personnel. by object-oriented programming languages with database con-

cepts. They offer features such as complex object types,
classes, encapsulation, inheritance hierarchies for classes andDBMSs and Data Models
types, and object identity. For example, the schema may de-

A DBMS implements a data model that defines how data will fine classes such as customers and orders. Operations such as
be represented and manipulated. A data model defines a lan- creating a new customer or adding an order for a customer
guage for representing data and the relationships between will be defined as operations (called methods) as part of de-
data (the DDL) and a language for performing operations fining the classes rather than as application programs built
against data (the DML). Here, we give an overview of the on top of the database. Further, the classes are encapsulated
various data models. The following section 2 provides a de- in the sense that only the defined operations may be per-
tailed discussion. Data models can be compared along some formed against the data. The customer class may also be spe-
important dimensions. A data model is either value oriented cialized into subclasses such as individual_customers and
or object oriented. In object-oriented models, it is possible for corporate_customers. An important feature of an object-ori-
one object to have a reference to another object. Value-ori- ented data model is object identity. The system is responsible
ented models permit references from one record to another for generating and maintaining identifiers that can be used
only through common values and are considered to be more to reference objects.
amenable to automated optimization of data access. Data Object-relational models combine some features of object-
models differ in the mechanisms they provide to deal with oriented data models with the relational model. Such systems
redundancy. Object-oriented models permit sharing of a sin- provide features such as the ability to add new data types to
gle copy while value-oriented models bank on appropriate da- a system as well as define complex types using the base types
tabase design. Data models have differing ways of modeling as components. For instance, maps may be added as a new
many-to-many relationships. An example of a many-to-many data type along with functions such as finding the shortest
relationship is that a part has many suppliers and a supplier distance between two points. Complex types such as sets,

lists, and arrays may also be created. Types may also be cre-supplies many parts.
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ated as subtypes of existing types thus forming an inheritance DBMS products support the standard interfaces but also pro-
hierarchy. An object-relational system may also provide a rule vide nonstandard extensions.
system in which condition-action rules get triggered by ac- Standards may be created by national bodies such as
tions such as update, insertion or deletion of objects (1). American National Standards Institute (ANSI), international

There is considerable interest in searching semistructured bodies such as International Organization for Standardiza-
data such as that made available by the emergence of the tion (ISO), or industry consortia. A de facto standard may also
World Wide Web. A common model is to treat a web page as emerge if a specific product dominates the marketplace forc-
a sequence of words. A query consists of desired combinations ing other vendors to conform to the interfaces defined by the
of words.The answer to the query is a set of web pages ranked dominant product.
by how closely they match the desired combination of words. The Conference on Data Systems Languages (CODASYL)
Semistructured data models are also emerging that provide set up a Data Base Task Group (DBTG), which defined stan-
more sophisticated ways of modeling and querying data that dards for the network data model. The X3H2 committee of
do not have a regular structure. ANSI has also proposed a standard network language called

Network Definition Language (NDL).
Advanced Facilities in a DBMS The Structured Query Language (SQL) has been standard-

ized by ANSI and ISO. The X3H2 committee of ANSI pro-Some DBMSs offer advanced facilities such as high availabil-
duced the SQL86 standard based on IBM’s implementation ofity, parallel execution, data distribution, and gateways.
SQL in 1986. This was accepted by ISO as international stan-High availability means that the database system has a
dard in 1987. An extended standard, SQL-89, was producedlow failure rate. The availability of a system may be defined
in 1989 and SQL2 (also called SQL-92) in 1992. Versions ofas the fraction of the offered load that is processed with ac-
SQL have also been adopted as standards by X/OPEN andceptable resonse time. A system is considered well managed
FIPS.if it is available 99.9% of the time or, in other words, has no

The SQL3 standard, an extension of SQL2, is expected tomore than 526 minutes of downtime per year. It is considered
standardize object-relational systems and is currently beingfault-tolerant when the availability reaches 99.99% and
developed by ANSI. The ODMG-93 standard for object-ori-highly available at 99.999% (2).
ented databases was developed by members of the Object Da-A parallel database system has the ability to exploit multi-
tabase Management Group (ODMG), a consortium of object-processor computers to deliver higher performance. A shared-
oriented database companies.memory multiprocessor (SMP) has several central processing

units (CPU) with a shared memory. A cluster consists of
many SMPs connected by a high-speed interconnect. Parallel Database Market Place
database systems implement special techniques such as parti-

Setting up a database system requires the purchase of severaltioning the data as well as the operations among processors
pieces of hardware and software and expertise to put all thein order to get the work done faster.
pieces together and to write any custom software (such asA distributed database permits data to be stored on several

computers connected by a network. Such data management is application programs). One approach to setting up a database
useful for enterprises that are geographically distributed. For system is one-stop shopping. A single vendor supplies all the
instance, customer data may be partitioned between the New needed components, puts them together, and makes the sys-
York and San Francisco sales offices of a company. It is also tem operational. A different approach is a mix and match ap-
possible for data to be replicated. Data replication may be proach in which components are independently purchased
synchronous or asynchronous. With synchronous replication, and then integrated to form a full system.
all copies of data are kept exactly synchronized and consis- The one-stop shopping approach has the advantage of re-
tent. If any copy is updated, the DBMS immediately applies ducing the risk of the system not working as expected. The
the update to all other copies within the same transaction. single vendor can be held responsible for any problems. Fu-
With asynchronous replication, copies or replicates of data ture maintenance and enhancements can come from the same
will become temporarily out of sync with each other. If one vendor. One-stop shopping results in simplified decision mak-
copy is updated, the change will be propagated and applied to ing and is attractive to companies that desire low technology
the other copies as a second step, within separate transac- risks.
tions, that may occur with a time delay. The disadvantage of one-stop shopping is that the cus-

Gateways are a layer of software that emulate the inter- tomer gets only the technology that the vendor is willing to
face for a specific DBMS on top of another DBMS, thus mak- supply at the price set by the vendor. Further, once the initial
ing it possible for tools or applications developed for one investment has been made, the customer can be locked into
DBMS to work with the other DBMS. proprietary technology from the vendor and cannot benefit

from new technologies or lower pricing from other vendors.
Database Standards The mix and match or open systems approach makes it

possible to choose each component independently based onStandardization of database languages makes DBMS prod-
the best match for the need at hand. This often results inucts interchangeable. It reduces the costs of training person-
technically superior solutions or reduced costs. However, itnel and porting applications. Database management system
requires the customer either to take on the responsibility ofproducts that support the same standard interfaces may still
integrating all the chosen components or obtain the servicesdiffer in implementation characteristics such as performance,
of a system integrator. It also makes it difficult to trouble-reliability, and availability, thus giving customers the ability

to choose the DBMS that best meets their needs. In practice, shoot problems and to maintain and enhance the system.
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Database Applications derstandable to people with a nontechnical background for it
to gain credibility. Finally, the benchmark should be designed

Database applications may be classified into multiple catego-
so that it can be run on many different systems and architec-

ries based on the kinds of operations performed on the data.
tures and should apply to small and large systems.

Applications are also classified based on the business area
The Transaction Processing Council is a consortium of ven-

they model, or on the architecture used in constructing the
dors that defines database benchmarks and standard ways

application.
for measuring and reporting results. It also defines the pro-
cess for certifying a result and sets guidelines for how the

Application Classification Based on Workload. On-line trans- results may be used. For more information on benchmarks
action processing (OLTP) applications typically retrieve, up- the reader is referred to Refs. 3 and 4.
date, insert, or delete single records. Examples are banking
transactions such as depositing or withdrawing money, charg- Application Architectures. A typical application may be re-
ing a purchase to a credit card, or making an airline reserva- garded as consisting of three components: presentation, appli-
tion. While individual requests are quite simple, an OLTP cation logic, and database. The presentation refers to the user
system must be able to support a large number of concurrent interface and the application logic refers to the tasks and
users while providing low response times. It must also ensure rules that implement the needs of the business. Depending on
that the data remain safe when the computer system fails how well the software is separated into the three components,
and that each user gets a consistent view of the data they application architectures may be broadly classified as mono-
access. lithic, two tier and three tier.

Data are typically collected in a database by OLTP applica- Early database applications were built for mainframe com-
tions and analyzed by decision-support system (DSS) applica- puters. Users typically had dumb terminals on their desks.
tions. These applications pose complex queries that require Terminals were connected to a central mainframe computer
scanning large portions of the database. For example, a query and communication between the computer and terminal was
might find the average account balance for customers of dif- character based. Applications were monolithic and resided en-
ferent age groups. Two important classes of DSS applications tirely on the mainframe.
are data mining and on-line analytic processing (OLAP). In the 1980s, distributed computing became popular and

Data mining deals with methods for finding trends or pat- the terminal was replaced by desktop computers that had
terns in data. For example, a store may want to determine graphics and could run programs. This has led to architecture
which products are commonly purchased together. This infor- of applications with two tiers with the presentation layer sit-
mation may be useful in determining how to place products ting on the desktop (the client) and the database running on
on shelves or develop promotional programs. a separate shared server. The application logic can either be

On-line analytic processing applications provide a busi- part of the client or the server, yielding the fat-client and fat-
ness-oriented view of the data. Rather than deal with data as server variants of the two-tier architecture. Since a server ca-
consisting of tables with rows and columns, OLAP tools pres- ters to the needs of a large number of clients, the fat-client
ent a multidimensional view of data. For example, sales data architecture has the advantage of reducing the load on the
may be viewed as total sales for a product for each geographi- server. However, it requires one copy of the application logic
cal region for each time period. Product, region and time pe- to be placed at each client. This is problematic from the per-
riod are dimensions on which sales data may be viewed. For spective of security, availability, and system maintenance.
instance, time period may be considered at the granularity of For instance, all machines may need to be upgraded simulta-
years, quarters, months, or weeks, thus yielding a hierarchy. neously when a new version of the application becomes avail-
So sales data may be subjected to queries such as ‘‘find the able. The fat-server architecture places the application logic
total sales for all products for each quarter in the northern with the database server. This logic may either work on top
sales region.’’ of the database or reside inside the database as stored proce-

dures.
The 1990s have seen the development of three-tier applica-Benchmarks. A benchmark consists of a workload and a set

of metrics. It is used for quantitative comparison of alternate tions in which all three components are clearly separated and
may be put on different machines. Databases reside on theconfigurations of hardware and software. As an example, the

TPC-C benchmark, defined by Transaction Processing Council bottom tier on powerful server machines such as mainframes
and high-end workstations. The middle tier consists of work-(TPC), models OLTP applications. The workload consists of

five types of transactions that might be run by a wholesale stations and hosts the application logic; it may also include
the consolidation of data from multiple databases into a datasupplier using a database to manage orders. The benchmark

produces two metrics, tpmC, which measures performance as warehouse. The top tier consists of the presentation services
and usually runs on personal computers.the number of transactions the system can run per minute

and price/performance as $/tpmC.
Common uses of benchmarks are to compare competing Packaged Applications. Building and maintaining sophisti-

cated applications is sometimes regarded as an expensive andDBMSs on the same hardware, competing hardware for the
same DBMS, and new releases of a DBMS with the old risky undertaking. This has motivated many companies to

buy packaged applications rather than build custom applica-product.
A good benchmark must be relevant to the application in tions. The supplier of the packaged application takes on the

responsibility of maintaining the application and of enhanc-the sense that the workload should represent the typical oper-
ations and the metrics should be meaningful measures of per- ing it as the needs of the business change. Since a packaged

application must cater to the needs of a wide variety of com-formance and price/performance. The benchmark must be un-
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panies, these packages are built to be flexible, which requires nents within the framework of a relational data model. The
atomicity of domains leads to first normal form of the classicalextensive customization of the package before it can be put

into operation. An example of a packaged application is a hu- relational data model. A relation schema R(A1, A2, . . ., An)
contains a relation name R and the list of attributes, A1, A2,man-resources package, which might provide functionality

such as managing resumes of applicants, salary and benefits . . ., An; each attribute name Ai, is defined over some domain
Di. A relation schema describes a relation. The degree of afor employees, and pensions for retirees. Packages may also

ensure compliance with the law and incorporate taxation relation is the number of attributes n in its schema. The rela-
tion R, therefore, is a set of n-tuples; each tuple is an orderedrules.
list of n-values �v1, v2, . . ., vn�, where vi(1 � i � n) is an
element from domain Di of attribute Ai. A relation is a set;

DATA MODELS hence its elements (i.e., tuples) are distinct and have no in-
herent ordering associated with them.

