
COMPUTATIONAL COMPLEXITY THEORY

Computability is the field of theoretical computer science
that formally studies the power of computational models.
The objects of the study are mathematical problems, more
precisely computations of functions from a certain set of
mathematical objects to another such set. A computational
model is a specification of the device that performs the com-
putation. A fundamental question in computability theory
is whether a given mathematical function has an effective
procedure in a given computational model. By effective we
mean that the procedure finds the correct answer for ev-
ery instance of the problem. We say that a mathematical
problem with an effective procedure is effectively solvable.

An important area of computability theory is compu-
tational complexity theory, which is the study of the effi-
ciency of effective procedures. In computational complex-
ity theory we classify problems according to computational
resources required by their effective solutions and study
relationships among different kinds of efficiency.

THE BIRTH OF THE FIELD

The concept of computation appeared long before the ar-
rival of electronic computers. In fact, Euclid’s algorithm
for computing the greatest common divisor of integers, one
of the oldest known algorithms, is more than two thousand
years old. However, it is only recently that we gained for-
mal knowledge of computation and became to learn what
we could do and what we could not do with it.

At the end of the nineteenth century, Gottlob Frege (1)
conjectured that one should be able to build mathemat-
ics from fundamental logic, and formulated a logical sys-
tem for founding mathematics. Unfortunately, the system
soon turned out to yield a contradiction. David Hilbert,
a great mathematician of the modern age, strongly sup-
ported Frege’s idea in his famous 1900 lecture (2). Hilbert
believed that there was an effective procedure for deciding
in a finite number of mathematical steps whether a given
mathematical proposition is true or false. Hilbert and his
group put great effort into the search for such a procedure,
but they did not make much progress.

In 1931, Kurt Gödel refuted the conjecture by Frege and
Hilbert by showing that all elementary proof systems are
incomplete in the sense that every such system has state-
ments neither of whose correctness nor incorrectness are
provable (3). We refer to this epochal result as Gödel’s in-
completeness theorem. The focus of this 1931 paper was on
the functions of elementary number theory; i.e., the func-
tions from the set of natural numbers to itself. Gödel de-
veloped a system for constructing functions of elementary
number theory based on certain simple axioms,and studied
the class of functions constructible in the system—the class
of recursive functions. (Using current terminology this is
the class of primitive recursive functions.) Then, Gödel de-
veloped a systematic method for encoding a recursive func-
tion as a natural number. With this encoding method, not
only can one study elementary number theory, but one also
can study proof logic of the theory within the theory. He
constructed a self-referencing paradox in the theory (like

“this statement is false”) and showed that one cannot prove
or disprove this paradox within it.

Gödel’s incompleteness theorem left us to question ex-
actly what kinds of mathematical functions lack effective
solutions (i.e., what kinds of mathematical problems are
unsolvable) and whether there are different types of un-
solvability. In 1936 there emerged papers that shed light
on this issue. Alonzo Church introduced lambda calculus
and showed that the recursive functions of Gödel are pre-
cisely those that are lambda-calculable (4). Stephen Kleene
refined Gödel’s recursive functions (Kleene proposed the
terminology primitive recursive function), and presented
another proof of the existence of unsolvable problems (5).
Alan Turing introduced the Turing machine model (6). Tur-
ing presented an analog of Gödel’s incompleteness theo-
rem. (His proof, although the statement itself was correct,
contained many errors.) Emil Post, independently of Tur-
ing, introduced a system similar to the Turing machine
model (7).

The papers by Church, Kleene, Post, and Turing demon-
strate the significance of Gödel’s Incompleteness Theorem,
and paved the way to foundations of recursive function
theory, lambda calculus theory, and computability theory.
Among these models, the Turing machine model is particu-
larly important for computability theory because of its pro-
grammable nature. Such capability is exactly what John
von Neumann suggested as essential for computers (see
Von Neumann Computers). A Turing machine is a device
that manipulates an infinitely long one-dimensional tape
divided into tape squares. A Turing machine has a head
that scans on the tape and moves along the tape one square
per computational step. With this head, the machine reads
the symbol written in the current tape square and modifies
it if necessary.

Surprisingly, it soon became clear that the computa-
tional models by Church, Gödel, Kleene, Post, and Turing
are all equivalent; every function computable in one sys-
tem is computable in the other systems, too. This discovery
led Church to propose Church’s Thesis (or Church-Turing
Thesis), which states that mathematical problems that are
intrinsically solvable are those that are effectively solvable
in one of (and thus, any of) the three computational mod-
els. The thesis also suggests that the notion of effective
computability is model-independent.