At the early development of database systems, it was almost A key (also called unique key) of a relation is the minimal
axiomatic that there were three important data models: hier- subset, which is not necessarily proper, of attributes of the
archical, network, and relational. This view is slowly losing relation schema such that no two tuples in the relation con-
ground as the relational model becomes the most popular tain the same combination of values for these attributes; a
data model and other new semantic data models emerge. key value therefore uniquely identifies a tuple. Note that the
With this perspective, we will present the relational data key is determined from the semantics of key attributes, not
model in some depth and provide only brief overviews of the from its current values in the relation. A relation may, in gen-
network and hierarchical models, which are mainly of histori- eral, have several keys, one of which is designated as the pri-
cal importance. Object-oriented and object-relational systems mary key. We use the convention that attributes that form
will be discussed in somewhat more detail. the primary key of a relation schema are printed in boldface,

as shown in Fig. 3.
Relational Data Model Entity integrity constraints states that no primary key

value can be fully or partially null; null is a special value thatThe relational data model was proposed by E. F. Codd (5)
implies missing or unavailable information. Since primaryin 1970. He also introduced relational algebra and relational
key values are used to identify a tuple in a relation, A nullcalculus as the mathematical foundation for manipulating
value cannot be allowed. a set of attributes in relation R1data stored in relations. Codd received the 1981 ACM Turing
is said to satisfy the referential integrity constraints withAward for his work on the relational data model. The primary
respect to relation R2 (R1 and R2 are not necessarily distinct),reasons for the popularity of the relational model are its pre-
if the following hold:sentation of data in familiar tabular form and its powerful

declarative data manipulation language. The relational data
model is based on a simple and uniform data construct known 1. the attributes in R1 have the same domains as the pri-
as a relation. The results of operations defined on relations mary key in R2;
are themselves relations; thus, these operations can be com-

2. the values of the attributes in a tuple in R1 either havebined and cascaded easily. As shown in Fig. 2, a relation can
the same values as the primary key in some tuple in R2be viewed in a tabular form where a row represents a collec-
or are null.tion of related values of a real-world entity.

The set of attributes in R1 is called a foreign key, which isBasic Concepts. The mathematical concept behind the rela-
said to reference the primary key in R2. The foreign key refer-tional model is the set-theoretic relation, which is a subset
ence between relations represents a relationship betweenof the Cartesian product of a list of domains. A domain D is
real-world entities. Note that in the relational model bothset of atomic values; the requirement that elements of do-

mains be atomic means that they are not divisible into compo- entities and relationships are represented by relations.

PART (partkey, name, manufacturer, type, size, price)

SUPPLIER (suppkey, name, address, phone, acctbal)

PARTSUPP (partkey, suppkey, availqty, supplycost)

CUSTOMER (customerkey, name, address, phone)

ORDER (orderkey, custkey, status, orderdate, totalprice)

LINEITEM (linenumber, orderkey, suppkey, partkey, status, discount, shipdate, price) Figure 2. The database schema.
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is called a relationally complete language. A declarative (i.e.,
nonprocedural) query language allows users to describe what
they want without having to specify the procedure for retriev-
ing the result. Relational calculus is considered somewhat
more declarative than relational algebra.

Relational Algebra. Relational algebra has five primitive op-
erations: union (�), set difference (�), Cartesian product (�),
projection (�), and selection (�). There are three additional
nonprimitive operations—intersection, join, and division—
that are defined in terms of the primitive operators. The op-
erands of relational algebra are relations; the result of these
operations is also a relation; this is called the closure property
of relational algebra. The closure property facilitates composi-
tion of a sequence of operations. Operations such as union,
set difference, and Cartesian product originate from the set
theory; the others have been devised specifically for the rela-
tional model. We will not define all the operations here, but
present a brief sketch of a few of them. A detailed discussion
of relational algebra operations can be found in Ullman (6).

The selection operation retrieves a subset of tuples from a
relation, which satisfies a given predicate; the selection sym-
bol, �, is followed by a Boolean expression. The projection op-
eration chooses specified attributes from a relation and dis-
cards the remaining attributes; the projection symbol, �, is
followed by a list of attributes. The Cartesian product opera-

PART

partkey name manufacturer type size price

P1 bolt anderson copper 7 0.45
P2 nut universal anodized 9 1.21
P4 screw clark burnished 11 1.11
P5 cog universal plated 5 5.35

SUPPLIER

suppkey name address phone acctbal

S12 Jackson 11 Main St, S.F. 4155551212 900.00
S13 Onan 10 3rd Ave, S.J. 4085554321 896.98
S14 Levine NULL 2125554379 789.11
S15 Smith 9 55th St., N.Y. NULL 55.12
S16 Chen NULL 5107773412 127.87

PARTSUPP

partkey suppkey availqty supplycost

P1 S12 100 12.85
P1 S13 85 25.64
P2 S12 65 12.89
P2 S14 90 15.00
P5 S15 110 13.99

tion combines two relations by concatenating each tuple from
one relation with every tuple in the other relation. The joinFigure 3. Relational database content.
operation is defined in terms of a Cartesian product of two
relations followed by a selection predicate on the resulting
relation. Thus the join operation combines two relations onRelation schemas are shown in Fig. 3. In relation PART,

partkey is the primary key. The primary key for relation the values of some of their attributes. A query is expressed as
a sequence of relational algebra operations. The sequence ofPARTSUPP is the combination of attributes suppkey and

partkey. The domains of the attributes, partkey and size, operations in relational algebra seems to specify a partial
strategy for evaluating the query.are character string and integer respectively. The degree of

the relation PART is 6. The arrows in Fig. 3 represent foreign Consider a query that retrieves the name and type of the
parts that are supplied by the supplier whose suppkey is S12.key to primary key references; for example, partkey in

PARTSUPP is a foreign key that references the primary key This information comes from relations PART and PARTSUPP;
the attribute that is used for joining them is partkey in bothpartkey in PART. The relation PARTSUPP represents a rela-

tionship—which supplier supplies which parts—between relations. This query can be expressed in relational algebra
as the following:parts and suppliers indicated by PARTSUPP’s foreign key ref-

erences to PART and SUPPLIER.
An example of relation PART is shown in Fig. 2. Each tuple

in relation PART corresponds to a particular part in the real

πname, type

{σsuppkey=′S12′ [σPART.partkey=PARTSUPP.partkey(PART× PARTSUPP)]}
world. The various attribute values in a tuple describe that
part. A tuple in PART is �P2, nut, universal, anodized, 9, Relational Calculus. In relational calculus, we write declar-
1.21	, where ‘‘P2’’ is the partkey of the part and ‘‘nut’’ is the ative expressions to specify the query. Relational calculus is
name of the part, and so on. Similarly, relation SUPPLIER a formal query language based on the branch of mathematical
represents information about suppliers. A tuple in relation logic called first-order predicate calculus. There are two ways
PARTSUPP, �P1, S12, 100, 12.85	, indicates that supplier in which the predicate calculus can be applied to relational
S12 supplies part P2 in quantity 100 and the cost of this ship- data manipulation language. These are called tuple rela-
ment is $12.85. tional calculus and domain relational calculus. The dif-

ference between the two is that in tuple relational calculus,
Data Manipulation in the Relational Model. The DMLs, rela- variables in the formulae range over tuples in a relation. In

tional algebra and relational calculus, provide the theoretical domain relational calculus, variables range over domains of
basis for expressing operations on relation. In relational alge- attributes. The formulation of the above query in tuple rela-
bra, specialized algebraic operators are applied to relations in tional calculus takes the following form.
order to express queries. In relational calculus, queries are
expressed by writing logical formulae that the tuples in the
result must satisfy. Relational algebra and relational calculus

{X.name,X.type � PART(X) ^ [(�Y)PARTSUPP(Y) ^
X.partkey = Y.partkey ^ Y.suppkey = ’S12’]} �

can be shown to be equivalent in their expressive powers. Any
relational data manipulation language that has as much ex- Relational query languages such as SQL and QUEL are es-

sentially based on tuple relational calculus. A graphic querypressive power as relational algebra (or relational calculus)
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language called Query By Example (QBE) borrows its basic variables for that relation in the from clause and using the
tuple variables as aliases of the relation in the rest of thenotions from domain relational calculus. For further informa-

tion on this topic, see Ullman (6) and Maier (7). query.
Q2. Retrieve the name and partkey of parts which areQuery Language SQL. Structured Query Language (SQL),

formerly known as SEQUEL, was developed by IBM for an priced higher than the part with partkey P2.
experimental relational database system called System R. It
is now the most commonly used query language for commer-
cial relational database systems (8,9). As a declarative query
language, SQL provides a syntactical sugaring of the tuple

Q2: SELECT Y.name, Y.partkey
FROM PART X, PART Y
WHERE X.partkey = ’P2’ AND
Y.price > X.pricerelational calculus. SQL contains statements for query, up-

The from clause of query Q2 shows the SQL syntax for declar-date, and data definition; that is, it is both a DDL and a DML.
ing aliases. Here X and Y both are aliases of PART, in effectSQL uses the term table, which is similar to relation; the
making them tuple variables that range over different in-difference is that a table in SQL permits duplicate rows; a
stances of relation PART.tuple is also called row and an attribute is called column.

SQL is a relationally complete language; hence, it providesThe basic SQL queries are a select statement of the form:
language constructs that are equivalent to all the relational
algebra operations. Consider the following query.

Q3. Retrieve the name of suppliers who do not supply

SELECT Rj,A1, ..., Rk.Ar
FROM R1, ..., Rn
WHERE <predicate> plated parts.

SELECT, FROM, and WHERE are SQL keywords. Here, R1,
. . ., Rn is a list of relations (tables), which forms the from
clause Rj.A1, . . ., Rk.Ar, the select clause, is a list of attri-
butes (columns). The qualified attribute of the form R.A refers
to the attribute A of relation R; it is used to distinguish be-
tween attributes of the same name in different relations. The
relations in the select clause are a subset of the relations

Q3: SELECT SUPPLIER.name
FROM SUPPLIER
WHERE SUPPLIER.suppkey NOT IN
(SELECT PARTSUPP.suppkey
FROM PART, PARTSUPP
WHERE PART.partkey = PARTSUPP.partkey

AND PART.type = ’plated’)listed in the from clause. The �predicate	 is a Boolean ex-
pression involving logical connectives conjunction (and), dis- The query first finds all suppliers who supply plated parts; it
junction (or), and negation (not) and comparison operators �, then uses the set difference operation to discard the suppliers
�, �, etc., and qualified relational attributes. The �predi- found in the first step from a list of all suppliers, thus, in
cate	 specifies a selection condition (i.e., Boolean expression) effect, selecting the suppliers who do not supply plated parts.
for tuples to be retrieved. There is a notational conflict be- The finding of the first category of suppliers is done by the
tween relational algebra and SQL; the keyword SELECT in nested subquery in Q3; the set difference operation is
SQL corresponds to projection (�) in relational algebra, not to achieved by using the SQL comparison operator ‘‘NOT IN’’.
selection (�). SQL provides more expressive power than relational alge-

The execution semantics of an SQL query is the following: bra or tuple calculus by providing aggregate functions and
sorting of results. The aggregate functions, unlike other SQL

1. take the Cartesian product of all relations specified in operations, do not apply to one tuple at a time but to a collec-
the from clause; tion of tuples that are returned by the query. There are five

standard aggregate functions: SUM, COUNT, MAX, MIN, and2. apply the restriction predicate specified in the where
AVERAGE.clause on the resulting relation; and

SQL also provides a language feature called GROUP BY,3. project out the attributes specified in the select clause.
which partitions the tuples of a relation into groups; an aggre-
gate function then applies to the groups individually. Aggre-A query execution may not always follow this sequence but it
gate functions can be used without the group by clause; inmust produce a result that is equivalent to the one given by
this case, the aggregation applies to all the tuples returnedthe three-step method described before.
by the query. If only a subset of the groups is relevant, thenWe illustrate the basic select statement of SQL.
a having clause can be used to filter out the unwanted groupsQ1. Retrieve the name and type of the parts that are sup-
formed by the group by clause. This filtering is independentplied by the supplier whose suppkey is S12.
of any filtering specified in the where clause that applies to
tuples in a relation and is done before the grouping takes
place.

Q4. Find the partkey and the average supply cost of parts

Q1: SELECT PART.name, PART.type
FROM PART, PARTSUPP
WHERE PART.partkey = PARTSUPP.partkey AND
PARTSUPP.suppkey = ’S12’ whose average supply cost exceeds $30.00.

The query Q1 shows a retrieval based on the join of two ta-
bles. This is the same query which was expressed using rela-
tional algebra in the previous section. The predicate, PART.
partkey = PARTSUPP.partkey, specifies an equality join
(also called equi-join) between the two relations; the columns

Q4: SELECT PARTSUPP.partkey,
AVG (PARTSUPP.supplycost)

FROM PARTSUPP
GROUP BY PARTSUPP.partkey
HAVING AVG (PARTSUPP.supplycost) > 30.00in this predicate are called join columns.

Sometimes a query needs to refer to two or more tuples in SQL provides a facility for the definition of views. Views per-
mit the user to perceive the database in terms of just thosethe same relation. This is achieved by defining several tuple
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derived relations that directly belong to their applications. butes, which means that some attributes uniquely determine
other attributes in a relation. We have seen this dependencyViews are relations that are defined in terms of base rela-

tions and previously defined views using the SQL select state- in the definition of relational key. These dependencies are
called functional dependencies. Informally, a prescription forment. A view does not necessarily exist in the physical form;

hence it is considered a virtual relation in contradistinction a good database design is to disallow all functional dependen-
cies other than key dependencies. Nonkey functional depend-to base relations that are actually stored in the database.

Consider the following definition of a view that shows the par- encies may lead to serious problems in the database. Consider
the following relation schema that contains attributes fromtkey, name, manufacturer, and suppliers of the parts that

cost more than $5.00. PART and PARTSUPP.

PS (partkey, suppkey, supplycost, price,
type)

The attributes, price and type, belong to PART and hence
are functionally dependent on partkey, the primary key of
PART. It should be emphasized that partkey is not the pri-

CREATE VIEW EXPENSIVE PART
SELECT PART.partkey, PART.name,

PART.manufacturer, PARTSUPP.suppkey
FROM PART, PARTSUPP
WHERE PART.price > 5.00

and PART.partkey = PARTSUPP.partkey mary key of relation PS. This dependency generally leads to
two classes of problem: redundancy and update anomaly,The system maintains the name and the definition of views.

Any reference to a view name (e.g., EXPENSIVE_PART) in a which we will explain by an illustration. Redundancy refers
to the fact that values of attributes, type and price, of aSQL statement is substituted with the definition of the view.

This is called view resolution part need to be stored in PS as many times as there are sup-
pliers of the part. The other related problem is the potentialIn the preceding discussion, we have concentrated on SQL

queries and view definition. SQL also has syntax for inserting inconsistency that may ensue if all the instances of a part’s
price, for example, are not consistently modified in PS whena new tuple, deleting and modifying an existing tuple, but we

will not discuss these operations here. a change occurs; thus a part may end up having multiple—
that is, inconsistent—prices. The update anomaly refers to a
situation in which a part and its attributes cannot be re-Relational Database Design. The central idea behind the de-

sign of relational schemas is that of data dependency of attri- corded in PS unless that part is supplied by some supplier,

Figure 4. A network database. (a) Schema,
(b) content.

Part Supplier

RPS

(a)

(b)

P-R S-R

P1
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Supplier

- - - P2 - - - P4 - - - P5 - - -

- - - - - - - - -

S16 - - -

- - -

- - -

S12 - - - S13 - - - S14 - - - S15 - - -
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because this implies putting a null value in suppkey, which Stored Representations of Link. A link is commonly repre-
sented in the database as a ring (circularly chained list) link-is a subset of the primary key of PS. As mentioned before, the

entity integrity rule disallows a primary key value to be fully ing the record of the owner of a link to that of all its members.
As can be seen from Fig. 4(b), every record has one or moreor partially null. The related inverse problem is that if a part

is no longer supplied by any supplier, then we must remove labeled pointer fields that are used to chain the records in a
link. The RPS records have two different kinds of pointers;the part and all its information from PS.

A good database design is commonly measured in terms of the solid and dashed pointers are used to represent respec-
tively P-R links (which chain them with their owner of typewhether relations in the database are in third or Boyce-

Codd normal form. The imposition of these normal forms Part) and S-R links (which chain them with their owner of
type Supplier). A query in the network data model requireson a relation results in its decomposition into smaller constit-

uent relations that are free from redundancies and anomalies. the navigation of these chains to find and retrieve one or more
related records.(There are other normal forms, such as the fourth normal

form that ensures that a relation does not have multivalued
dependency.) The relation schemas shown in Fig. 3 are in Data Manipulation in the Network Model. The data manipu-
Boyce-Codd normal form (8), and thus they represent a good lation language in the network data model is a procedural,
database design. record-at-a-time language that requires explicit navigation of

the network of chained records by the application program.
This should be contrasted with the relational query languageNetwork Data Model
SQL, which is a set-at-a-time language that allows formula-

Early work on the network data model was done by C. Bach- tion of queries in a declarative manner. We will illustrate this
man during the development of the first commercial network point by an example.
DBMS called IDS; he also proposed a diagrammatic technique Consider query Q2 discussed before. In the network model,
for representing relationships in database schemas. Bachman in order to retrieve all parts that are supplied by the supplier
received the 1973 ACM Turing Award for this work. The ac- S12, we start with the particular supplier record, then navi-
tual network data model and language constructs were de- gate through all the RPS records that the supplier S12 owns
fined by the Conference on Data Systems Language (CODA- using the next pointer of S-R type shown as dashed arrows
SYL) committee in Database Task Group (DBTG) report in in Fig. 4(b). For each record, we determine the owner of the
1971. In the following section, we will highlight the central record using the P-R pointers shown as solid arrows. A frag-
concepts of the network data model rather than discuss the ment of code in a pseudo programming language shows the
specific details of DBTG (or CODASYL) data model. query formulation in the network data model.

The Network of Records and Links. There are two basic data
constructs in the network model: record and link. Data are
stored in records as a group of related data values. The re-
cord type describes the structure of a group of records that
store the same type of information. The record type and re-
cord bear close correspondence with relation schema and
tuple of the relational model. The link type (somewhat inap-
propriately called set type in the DBTG report) contains a
description of a one-to-many relationship between two record
types. Each link type contains the name of the link, an owner
record type, and a member record type. In Fig. 4(a), P-R is a
link type whose owner is the Part record type and whose
member is the RPS record type. The link type is represented

Supplier.suppkey = ’S12’
FIND ANY Supplier using suppkey
If Found Then
Begin

FIND FIRST RPS WITHIN S-R
While Found Do
Begin

GET RPS
FIND OWNER WITHIN P-R
GET Part
print (Part.name, Part.type)
FIND NEXT WITHIN S-R

End
Endas a directed edge from the owner to the member. These one-

to-many binary relationships form a directed acyclic graph The above query uses DBTG commands FIND and GET.
(network) of related records. A link is composed of one owner There are many variants of FIND, all of which locate the rele-
record and zero or more member records. A member record vant record and mark it as the current record of its link and
cannot exist in more than one link of a particular link type; record types. GET simply retrieves the current record into the
this requirement, in effect, imposes a one-to-many constraint. application’s work-space.
This constraint does not preclude a member record from par-
ticipating in multiple links of different link types.

Hierarchical Data Model
A link in the network data model allows only a binary one-

to-many relationship. A many-to-many relationship can be A hierarchy is a directed graph that is a forest; that is, a
set of trees. The hierarchical database systems were based onrepresented by the use of an additional virtual record type

and two link types that contain that virtual record type as hierarchical organizations, taxonomic classification of organ-
isms, or other such hierarchical classifications that are popu-members. The owners of these two link types are the record

types whose many-to-many relationship is being represented. lar in the real world. Hierarchical database systems, however,
were not constructed on the basis of a predefined data model;Figure 4(a) shows a network schema that uses RPS record

types for representing a many-to-many relationship between on the contrary, such a model was defined after the event by
a process of abstraction from the implemented system. Thisrecord types Part and Supplier. The relationship is the

same as shown in relation PARTSUPP of Fig. 3. might provide us with some insight as to why the hierarchical
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data model is relatively ill defined. The hierarchical data morphism may also require the use of dynamic binding of the
method name to the appropriate method implementation atmodel is capable of representing hierarchical structures in a
run time, when the class of the object to which the method isdirect and precise way. However, it proves to be quite inade-
applied becomes known.quate in representing nonhierarchical structures such as

It should be emphasized that there is no agreed uponmany-to-many and n-ary relationships.
definition of an object-oriented data model as there is for rela-IBM’s Information Managment System (IMS) and SAS In-
tional model. We enumerate the features that ought to bestitute’s System-2000 are two well-known commercial hierar-
supported by object-oriented database systems: object identi-chical database systems. The first version of IMS was re-
fier (OID), which is a unique system-generated identifier forleased in 1969, and was one of the earliest commercial
each object in the system; class references or relationships;database systems. In the mainframe market place, IMS con-
complex objects of arbitrary structure and their constructors;tinues to be one of the most widely used products, although
encapsulation; class hierarchy and inheritance; and polymor-this may not remain true for long.
phism. A sophisticated database system must also provide ac-
cess methods, a powerful declarative query language, transac-Hierarchical Data Structure and Manipulation Language. A hi-
tion management, concurrency control, and recovery (10).

erarchical database consists of an ordered set of multiple oc- One class of OODSs ties itself closely with an OOPL. These
currences of a single type of tree. The hierarchy or tree con- OODSs generally provide a query language, but both the
tains a number of parent-child relationships (PCR), which are OOPL and the query language execute in the application pro-
asymmetric and one-to-many. As mentioned before, a strict gram environment, sharing the same type system, data struc-
hierarchical model cannot represent many-to-many or n-ary tures, and work-space; they can, with some justification, be
relationships, nor can it represent the case where a record looked upon as persistent storage managers for OOPL objects.
may have to participate as a child in more than one PCR. A Nevertheless, these systems treat persistent data differently
notion of virtual (called ‘‘logical’’ in IMS) record or pointer is from transient data. One of the perceived benefits of these
employed to deal with these problems; a record can partici- types of systems is a seamless interface between an OOPL
pate in two PCRs, if one of the two parents is virtual. The and a database system; that is, an OOPL user will not need
introduction of virtual records effectively transforms the hier- to learn a separate database DDL and DML. As long as per-
archy (tree) into a network (directed graph). The data manip- sistent storage management is the only objective of such a
ulation language of hierarchical database is a record-at-a system, the benefit is more or less achievable. However, if
time language, which requires explicit navigation of hierar- most of the database features that have been incorporated
chical occurrences in the database. In this model, the formu- into relational database systems are needed in the applica-
lation of nonsimple queries becomes a more cumbersome task tion, seamlessness is no longer feasible. These OODSs often
than that of the sample shown for the network data model. lack the capability of a powerful declarative query language,

metadata management, views, and authorization, although
there is a trend toward incorporating some of these featuresObject-Oriented Data Models
into the system. The lack of well-defined operations in these

In recent years, object-oriented technology has achieved wide models led Codd (11) to compare them with organisms that
acceptance, maturity, and market presence. It is the next gen- possess ‘‘anatomy without physiology.’’ Examples of this type
eration for application development. This new paradigm has of OODSs include O2, ObjectStore, ONTOS, and VERSANT,
significantly improved the programmer’s productivity and which integrate themselves with C��, and GemStone, which
lowered the cost of application development. Object-oriented uses Smalltalk.
database systems (OODS) were introduced in the late 1980s The other class of OODSs extends underlying functional or
to meet the needs of emerging complex applications and to relational systems with object-oriented capabilities and pro-
deal with some of the inherent limitations of the relational vide their own SQL-like nonprocedural query language. AD-
model. They were proposed partly in response to the antici- APLEX, Informix, OpenODB, Orion, Postgres, PROBE, Starb-
pated growth of the use of object-oriented programming lan- urst, and UniSQL are some examples of OODSs of this type
guages (OOPLs). Object-oriented database systems borrowed (12). Unified relational and object systems (1) extend the rela-
their paradigm from object-oriented programming languages tional model with key object-oriented features. They enable
such as Simula and Smalltalk, which are generally consid- users to store their object-oriented application data in data-
ered to be the precursors of the early OODSs. bases without compromising the essential features of the rela-

We present a brief overview of the key features of object- tional database that they already rely upon; such features in-
oriented programming languages that have generally been clude robustness, high performance, standards compliance,
adopted by OODSs. In OOPLs, the notion of abstract data authorization, metadata management, view definition, sup-
type, called class, conceals the internal data structure and port for open systems, security, and concurrency control.
provides all possible external operations on the objects of the The ANSI SQL-3 standards committee is working on the
class; this is known as encapsulation. Objects are instances of extension of SQL-2 with object-oriented features. There ap-

pears to be a consensus that the next-generation databasea class; these objects exist only during the execution of the
systems will incorporate key relational and object-orientedprogram. Another key idea of OOPLs is class hierarchy and
features with support for management of spatial-temporal,inheritance; this allows specification of new classes that in-
multimedia and active data, and long-duration transactions.herit much of their structures and operations from previously

defined classes, called superclasses. The operations in OOPLs
are called methods. A related concept is of method polymor- TRANSACTION AND CONCURRENCY CONTROL
phism, which refers to the fact that a method name may apply
to objects of different classes; in such cases, the methods may There are many applications in which multiple programs

need to run concurrently. An example is an airline reserva-have different implementations and different semantics. Poly-
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tion system, where several agents may make reservations at
the same time, and therefore concurrently change and access
the airline database. The canonical problem is that two or
more programs accessing the database might reserve the
same seat for different persons, if the database management
system does not control access to the database.

T2

read (B)
B � B� 70
write (B)
read (A)

Multiprogramming allows the computer to process several
Figure 6. Transaction T2.programs in a concurrent manner. Concurrent programs, by

sharing the processor among them, improve the efficiency of
a computer system. Even if a computer system comprises only

Durability. The changes to the state of the database madea single central processing unit (CPU), many programs may
by a successfully completed transaction survive failures.be processed concurrently by use of multiprogramming; the

A transaction has a well-defined boundary marked by theprocessor executes some commands of a program, then sus-
application at its beginning and end. A transaction that suc-pends this program and executes some commands of another
cessfully completes is said to have committed. A committedprogram; program execution is resumed at the point where it
transaction cannot be revoked. Changes made to the databasewas suspended when it gets its turn with the CPU. Therefore,
by a committed transaction are durable and can be seen byconcurrent programs are actually interleaved. If the computer
an outside observer. A transaction might not successfullysystem has multiple CPUs, parallel rather than interleaved
complete, but might have to abort or rollback. For example,execution of a program is possible. Most of the theory of data-
a transaction may abort because it performed an illegal com-base concurrency control is developed in terms of interleaved
putation, or it tried to make a change to the database thatconcurrency, which, in principle, can be applied to parallel
violated its integrity constraints. An aborted transaction doesconcurrency.
not change the state of the database in any way; the changes

Basic Concepts that it might have made to the database are concealed from
the view of an outsider observer, and must be undone.A transaction is a single execution of a program that

To manage concurrency, the database must be conceptu-changes or accesses a database. This program may be a sim-
ally partitioned into uniquely named database items, theple query or update expressed in database query language or
units of data to which access is controlled. Item size is deter-a complex host language program with embedded calls to the
mined by the system and is called granularity. The data oper-query language. The acid test for a transaction’s correctness
ations involved in a transaction can be simplified to the fol-is that it possesses the atomicity, consistency, isolation, and
lowing. T:read (A) and T:write (A). The first means thatdurability (ACID) properties.
transaction T reads the data item A into a program variable;Atomicity. The changes made to the state of the database
the second means that T writes the value of a program vari-by a transaction are a unit of work; that is, either all happen

or none happens. For a transaction to be atomic, it must be- able to data item A; to simplify our notation we will assume
have atomically to an outside observer. A failed or aborted that the name of the program variable is the same as that of
transaction has no effect on the state of the database. the data item. Figures 5 and 6 show transactions T1 and T2

Consistency. A transaction transforms a database from one respectively. T1 reads and writes data item A; T2 reads and
consistent state to another. The actions of the transaction writes data item B and also reads data item A. Figure 7
should not violate any of the integrity constraints associated shows the serial execution of transactions T1 and T2.
with the state. This requires that a transaction must repre-
sent a correct program. Transactional Dependencies and Isolation

Isolation. Although transactions execute concurrently,
Two transactions executing concurrently may have dependen-each transaction T is isolated from the state changes of other
cies on each other. There are three types of undesirable de-transactions in the sense that other transactions appear to T
pendencies: lost update, dirty read, and unrepeatableas if they were either executed before or after T. In other
read. These occur when two concurrent transactions that ac-words, the execution of a transaction must take place as it
cess or change the same data items have their operations in-would in a single-user environment.
terleaved in such a way that makes some of the transactional
operations incorrect. The existence of transactional dependen-
cies implies that there is a violation of isolation. In the follow-

T1 T2

read (A)
A � A � 40
write (A)
A � A � 60
write (A)

read (B)
B � B � 70
write (B)
read (A)

T1

read (A)

A = A – 40

write (A)

A = A – 60

write (A)

A: write-read

A: read-write

T1 T2

Figure 5. Transaction T1. Figure 7. Schedule S1: serial.
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T5

read (A)

read (B)

write (A)

B = B + 90

T4

read (A)

A = A + 50

write (B)

read (A)

A: read-write

A: write-read

T5 T4

T3

read (A)

A = A – 100

write (A)

read (B)

T4

read (A)

A = A + 50

B = B + 100

write (B)

write (A)

A: read-write

A: write-write

T3 T4

Figure 10. Schedule S4: unrepeatable read.Figure 8. Schedule S2: lost update.

or aborts and restores the original value. In Fig. 9, transac-ing discussion, we treat each of these dependencies in some
tion T1 writes A, which is read by T2; however, T1 rewritesdetail.
the value of A. Thus, the value of A read by T2 is dirty, or in-Lost Update. This occurs when one transaction’s write is
correct.overwritten by another transaction, which writes the data

Unrepeatable Read. The unrepeatability of read creates in-based on the original value read. Consider concurrent execu-
consistent semantics, as a transaction T must see the sametion of two transactions T3 and T4, which perform banking
value of a data item on multiple reads provided that the dataapplications shown in Fig. 8. T3 shows a fund transfer of
item is not modified by T. In Fig. 10, T5 reads A again andamount $100.00 from account A to account B; T4 shows a

credit of amount $50.00 to account A. Since T4 overwrites the gets a different value, as it was modified by T4 after T5 read
value of A, the debit to account A is lost in this process, while it. Thus T5 has the problem of unrepeatable reads.
account B is credited with the transferred amount $100.00. The concurrent execution of transactions T1 and T2 shown
Clearly, this produces incorrect values in the database. in Fig. 11 does not have any dependencies and hence is cor-

Dirty Read. This happens when one transaction reads a rect. It should be noted that if transactions were not executed
data value previously written by another concurrent transac- concurrently or if they did not change the database, there
tion, and then the first transaction either rewrites the value would be no transactional dependencies.

T1

read (B)

B = B – 70

write (B)

write (A)

T2

read (A)

A = A – 40

A = A – 60

write (A)

read (A)

A: write-read

T1 T2

T1

read (B)

read (A)

A = A – 40

write (A)

T2

B = B – 70

write (B)

A = A – 60

write (A)

read (A)

A: write-read

A: read-write

T1 T2

Figure 11. Schedule S5: serializable.
Figure 9. Schedule S3: dirty read.
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Serializability (Ti, Tk) such that Ti and Tk have conflicting operations and
the operation in Ti precedes that in Tk. The algorithm in-

We now present a formal discussion of the isolation property.
volves constructing a precedence graph for a given schedule S

A schedule (or history) S of transactions T1, T2, . . ., Tn, is
and looking for a cycle. If the graph is acyclic, then S is seri-

an ordering of the operations in these transactions such that
alizable; otherwise, it is nonserializable. The partial orders of

all operations in each transaction Ti that participates in S
the nodes in an acyclic precedence graph give the possible

appear in the same order in S as they do in Ti. The operations
serial schedules that are equivalent to the given serializable

in participating transactions can, of course, be interleaved in
schedule.

concurrent execution. Figure 7 and Fig. 11 show two possible
The schedules shown in Figs. 7–11 also show their respec-

schedules, S1 and S5, of transactions T1 and T2.
tive precedence graphs. Consider the lost update problem in

Two operations in a schedule are said to conflict, if they
schedule S2 and its corresponding precedence graph. For the

belong to different transactions, they access the same data
sake of illustration, we have labelled each edge with the data

item, and at least one of the two operations is a write opera-
item followed by the sequence of conflicting operations. The

tion. The notion of conflict implies that the order of such oper-
conflicting pair of operations, T4:read(A) T3:write(A), causes

ations is crucial, as the combined effect of the two operations
the directed edge (T4, T3) to be drawn; similarly, the conflict-

depends upon the order in which they are executed. This
ing pair of operations, T3:write(A), T4:write(A), leads the di-

leads to three types of conflict: write-write, write-read, and
rected edge (T3, T4). The cycle in the graph indicates that

read-write, which give rise to lost update, dirty read, and un-
S2 is nonserializable. The precedence graph for serializable

repeatable read, respectively. Interestingly, if these three
schedule S5, as expected, is acyclic (Fig. 11).

forms of dependency can be prevented in a schedule, then
In our examples, there is an assumption that a write of a

there will be no concurrency anomalies and the schedule will
data item A is always preceded by a read of A; this is called

satisfy the isolation property. An important aspect of con- constrained writes. In real applications, transactions may
currency control is the serializability theory of schedules,

use unconstrained writes, that is, a write operation of a
which attempts to determine whether a given schedule pro-

data item may appear independent of its read operation. The
vides isolation.

existence of unconstrained writes in transactions leads to the
A schedule S is serial, if, for every transaction Ti that par-

notion of view equivalence and view serializability, and a
ticipates in S, all the operations of Ti are executed consecu-

polygraph test for view serializability. The test for view seri-
tively without any interleaving of operations from other par-

alizability is N P -complete. It can be shown that a conflict-
ticipating transactions; that is, in serial schedule, every

serializable schedule is also view serializable, but not vice
transaction is performed in a serial order. Figure 7 shows a

versa; that is, conflict serializability is more restrictive and
serial schedule S1, in which transactions T4 follows transac-

may determine a view-serializable schedule (which contains
tion T3. The schedules shown in Figs. 8–11 are all nonserial.

unconstrained writes) to be nonserializable. We will not dis-
A serial schedule is, by definition, a correct schedule because

cuss view equivalence or view serializability here; interested
a transaction executed on its own truly satisfies the isolation

readers are referred to Korth (13) and Papadimitriou (14).
requirement.

Most database systems do not use these two concurrency
A schedule S is serializable, if it is equivalent to any se-

control methods for imposing serializability, because it is
rial schedule of the participating transaction in S. If a nonse-

practically impossible to determine beforehand how the oper-
rial schedule is serializable, then it is equivalent to a serial

ations of a schedule will be interleaved. Furthermore, when
schedule and thus correct. There are essentially two notions

transactions are submitted continuously their boundaries are
of equivalence: conflict equivalence and view equivalence.

not clearly marked. If the serializability of a schedule is
Two schedules are said to be conflict equivalent if the

tested after transactions have committed, as the theory re-
order of any two conflicting operations is the same in the

quires, then the effect of nonserializable schedules must be
schedules. A schedule Q is said to be conflict serializable,

cancelled. This is a serious problem that makes this approach
if it is conflict equivalent to some serial schedule S. In sched-

impractical. Therefore, the approach taken by most systems
ule S5 (Fig. 11), the only conflicting operation is T1:write (A)

is to use a protocol that ensures serializability.
and T2:read (A). S5 is conflict equivalent to the serial sched-
ule S1 (Fig. 7), since the order of the conflicting operation is

Concurrency Control Techniquespreserved in S1; hence S5 is conflict serializable, isolated or
correct. Note that the order of nonconflicting operations are There are a number of concurrency control techniques that
immaterial. are used to ensure serializability or isolation of concurrently

executing transactions. Some of the well-known techniques
include locking, timestamp, and optimistic protocols; thereTest of Conflict Serializability. The equivalence of a given
are also multiversioned variations of the first two protocols.schedule S with n transactions could be determined by com-

paring S with all possible serial schedules of these transac-
tions; this would be an intractable task, since there are n! Locking Protocols. The most widely used techniques for
possible serial schedules for n transactions. However, there concurrency control are based on locking of data items. This
exists a simple algorithm for determining the conflict seriali- enables access to data in a mutually exclusive manner; that
zability of a schedule S based on a directed graph approach. is, when a transaction accesses a data item, then no other

A precedence graph G � (N, E) consists of a set of nodes transaction can change it. Lock is a variable associated with
N � �T1, T2, . . ., Tn�, and a set of directed edges E � �e1, a data item that describes the status of the data item with
e2, . . ., em�. Each transaction Ti in schedule S corresponds respect to read and write operations that can be applied to it.

There are various modes in which a data item can be locked.to a node in the graph. Each edge in E is an ordered pair



654 DATABASES

We discuss two of these locking modes, shared and exclusive. each transaction. After the completion of the transaction, the
protocol enters the validation phase and checks whether anyIf data item A is locked in the shared mode by transaction

T, then T can read A but cannot write A; a data item can of the transaction updates violated serializability. If serializa-
bility is not violated, then the database is updated using thebe locked in the shared mode by multiple transactions, thus

permitting shared read access to the data. If a data item is transaction’s private copy and the transaction is committed;
otherwise, the transaction is aborted and restarted. The opti-locked in the exclusive mode, then T can both read and write

A; a data item locked in the exclusive mode cannot be locked mistic protocol described above maintains the start times-
tamp of a transaction, its read and write data sets, and thein any mode by other transactions thus enforcing exclusive

access to the data. A transaction unlocks the data item it has end timestamps of the various phases of the protocol.
locked before it ends. A transaction that requests a lock on a
data item that is locked in an incompatible mode must wait Granularity of Data Item. As mentioned before, all concurre-
till it is able to acquire the lock. At any time a data item can ncy control techniques assume that the database consists of a
be in any one of the three modes: unlocked, shared locked, or number of data items. The database item can be any one of
exclusive locked. Every transaction obtain an appropriate the following: a field of a database record, a database record,
lock before reading or writing a data item. a disk block or page, a file or table, or the entire database.

One locking protocol that ensures serializability is the Clearly, the larger the data item, the smaller the degree of
two-phase locking (2PL) protocol. This protocol requires concurrency but the lower the overhead of maintaining the
that every transaction issue lock and unlock request in two locks. Most relational database systems provide the granular-
phases. In the growing phase, a transaction can obtain locks ity of locks at the level of tuple (record) or disk block.
but may not release any lock. In the shrinking phase, a trans-
action can release locks but may not obtain any new locks. Levels of Isolation. The ISO and ANSI SQL standards man-
Initially, a transaction is in a growing phase followed by a date true isolation as the default, but few commercial systems
shrinking phase. It can be proven that, if every transaction in follow this aspect of the standards, thus sacrificing correct-
a schedule follows the two-phase locking protocol, the sched- ness for performance. Relational database systems provide
ule is guaranteed to be serializable, thus obviating the need several levels of isolation, which can be chosen by the applica-
for any test of serializability. It should be noted that it is pos- tion for each transaction. These systems use short and long
sible that there are serializable schedules for a set of transac- locks for implemeting various levels of isolation. A short lock
tions that cannot be obtained through 2PL protocol. on a data item is released right after the operation on that

There is a popular variation of the 2PL protocol described data item completes; a long lock, on the contrary, is released
above called strict 2PL protocol. In this variation, a transac- after the transaction has completed. We discuss next the ram-
tion does not release any lock until it commits or aborts. Any ifications of the four levels of isolation defined by the SQL2
locking protocol can lead to a problem called deadlock. A standard.
deadlock occurs when two or more transactions are waiting Level 0. It is also called browse, dirty read, or read uncom-
for one another to release locks on some data items. mitted. This is permitted for read-only transactions. As the

name suggests, it allows a transaction to read other transac-
Timestamp Ordering Protocol. Timestamps are used to rep- tions’ uncommitted data. No locks are set by the transaction

resent the order of transactions in a schedule. Transactions running with this level.
can be totally ordered according to their timestamps. The Level 1. It is also known as read committed or cursor stabil-
timestamp ordering rule is based on operations conflict dis- ity. Dirty reads and lost updates cannot occur in this mode.
cussed before. This scheme imposes a serial order on the par- The system sets short shared locks on data that is read and
ticipating transactions based on their timestamps and hence long exclusive locks on data that is written.
guarantees serializability. However, there are possible seriali- Level 2. It is called repeatable reads. It does not have any
zable schedules that are not allowed under the time stamp of the three transactional dependencies. That is, it provides
ordering protocol. true isolation according to the theory of serializability dis-

In this scheme, the system assigns a start timestamp to cussed before. The system sets long shared locks on data that
every transaction T denoted by TS(T). A transaction Ti is con- is read and long exclusive locks on data that is written.
sidered earlier than Tj, if TS(Ti) � TS(Tj). Two variables are Level 3. This is called serializable. This level subsumes
associated with each data item that represent the time of its level 2 and provides additional protection against phantom
last read and last write. This scheme uses the following read tuples. A stronger definition of repeatable reads demands
and write rules. A transaction’s write request is valid only if that a transaction should not see an extra tuple—the phan-
that data item was last read and written by an earlier trans- tom tuple—that is inserted in the middle of its two read oper-
action. A transaction request to read a data item is valid only ations and that satisfies its search criterion. This level may
if the data item was written by an earlier transaction. If a require a shared lock at the table or the predicate level (14).
transaction violates either of these two rules, then it must be
aborted and later restarted.

Recovery

Recovery of failed or aborted transactions is an important ca-Optimistic Concurrency Control. This protocol is called opti-
mistic, since it is based on the observation that in some class pability provided by all sophisticated database systems. Re-

covery techniques are often closely tied to the concurrencyof applications, the likelihood of two transactions accessing
the same data item is low. Transactions are allowed to pro- control mechanism. Recovery from transaction failures means

that the state of the database is restored to a correct stateceed as if there were no possibility of conflict with other trans-
actions, and all data changes are applied to the local copies of that existed in the past. In order to construct the correct
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state, the system must keep information about changes made needs to transfer a database object to or from the database, it
to the data items during transaction execution. This informa- contacts the data manager, which transfers the higher level
tion is called the system log, which must be stored in the database object request into lower level file operations. The
nonvolatile memory outside the database. file operations are then performed by the file manager. The

In case of noncatastrophic failures, the strategy for restor- query processor, data manager, and file manager contact the
ing the state of the database may either require undoing or system catalog for the description of database objects. The fol-
redoing of some transactional operations. Both in the deferred lowing subsections will describe each module in detail. The
and immediate update techniques, the updates are first per- reader is referred to Refs. 6 and 8 for further reading on
sistently recorded in the system log before actually changing DBMS architecture.
the database. The information recorded in the system log is
crucial for recovery, and is used in both techniques. Stored Data. Database objects stored in the stored data can

include tables and indices. Indices are built for fast associa-
SYSTEM ARCHITECTURE AND tive access to desired rows in a table. Their function is similar
IMPLEMENTATION TECHNIQUES to that of an index for a book. Database objects are generally

stored as files. For example, all rows in the table PART are
The implementation of a DBMS varies from one system to stored as a file. An index built for the table PART is stored as
another. To simplify the presentation, we focus on the imple- another file.
mentation of a relational database management system
(RDBMS).

System Catalog. The system catalog is also known as meta-
data or data dictionary. The database stores user data andDBMS System Architecture
the system catalog stores metadata, which includes a descrip-The components within the dotted frame of Fig. 1 illustrate
tion of the database schema, the definition of tables and col-the internal component architecture of a DBMS. The stored
umns, and key and integrity constraints. For example, thedata store database objects such as tables that are managed
system catalog stores the definition of the PART table, speci-by the DBMS. The system catalog stores description of data-
fying the data types (e.g., part size is represented as an inte-base objects. In the database, database objects are stored as
ger). It also stores the key constraint that partkey is thefiles, which are logical abstractions of external storage de-
primary key of the table, and integrity constraints that it isvices. The abstraction allows the files to be accessed indepen-
involved in foreign key constraints with table PARTSUPP anddently of the type of physical device. The query processor
LINEITEM.takes a database statement, which can be a DML or a DDL,

Besides storing the description of database objects, the sys-generates an execution plan, and executes the plan (see Fig.
tem catalog stores information needed by other modules in12). During the execution, whenever the query processor
the DBMS, such as statistics of tables and columns, security
and authorization specification, concurrency control informa-
tion, and description of files in the database. For example, the
statistics on the part size of the PART table, such as maximum
and minimum part size, can be stored in the catalog and used
by the query processor to generate an optimal execution plan.
The security and authorization information are used by the
data manager to control access permission for data objects to
certain users. When concurrent accesses to the database are
supported, the data manager uses the concurrent access infor-
mation to ensure correct execution of these accesses. The file
description is used by the file manager for accessing the data-
base files.

Database Statements. Database statements include DML
and DDL. Database statements are the only way users can
modify or query the objects stored in the database. This was
discussed in ‘‘Data Manipulation in the Relational Model.’’

Data Manager and File Manager

Storage Subsystem. The data manager and the file manager
constitute the storage subsystem in a DBMS.

The file manager manages external storage devices such
that objects stored on them can be accessed independently of
the type of device (e.g., disks, RAM-disk, and tapes) and ad-
dress.

An external storage device is partitioned into disjoint
pages, and the read/write access to the device is performed in

Parser

Parse tree

Preprocessor

Query optimizer

Plan compiler

Query executor

Query

Query tree in Canonical Form

Execution plan

Executable code

Query result units of pages. For example, a page can be of size 2, 4, or 8-
KB. Writing or reading one page to/from the device is calledFigure 12. Query processing architecture.
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one I/O (input and output). A database file consists of a num- information necessary in case of failure, and recovers error
ber of pages. when failure occurs. The lock manager provides lock and

The data manager takes a request to retrieve a row from unlock service for various lock requirements in the system.
the query processor, determines the page number on which The data manager is responsible for ensuring the ACID prop-
the record resides, allocates a buffer in main memory to hold erties for transactions. For more detail on implementation is-
the page, and sends a request to the file manager to retrieve sues for these managers see to Ref. 2.
the page. A buffer is used for mapping a disk page into main
memory. The file manager then determines the physical loca- Associative Access and Index. A DBMS allows associative
tion of the page on the device, and retrieves the page into the access to a table to improve the efficiency of looking up rows
allocated buffer. In case the desired page is already in a in a table. Such access is accomplished by using indices on
buffer, the data manager does not need to contact the file tables. An index consists of a set of index entries. Each index
manager. It simply returns the row from the buffer to the entry corresponds to a row in the table. An index entry con-
query processor, and consequently no I/O is done. Access to

sists of an index key and the rowid. A rowid stores the physi-
the external storage device (also known as secondary storage

cal address of the row for this index entry on a secondarydevice) takes much longer than main memory access. Thus
storage device. An index key consists of one or more columnbuffering of data pages speeds up the DBMS considerably. A
values in the table. The organization of the index entries de-similar process occurs while writing a row to the device.
pends on the type of index. The user can build multiple in-The query processor regards the database as a collection of
dexes on a table. An index is updated when its correspondingrecords, the data manager regards the database as a collec-
table is modified. There is a difference between a key of ation of pages, and only the file manager knows cylinders,
relation as explained in the section on the ‘‘Relational Datatracks, arms, and read/write heads of the device. Therefore,
Model. Basic Concept’’ and an index key. A key of a relationthe file manager is the only component that is device depen-
can uniquely identify a tuple, whereas the index key for adent, and the remaining DBMS system is device independent.
table is not necessarily unique. To avoid confusion, an indexThe mapping relationship is illustrated in Fig. 13. In some
key that is unique is called a unique key and its correspond-systems, the file manager is a component of the operating sys-
ing index is called a unique index. There are two types oftem, while others implement their own specialized file man-
commonly used indices, B-tree and hash.ager on raw disks.

B-Tree Index. A B-tree index is a multilevel index. The firstThe data manager contains the log manager, lock man-
level of the index consists of index entries (key, pageid) whereager, transaction manager, and buffer manager. The buffer
pageid is the address of a page and key is the first key of rowsmanager is responsible for making the buffer pages ad-
on the page. The second level of the index consists of indexdressable in main memory, coordinating the writing of pages
entries (key, pageid) where pageid is the address of a first-to disk with the log manager and transaction manager, and
level index page and key is the first key value on the page,minimizing the number of actual disk I/Os. The system log is
and so on until the highest level index entries can fit on ausually stored as a table, called log table. Each row in the log
single page. The single page at the highest level is called thetable records one read/write operation by a transaction. The
root and the lowest level pages are called leaf pages. Tolog manager maintains and provides read and write access
search for a row with key value k, we find a path from theto the log table. The transaction manager, through inter-
root to some leaf where the desired row must reside if it ex-acting with the log manager and the lock manager, gathers
ists. Then rows in the leaf are examined for a row with key
k. The goal of the B-tree is quickly to find rows matching a
particular range (or value) of the index key through a small
number page reads. For example, for the query ‘find parts
that are of size 5 to 7,’ the search starts at the root, where
the key range is 5–11; then follow the index key range 5–7 in
the next level, and consequently find the rowids for the first
and third row in the table PART.

Hash Index. A transformation algorithm, called hash
function, is used to transform the value of an index key into
another value, called hash value. The transformation pro-
cess is called hashing. An index key can consist of several
columns but the hash value is a single value. The rowids of
all rows in the table having the same hash value are stored
on the same pages (called a hash bucket) associated with the
hash value. The hash index is useful for retrieving rows based
on the value of its index key. For example, to build a hash
index on column size for table PART, the hash function may
hash 5 and 11 into the same hash value (bucket) 0, and hash
7 and 9 into the hash value (bucket) 1. Then, for the query
‘find parts that are of size 5,’ the DBMS hashes the key value
5 into hash bucket 0 using the same hash function, and finds
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the rowids of the two rows having size 5 and 11. It then com-
pares the value 5 with the values of the size column of theFigure 13. File and buffer manager.
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two rows and finds the rowid of the row with size 5. Based on Here we described some of the important operator properties.
We denote join as *, A, B, R as relations, and P, P1, P2, . . .,the rowid, it retrieves and returns the row.

Clustered Index and Nonclustered Index. If you go to a li- Pn as predicates.
Join is commutative and associative, so is the Cartesianbrary where books are placed on the shelves in order by au-

thors’ names, and want to find all the books written by Isaac product X
Cascade of selection (�):Asimov, you would first look for Isaac Asimov in the index,

then go to the shelves to find all his books. That is, the place-
ment of the books (data rows) is determined by author name σp1ANDp2AND...ANDpn(R) = σp1(σp2(. . . (σpn(R) . . .)

(index key value); this is called clustering. When the data
rows of a table are stored in the order of the index key value, Commuting � with join (and Cartesian product):
we call the index clustered index.The advantage of a clus-
tered index is that all data rows having the same index key σp(A ∗ B) = σp(A) ∗ B σp(A × B) = σp(A) × B

values are likely to be stored on the same data pages, so after
where P operates only on columns belonging to A.the first row is accessed, the data pages have been read into

This means that we can freely permute the order of joinsa buffer, and no more disk I/O is required for those other
and single-table selections in a query. This is the foundationrows. Thus, the clustered index can significantly reduce read
of the query-processing algorithms and optimization dis-time for equality selection operation on the clustered index
cussed in subsequent sections. For a given query with multi-key. A B-tree clustered index can also reduce read time for
ple joins and selections, the optimizer decides how to do eachrange selection operation on the clustered index key.
join and selection and the evaluation order of the joins andBesides index maintenance, allowing efficient concurrent
selections. For more description on the properties of relationalaccess to an index is also an important performance issue for
operations, see Ref. 8.OLTP applications. For discussion of this and other issues

and other types of indices (e.g., bitmap indexes, grid file, k-d
tree and R-tree indices) see Refs. 2, 15, and 16. Preprocessor. The preprocessor performs type checking,

access permission validation, integrity constraint processing,
view resolution and produces a canonical representation ofQuery Processor
the input query. Type checking enforces that the objects in

Figure 12 shows the general architecture of a query pro- the query, such as columns and aggregation functions, are
cessor, which consists of the following steps: parsing, prepro- referenced correctly. Access permission validation is done to
cessing, query optimization, plan compilation and query exe- ensure that the objects are accessible only to the authorized
cution. Some systems may perform one step in several users. Type checking and access validation are done through
modules, while some may merge several steps. The parser enquiries to the system catalog. It then performs view resolu-
checks the syntax of the input query and produces an internal tion to expand views into the query. Then, the preprocessing
representation called parse tree. The preprocessor takes step generates an internal representation, called query tree,
the parse tree and produces an internal canonical representa- of the query using a different form than that of the parse tree.
tion called query tree. The optimizer takes the query tree, Integrity constraints would then be added into the query tree.
evaluates various query execution options, and produces an Canonical Query Tree. There are generally many different
optimal query plan. ways of expressing a query in SQL. For example, there are

It can be shown that reordering the execution order of several dozen ways of expressing Q5 in SQL. The perfor-
many relational operators under certain conditions will not mance of the query should not depend on how the user writes
change the result set. The optimizer mostly evaluates differ- the query. Therefore, during preprocessing, query transfor-
ent execution orders of operators and different implementa- mation algorithms are applied to the query tree to transform
tion algorithms for each operator. The query plan produced by it into an equivalent canonical form. Two query trees are
the optimizer specifies the operator execution order along equivalent if they represent the same result set. The canoni-
with the implementation algorithm for each operator. The cal form is neutral to any optimizer decision and thus allows
plan compiler transforms the query plan into a form execut- any choices the optimizer makes. For example, Figure 14
able by the query executor. The executor then executes the shows a typical canonical query tree for query Q5. A query
plan and returns results. We describe these steps in detail tree is a tree structure that represents tables as leaf nodes
below. We will use the following query as an example and relational algebra operators as internal nodes. The order
throughout this section: of the operations is bottom-up: the lower level operation is

Q5. Retrieve the name and type of the parts supplied by performed first and feeds its result to its immediate higher
‘Jackson’. level operation. In Fig. 14(a), the leaf nodes represent the op-

erations of selecting all rows from the table PART, PARTSUPP,
and SUPPLIER respectively. The second-level operation is a
Cartesian product of the three result sets from selecting the
three tables. The third-level operation is a selection operator,
which takes the result set from the Cartesian product, and

SELECT PART.name, PART.type
FROM PART p, SUPPLER s, PARTSUPP ps
WHERE p.partkey = ps.partkey

AND ps.suppkey = s.suppkey
AND s.name = ‘Jackson’;

selects rows that satisfy the predicates. The final (topmost)
operation is a projection operation that projects the result set
from the selection operation immediately below it to produce
the final query result. This query tree actually represents anCommutativity and Associativity of Relational Operators.

Many relational operators are commutative and associative. inefficient way of executing query Q5. For example, if there
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An index scan uses equality or range predicates to search
the index entries and retrieves the data rows matching the
predicates. Therefore, index scan retrieves only data pages
that contain the qualifying rows. An index scan requires the
presence of the search predicate to search the index entries.
If the index is a hash index, then the index scan is a hash
index scan. Similarly there is a B-tree index scan. For use
of a hash index scan, there must exist an equality predicate,
like ‘‘name=‘Jackson’’’, with the columns referenced being
hash index key. Therefore, if such an index exists for SUP-
PLIER, then the above selection can be done by a hash index
scan. Equality or range predicates on the index key are re-
quired for the B-tree index scan.

Join Methods. Join operation is one of the most time-con-
suming operations in query processing. Join is described in
the section on ‘‘Relational Algebra.’’ There are three com-
monly supported join methods to implement the join operator:
nested-loop join, sort merge join, and hash join.

Nested loop join operates on two tables, the outer table
and the inner table. For each row in the outer table, the algo-
rithm retrieves all rows of the inner table, and outputs a re-
sult row for a match between an outer row and an inner row
based on the join predicate. The optimizer decides the inner
and outer order.

For example, for the join between table SUPPLIER and
PARTSUPP in query Q5, assuming that the optimizer decides
that PARTSUPP should be the outer table and SUPPLIER
should be the inner table, the nested loop join proceeds as
follows:

   part.name, part.type

partsupp.partkey
= part.partkey  

x

partsupp

part.name, part.type

supplier part

supplier.name
 = ‘Jackson’

  supplier.suppley 
 partsupp.suppkey

(a) Canonical query tree

(b) Query tree
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nested loop index join
supplier.suppkey =
partsupp.suppkey

table scan: part

hash join
part.partkey = partsupp.partkey

table scan: supplier
supplier.name
=  ‘Jackson’

index scan
(suppkey):
partsupp

ΛΛ

Figure 14. Canonical query tree and query plan for query Q5.

for each row in the PARTSUPP table
for each row in the SUPPLIER table

if (PARTSUPP.suppkey � SUPPLIER.suppkey),
output the result row

The nested loop join scans the entire inner table once for each
are 100 rows in each table, the Cartesian product would gen- outer row. For example, if the outer table has one million
erate 1 million rows before the selection operation is invoked. rows, the inner table would be scanned a million times. Thus
A better plan would be to perform some or all of the selection the nested loop join algorithm generally performs poorly com-
predicates as early as possible. pared to other join methods. The advantage of the nested loop

A good example of a canonical query tree can be found in join algorithm is that it applies to any type of joins, while
Ref. 17 and more discussion on the canonical query tree can other, more efficient join methods apply only to equi-joins.
be found in Ref. 8. The nested loop index join is a special case of nested loop

join, in which the inner scan is always an index scan using
an index key lookup on the join column. For example, for theQuery Processing Algorithms. In a relational DBMS, algo-

rithms for implementing all relational operators (e.g., selec- same join as above, if the SUPPLIER table has an index on
the column ‘suppkey,’ then the join can proceed as follows:tion, join, Cartesian product, group-by, order-by, and aggrega-

tion function) are required by the query executor to perform
the operations. This section describes various such algo-
rithms.

Access Paths. An access path implements the selection and

for each row p in the PARTSUPP table
use p.suppkey to search index on SUPPLER.suppkey

if match is found
retrieve SUPPLIER row and output resultprojection operations. Several alternative access paths are

available in a DBMS, and some may only apply with certain Therefore, an index nested loop join does not scan the entire
inner table. It only scans the inner rows (and thus the innerselection predicates. Table scan and index scan are two essen-

tial types of access paths. data pages) and some index pages that match the outer row.
The index used in the inner scan can be a temporary indexA table scan retrieves all rows in a table, applies the se-

lection predicates to the columns for each row, then returns that is created at query execution time and destroyed once
the query is finished. The index nested loop join generallyqualifying rows. For example, for table SUPPLIER in query

Q5, the executor retrieves all 5 rows in the table, applies the performs much better than the nested loop join, especially
when the outer table is small and the inner table is verypredicate, name = ‘‘Jackson’’, and returns the only quali-

fying row <S12, Jackson, 11 Main St, S.F., large.
The sort merge join only applies to equality join predi-4155551212, 900.00>. Therefore, a table scan needs to re-

trieve all pages of the table into main memory. cates and it requires that both inputs be sorted (ordered) on
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the join columns before the join occurs. Both tables are for each table in the query, join algorithms for each join, and
algorithms for various other operations (e.g., order-by andscanned in order of the join columns. If there are no duplicate

values in one of the joining columns, then the sort merge join group-by). In the case of a distributed database system, the
optimizer determines the site where data resides and how toreads both input interleavingly and return rows having the

same value for the join columns. When there are duplicates perform operations across sites. As mentioned earlier, many
relational operations are commutative and associative; theon the join columns from both inputs, then the position in one

input needs to back track when duplicates from the other in- optimizer also evaluates available operator evaluation orders
and determines the optimal order. The optimizer produces theput come in. There are some variations of the sort merge join.

For example, both input tables may have an index on the join- execution plan, which specifies the evaluation order of opera-
tors and an implementation algorithm for each operator.ing columns, such that the scan on the inner table is an index

key lookup. Figure 14(b) shows an execution plan produced by the opti-
mizer. The access paths for PART, PARTSUPP, and SUPPLIERThe hash join also requires that the join predicate be an

equality predicate. The most commonly used hash join algo- are table scan, index scan using the index on suppkey, and
table scan, respectively. While doing the scan on table SUP-rithm works as follows. The optimizer decides that one input

table should be a probe table, and the other input should be a PLIER, the selection predicate ‘‘SUPPLIER.name = ‘Jack-
son’’’ is applied to the supplier rows to eliminate unqualifiedbuild table. The build table is scanned and a hash index (hash

table) is created on its join columns. Once the hash table is rows; then a nested loop index join is used to join the interme-
diate result from the table scans of SUPPLIER (the outer ta-built, the probe table is canned and the join column of the

probe rows is hashed using the same function. We then use ble) with PARTSUPP (the inner table); then a hash join is used
to join the intermediate result from the nested loop join (thethe hash value to look up the hash table. Once a probe row

hashes into a hash bucket containing some build rows, the build side) with the scan results for PART (the probe side);
and finally, the resulting rows are projected on the desiredjoin predicate is evaluated to find matches between the probe

row and the build rows in the bucket. The matching rows are columns to produce the final query result.
The optimizer generally uses a cost model to measure thethen returned. If the hash table cannot fit in main memory,

it is partitioned into several hash tables (called partitions) cost of each query plan. The goal of the optimizer is to find
the cheapest plan. With the permutation of choosing differentsuch that each partition fits in memory. The probe input is

then partitioned similarly and each probe partition is joined algorithms for operators and different operator evaluation or-
ders, there are an exponential number of possible querywith its corresponding build partition. This is called hybrid

hash join. For a complete description see Ref. 18. The major plans. A commonly adopted optimization objective is minimiz-
ing query resource consumption. The optimizer cost model isadvantage of the hash join is that there is no requirement of

order on join inputs. The hash join requires reading both ta- designed to measure the resource consumption. Lower cost
means less resource consumption.bles entirely. Index nested loop join methods sometimes out-

perform the hash join because the index nested loop join does Query resources include CPU time and the number of disk
I/Os required. In case of a distributed database, network com-not need to access the entire inner table.

In most DBMSs, joins of three or more tables are performed munication cost is also considered one of the resources. Min-
imizing query resource consumption is generally adequate forby joining two tables first, and then joining the resulting in-

termediate table with the third table, and so on. minimizing the query response time for serially executed
query plans, since serial execution does not allow intraopera-Aggregation Algorithms. Aggregation algorithms implement

the group-by operator using hashing or sorting. Consider the tor parallelism. Thus, even if a table is stored on two disks,
the executor would scan one disk, and upon finishing, scanfollowing SQL query.

Q6. Find the total price for parts with the same size. the second disk. Since CPU, network, and I/O costs are in-
comparable, each cost is given in predetermined weight (w1,
w2, w3) so that the cost of an operation can be expressed asSELECT size, sum(price) FROM PART GROUP BY

size one single unit:
Hash aggregation hashes the value of column ‘size’ for

each input row and inserts the row into a hash table. Once
the hashing process is finished, each hash bucket is examined

operation cost = w1 ∗ CPU time + w2 ∗ number I/O

+ w3 ∗ network communication cost
and rows with the same value of ‘size’ are grouped together
and the result is returned. The cost of each plan is the sum of the cost of each operation

Sort aggregation sorts (orders) the input rows based on the in the plan.
value of ‘size.’ Once the sort is completed, the sorted stream Optimizer Search Algorithm. The optimizer uses a search
is scanned and rows belonging to the same group are scanned algorithm to search over all possible plans (called the
consecutively and the result is returned. search space) and produces the plan it considers the cheap-

Hash aggregation should generally outperform sort aggre- est. The most commonly used search algorithm is the dynamic
gation since sort aggregation is higher in computational com- programming algorithm. Essentially, it starts by building all
plexity. smaller plan segments (called partial plans), then gradually

Readers are referred to Refs. 8 and 19 for more discussion building larger and larger partial plans until a complete plan
on query processing algorithms. is built and chosen. During the process of building these par-

tial plans, the optimizer prunes more expensive partial plans.
Property plays an important role during the process. A prop-Query Optimization. The process of generating an optimal

execution plan is called query optimization. The optimizer erty is a description of the query result produced by a partial
plan or a complete plan. It can be columns, sort order, predi-decides the table access paths (e.g., whether to use an index)
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cates that have been applied (and thus the result satisfies). ator, such as a table scan, index scan, nested loop join, or sort.
The iterator for a binary operation has two input iterators,No pruning is done if both competing partial plans have dif-

ferent properties. In summary, the algorithm first generates whereas the iterator for a unary operation has one input iter-
ator. An iterator itself can be an input of another iterator,different access paths that contain different properties. Then,

the algorithm generates all plans joining any two tables with and may not have any input iterator (e.g., a scan iterator). A
parent iterator has input iterators (called child iterators).different properties using all the access paths created in the

first step. Then all plans joining three tables with different For example, for the table scan iterator, the open function
is to open a table, the next function is to read the next row inproperties are built using all partial plans created in previous

steps, and so on until a complete plan is generated. During the table, and the close function closes the table. When open-
ing a table, the scan iterator opens the database file corre-the process, each partial plan with a distinct set of properties

is built exactly once. For example, if there exists a B-tree in- sponding to the table, and prepares for retrieving a row. The
next function of the scan iterator then reads a row and re-dex on column partkey for PART in query Q6, the optimizer

would generate two access paths: one performs an index scan turns to its parent. The parent iterator calls the next function
repeatedly until there is no more data row available. Then itusing the index and one uses a table scan. The index scan has

the property that the scan result is sorted on column partkey, calls the close function to close the database file and finish
the scan. Therefore the scan iterator has no input iterator. Inwhich can potentially be used in a sort merge join with PART-

SUPP on the partkey. Therefore both partial plans are kept. Fig. 14, each box represents an iterator implementing each
operator.The reader is referred to Refs. 8, 19–22 for more discussion

on query optimization. Some parent iterators require only one row from their
child iterators before they start their own execution. They are
called nonblocking iterators. A nonblocking iterator pro-Query Execution. The part of the query processor that per-

forms the query execution is called query executor. There cesses a row as soon as it is returned from its input iterators.
And if its parent is also a nonblocking iterator, its parent alsoare generally two types of execution that the query executor

needs to handle: data request and operational request. processes the row immediately. The process can possibly cas-
cade up to the root of the execution tree. One kind of parentData request includes the request to transfer database object

to or from the database, such as a table scan or an index iterator (the blocking iterator) requires all rows from its
child before it can start processing. Table scan, index scan,build. It may also require creation, deletion, or modification

of a database object. The executor accomplishes data requests nested loop join, and nested loop index join are all non-
blocking iterators. Sort merge join, hash join, and aggregationthrough the data manager. The operational request imple-

ments algorithms selected by the optimizer for the operators. are blocking iterators. Therefore, nonblocking iterators do not
require temporary memory for storing the rows they receive,It operates on the objects fetched from the database. Selec-

tion, projection, join, sorting, hashing, grouping, and aggrega- while blocking iterators do.
For parallel execution of an iterator tree, an iterator calledtion are all operational requests. The operational requests are

generally accomplished within the executor. The query execu- an exchange iterator is inserted between two iterators. The
exchange iterator does not perform any data manipulation.tor operates in main memory and may use the external stor-

age device-like disk as temporary storage area for operations Its sole responsibility is to provide data redistribution, pro-
cess management, and flow control between the two iterators.requiring large amount of memory (e.g., sort and hash).

There are generally three types of query execution system, An iterator schedules itself, and the entire query plan is
executed within a single process. Communication between it-depending on the shape of plans it is capable of executing.

The three types of plans are left deep, right deep, and bushy erators is done through function calls and is inexpensive.
Each iterator produces one intermediate result row at a timeplans. The left deep plan allows only the outer table of a join

to be an intermediate result, while right deep plans allow on demand from its parent. The iterator can schedule any
type of trees, including bushy trees. Each iterator is a self-only the inner table of a join to be an intermediate result.

While the left deep engine is common among existing com- sufficient entity that does not need to understand the com-
plexity of other iterators in the plan. Adding one new iteratormercial systems, it has been shown that right deep plans are

more efficient when there is a large amount of main memory. does not require changes to the existing iterators. Thus an
execution engine using the iterator model can be extended byLeft deep or right deep engines simplify the query optimizer

search space and execution engine, the bushy engine is more simply adding new iterators. For a more detailed description
of the iterator model the reader is referred to Ref. 23. Graefeflexible, allowing either input of a join to be an intermediate

result from another join. (18) gives a survey of query processing techniques.
The query executor uses an execution model to control

data flow between operators, schedule operations, and provide
ADVANCED TOPICS

a communication mechanism among operators. A good execu-
tion model should minimize communication cost between op-

Data Mining
erators, simplify the communication mechanism and allow
easy extension to the execution engine (like adding a new op- Data mining is used to extract patterns or rules from large

databases automatically. It combines techniques from ma-erator). The following describes a commonly used execution
model called iterator mode. chine learning, pattern recognition, statistics, databases, and

visualization. Data mining has become important because ofIterator Model. The iterator model provides a generic ap-
proach for implementing various algorithms and scheduling several factors. The cost of computing and storage is now low

enough that companies can collect and accumulate detailedmechanisms within the execution engine. An iterator has
three functions: open, next, and close. It implements an oper- data about their business. Further, data warehousing tech-
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niques have enabled the consolidation of all data needed for then cleans the data and transforms them into a desirable
analysis into a single database. Lastly, intense competition is format. Data from different sources are then integrated into
leading businesses to look for new ways of gaining insight a single database schema and stored in the data warehouse.
into their businesses in the hope of discovering some competi- Therefore, the data stored in data warehouse are historical
tive advantage. and derived data. The data warehouse server also maintains

Data mining may be used to derive several kinds of ab- a metadata repository. The data are periodically refreshed at
stractions. Some examples are association rules, classifica- certain time intervals. Users access the data through a vari-
tion, and clustering. An example of an association rule is ‘‘if ety of front-end applications, such as query and report, plan-
a customer buys milk and bread she/he also buys eggs.’’ The ning and analysis, and data mining. These applications often
importance of such a rule is measured by how often milk and have graphical user interfaces. Query and reporting applica-
bread are bought together (called the support for the rule) tion allows users to query the data warehouse and generate
and the fraction of purchases of milk and bread in which eggs reports. Planning and analysis address essential business
are also purchased (called the confidence). Data mining tech- problems such as budgeting, forecasting, sale analysis, what-
niques are available that, given the minimum acceptable sup- if analysis, and financial analysis. Data mining application
port and confidence, can be used to find all association rules allows users to obtain patterns or rules for the data automati-
of the form ‘‘if a customer buys X and Y he/she also buys Z.’’ cally.

Classification is the division of data into classes based on A data warehouse is generally modeled using a star
the values of some attributes. The system is first trained by schema or a snowflake schema, as shown in Fig. 16. A star
the use of a set of training objects. After training is complete, schema (shown in Fig. 16 inside the dotted line) consists of
new objects may be classified. For example, a credit approval a fact table and a number of dimensional tables. The fact ta-
application may be trained using credit data for cases whose ble is very large and contains detailed information for each
outcome is known. record in the data warehouse. A dimensional table describes

Clustering requires discovering the criteria for dividing an attribute in the fact table. For example, the PART table
data into new classes. Data are clustered into classes based describes each part in the LINEITEM table. A dimensional ta-
on their features with the objective of maximizing intraclass ble and the fact table maintain a foreign key relationship.
similarity and minimizing interclass similarity. When a certain dimension needs lower level information, the

dimension is modeled by a hierarchy of tables, such as the
Data Warehouse and OLAP data, month, and year tables in Fig. 16. The schema is then

called snowflake schema. Thus, data in the data warehouseA data warehouse is a subject-oriented, integrated, time-
are modeled multidimensionally, with each dimension corre-varying, and consistent collection of data used primarily in
sponding to a dimension table.organizational decision making. It is a popular approach for

On-line analytic processing (OLAP) is a data warehous-implementing a decision support system (DSS). Data ware-
ing technique based on multidimensional modeling of the or-housing is a collection of decision support techniques. It is
ganizational data. Rather than viewing the data as tables ofmainly used in an organization by executives, managers, and
records, OLAP introduces a multidimensional data modelanalysts to make faster and better decisions. Data ware-
that is believed to be more intuitive for nontechnical knowl-houses are implemented on a DBMS called the data ware-
edge workers. Data are viewed as a multidimensional cube.house server. Figure 15 shows the architecture of a data ware-
Each dimension of the cube represents an attribute and eachhouse. The data warehouse server extracts data from various
cell contains a numeric or summary attribute. For example,sources, which can be an OLTP DBMS within the organiza-

tion, or other sources such as flat files and spread sheets. It we may have sales volume as a summary attribute with di-
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Figure 15. Data warehouse architecture.
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Figure 16. Star and snowflake schemas. Star schema
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mensions such as product, time, and geography. A dimension rialized, exploiting the views for answering queries, and view
maintenance. (See Refs. 24–26 for a detailed description.)can be hierarchical. Time may be viewed in units of years,

quarters, months, weeks, or days. Geography may be viewed Complex query optimization is another important issue. An
OLAP server needs to handle queries that contain aggrega-as country, region, city, or even individual sales offices. A

query may be posed, for example, to find the total sales vol- tion and subqueries. Subquery flattening and commuting ag-
gregation and joins are two important techniques. (Referencesume for each product for each country in the month of Decem-

ber 1997. 27–31 have detailed descriptions of these techniques.) Other
research issues include approaches for fast loading of data,The OLAP model defines certain operations on data cubes.

Roll-up is used to summarize data. Drill down is used to go data cleaning techniques, data warehouse management tools,
data warehouse design tools, extension of SQL to support spe-from higher level summary data to lower level data. For ex-

ample, for a particular product, we may find the detailed sales cial requirement of OLAP queries. For other issues and more
detailed description on data warehousing see Refs. 32 and 33.data for each office on a certain data. Slicing and dicing are

similar to the selection and projection operators of the rela-
tional model. Pivoting is used to reorient a cube. Active Databases

The data warehouse server can be a standard relational
Active database systems support rules (called productionDBMS, an OLAP server using a relational DBMS for storing
rules) that specify data manipulation operations (called ac-its data (ROLAP), or a multidimensional OLAP (MOLAP)
tions) to be executed automatically whenever certain eventsserver that stores multidimensional data in special format us-
occur or conditions are satisfied. The rules provide a powerfuling its own data storage subsystem. The ROLAP server can
mechanism for supporting such DBMS features as integritytake advantage of the strength of relational DBMS which is
constraint envorcement, view maintenance, and access autho-capable of handling large size data warehouse containing ter-
rization. Active database systems are DBMS that supportabytes of data.
production rules. Active database systems also provide a pow-One of the key issues in data warehousing is how to index
erful platform for implementing large and sophisticated ex-the data so that complex queries can be answered quickly.
pert systems and knowledge base systems. For example, us-Bitmap indexes are used to speed up selection, projection, and
ers can specify a rule like ‘‘delete a supplier from theaggregation. Bitmap indexes use bit vectors to represent rows
SUPPLIER table when the supplier does not supply parts any-and column values. This provides fast access for a class of
more.’’ Some systems call rules as triggers. A rule can takequeries but is inefficient for data modification operations.
the form: on event ifcondition then action.(Reference 15 has a detailed description of bitmap indexes.) A

The rule is triggered when the event occurs. Once the rulejoin index maintains the relationships among two or more ta-
is triggered, the condition is checked on the data and, if satis-bles and is essentially a precomputed join. Thus it can speed
fied, the action is performed. Examples of events include dataup join operations, but the index is expensive to maintain
modification (like insert, update, delete rows or tables), datasince data modification to one of its member tables could re-
retrieval (select), and timing. For example, when a row (part)sult in change of the index.
is deleted from the PART table, a rule may be specified to de-Materialized view is another important research topic for

data warehousing. The issues are deciding the views to mate- lete all rows in the PARTSUPP table that record the suppliers
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for the part. Rules with timing event may be triggered at cer- plicit control flow (2). Minimization of lost work is achieved
by durably storing of parts of a transaction without compro-tain time intervals or times. Conditions include query, predi-

cates over the database states, and predicates over the change mising isolation. Recoverable computation is needed for trans-
actions that take days or weeks but still represent one unit ofin the database states. When the condition is a query, it usu-

ally returns true when the query returns any data. The condi- work that must be organized so that the transaction can be
suspended and resumed. Note that in the classical model oftion part can be empty so that the event always triggers the

action. The actions of the rules can be data modification, data transaction there is no notion of suspending a transaction
that can survive system shutdown/restart. Explicit controlretrieval, rollback or abort of the current transaction, or even

sending an email. Active DBMS allow the user to specify how flow requires that transactions be able either to proceed by
correcting the changes or to discard all transactional changes,to resolve conflict, that is, the choice of the rule to be executed

when multiple rules are triggered. including the durable ones.
Sagas (38) were introduced to deal with long-lived transac-Important research issues include improving the expres-

sive power of rules, efficient maintenance of rules, rule pro- tions. Sagas are linear sequences of transactions with a pre-
defined order of execution and a corresponding set of compen-cessing, conflict resolution methods, the semantics of error re-

covery during rule processing, deadlock avoidance or sating transactions; a saga completes successfully if all the
subtransactions are committed; if any one of the subtransac-resolution during rule execution, methods for ensuring DBMS

performance with the present of rules, smooth integration of tions fails, then all its preceding committed subtransactions
are undone by executing their corresponding compensatingthe rule system with the DBMS, real time monitoring, sup-

port for application development, and parallel execution of subtransactions. A method for implementing long-running
transactions (called work-in-progress activities) on top of a re-rules. For a more detailed description, see Refs. 34 and 35.
lational database system is described in Ref. 39; Subtransac-
tions can be durably committed in this scheme, but their ef-Extended Transaction Models
fect remains invisible to the outside observer; in case of

The current state of the art in transaction processing is char- failure, work-in-progress activity allows undoing of commit-
acterized by the classical transaction model discussed in the ted subtransactions without requiring a separate component
section on ‘‘Transaction and Concurrency Control.’’ These for compensating transactions; it provides minimization of
transactions focus on ACID properties, are flat, and provide a lost work, recoverable computation, and explicit control flow.
single execution framework. This model has the great advan- Work-in-progress activity as well as sagas provide increased
tage of conceptual and formal simplicity, and it has proved to transaction concurrency by relaxing the requirement for strict
be a powerful and widely accepted concept. However, applica- isolation. Other proposals include migrating transactions (40)
tions are getting more complex, integrated and sophisticated, and flexible transactions (41). Strict isolation is easy to imple-
and their needs are far from being well served by the classical ment, but quite restrictive in some cases and unacceptable
transactions. As a result, many extended models have been for long-running activities. A related area of active research
proposed. They permit the modeling of higher level operations involves extending the classical transactional model by de-
and exploit application semantics. In addition to the exten- scribing dependencies that arise on shared data during con-
sion of internal transactional structure, they seek to provide current execution. There are proposals (42,43), for this model
selective relaxation of atomicity and isolation properties. of transaction that preserve invariants over database.

A common extension of flat transactions is nested trans-
actions (36), which is a set of subtransactions that may re-

Spatial Database
cursively contain other subtransactions, thus forming a trans-
action hierarchy. Nested transactions may provide full Spatial data is a term used to describe spatial objects made

up of points, lines, regions, surfaces, and polygons. Spatialisolation at the global level, but they permit increased modu-
larity and finer granularity of failure handling; complex inter- data can be discrete or continuous. Examples of spatial data

include maps of cities, rivers, roads, mountain ranges, andactions (37) may take place between a transaction and its
subtransactions, while the top-level transaction retains final parts in a computer-aided design (CAD) system. New applica-

tion areas that require storing and querying of spatial datacontrol of overall commitment and rollback. Savepoints are a
special case of nested transactions. Several commercial rela- include geographic information systems (GIS), CAD, com-

puter-aided manufacturing (CAM), remote sensing, environ-tional database systems provide savepoints, or a simple form
of nested transactions. Chained transactions allow for com- mental modeling, and image processing.

There are several levels at which queries to spatial datamitting certain stable, intermediate results so that they will
not be lost in case of system failure, while still keeping control can be described. At the highest level, the most common que-

ries are to display the data, to find a pattern in the data, orover resources that should not be allocated to other transac-
tions; the chained transactions can be categorized as flat predict the behavior of data at another location. Another class

of query is polygon or simple overlay, which requires an oper-transactions. Multilevel transactions are a variant of nested
transactions that allow for an early commit of intermediate ation that may be termed a spatial join. Focal queries include

search, proximity determination, and interpolation.results of lower levels inside the transaction while isolation is
still controlled at higher levels, provided that there are One of the key issues in building a spatial database man-

agement system (44) is deciding how to integrate spatial andcounter (or compensating) actions to the committed result
that can be executed in case of a rollback. Long-lived trans- nonspatial data. Many researchers use the classifications ded-

icated, dual, and integrated for different architectures. Dedi-action is an important class of transactions that generally
have three characteristics: minimization of lost work due to cated systems are built to support only spatial data and

therefore are not extensible. Dual architectures are based onsystem or program failures, recoverable computation, and ex-
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distinguishing between spatial and nonspatial data by using monotonically; furthermore, the predicates in temporal que-
ries are complex and harder to optimize. Temporal overlapdifferent data models. Dual architecture implies the existence

of two storage managers; there are problems such as locking and inequality comparisons are quite common. Interested
readers are referred to Tansel (46) for a comprehensive dis-integrity and synchronization in this scheme. An integrated

architecture is more general. It involves extending nonspatial cussion on this topic.
database systems with their own abstract data type and effi-
cient access methods for these data types. Query optimization
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