COMPUTATIONAL COMPLEXITY THEORY

Shortly after the arrival of electronic computers in the mid-
twentieth century, it became evident that, while there are
problems that are easily solvable on electronic computers,
there are some complicated problems, such as calculation of
the Ackerman function, that seem to lack quick and easy
solutions. This led us to the question, “What are the in-
trinsic differences between such easy-to-solve and hard-
to-solve problems?” Andrej Grzegorczyk [1953] (8), Paul
Axt [1959] (9), and Robert Ritchie [1963] (10) studied this
question and showed the existence of proper infinite hi-
erarchies in terms of the number of computational steps
within the class of recursive functions (and thus, within
the class of Turing-computable functions). Hisao Yamada
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[1962] brought the discussion of noncomputability to the
level of computations that are possible with ordinary com-
puters (11). He studied decision problems that are solv-
able by Turing machines in such a way that they finish
computation about the integer n at the nth step. Yamada
called this real-time computation and showed that there
are problems that are real-time solvable as well as those
that are not. Michael Rabin [1963], independently of Ya-
mada,presented a limitation to real-time computation (12).
He showed that with regard to real-time computation,Tur-
ing machines that manipulate two separate tapes are more
powerful than those with just one tape. These seminal pa-
pers suggested that there should exist fine hierarchies in
the class of primitive recursive functions with respect to
computation time.

In 1965 (a conference presentation was in 1964), Juris
Hartmanis and Richard Stearns formulated the concept
of time-bounded complexity classes, and proved that the
previous expectation was correct (.13). The choice of their
model were the multitape Turing machines, those that ma-
nipulate some finite number of tapes. The focus of their
study was on decision problems, that is, those that ask
whether a given word belongs to a language. For a func-
tion T(n) from the set of natural numbers to itself, the com-
plexity class with time-bound T(n), denoted TIME(T(n)), is
the collection of all decision problems solvable by Turing
machines whose running time is at most T(n) for every n
and every input of length n The time complexity classes by
Hartmanis and Stearns offer reasonable classifications of
decision problems. On one hand, the classifications are not
too tight, because Turing machines can speed up their com-
putations by any constant factor, except for some boundary
cases (the linear speed-up theorem). On the other hand,
they provide proper hierarchies—if one scales up the time-
bound by a factor that grows faster than the quadratic, then
the class becomes bigger (the time hierarchy theorem).
In a subsequent paper, Hartmanis and Stearns, together
with Harry Lewis, examined another complexity measure,
namely the space-complexity, defined as the number of tape
squares that are examined by Turing machines before halt-
ing (14). They showed that space-complexity also provides
reasonable classifications of problems.

The two papers by Hartmanis, Lewis, and Stearns es-
tablished foundations of computational complexity theory.
Since then researchers have developed numerous concepts
as well as proven many important, often striking, observa-
tions about feasible computation. Among many contribu-
tions of the field, the most influential is perhaps the study
of the P = NP? problem (discussed below).

In 1965, Alan Cobham (15) and Jack Edmonds (16) in-
dependently proposed to identify tractable mathematical
decision problems as those with time complexity of poly-
nomial growth. This is the class that we now call P, the
class of problems solvable in polynomial time. Edmonds
also discovered that there is a seemingly difficult prob-
lem possessing a property that all positive instances have
short, easy-to-verify membership certificates while no neg-
ative instances have such certificates. The class of prob-
lems exhibiting such certificate scheme is what we call
NP, the nondeterministic polynomial time. Edmonds then
asked whether his problem is tractable, in other words, “Is

P = NP?”, and this question has been the most important
open question in computational complexity theory.

One of the most remarkable achievement in the study of
the P = NP? question is the discovery of NP-completeness.
In 1971,Stephen Cook introduced the notion of polynomial-
time reducibility as a tool for comparing computational
complexity of two decision problems (17). A decision prob-
lem A is polynomial-time reducible to another decision
problem B if there is a polynomial-time Turing algorithm
for A that makes use of a hypothetical unit-cost subroutine
for B Cook showed that the DNF-tautology problem, the
problem of deciding whether a disjunctive-normal-form for-
mula of propositional logic is a tautology,has a special prop-
erty that every NP-decision problem is polynomial-time re-
ducible to it. An important consequence of this observation
is that if the DNF-tautology problem is in P, then every
problem in NP has a polynomial-time algorithm, and thus,
P = NP. Cook also observed a strong connection of the DNF-
tautology problem to NP. Its complementary problem, the
DNF-non-tautology problem, is in NP; a short certificate
for a nontautological formula is an assignment that fal-
sifies the formula. Hence, polynomial-time decidability of
the DNF-tautology is equivalent to P = NP.

In 1972, Richard Karp extended Cook’s approach and
refined the notion of polynomial-time reducibility (18). In
Karp’s definition, A is polynomial-time reducible to B if
there is a polynomial-time computable transformation f
from the instance set of A to that of B such that f maps
members of A to those of B and nonmembers of A to
those of B Karp established the notion of NP-completeness
based on this reducibility. A decision problem C is NP-
complete if it is in NP and every decision problem in NP is
polynomial-time reducible to C. Karp presented a number
of combinatorial NP-complete problems and showed basic
techniques for proving NP-completeness of problems. The
work by Cook and Karp simplified the P = NP? problem
tremendously, because one can discuss the P = NP? prob-
lem simply as the question whether a specific NP-complete
problem is in P. The discovery of NP-complete problems
triggered a gold-rush for more NP-complete problem. In
the 1970s alone, researchers identified hundreds of NP-
complete problems of practical importance. Currently the
list of known NP-completeness consists of thousands of
practically important problems in various fields, such as
biology, chemistry, combinatorics, logic, number theory, op-
erations research, and VLSI design. These NP-complete
problems amount to evidence that NP is perhaps different
from P (see Traveling Salesperson problems).

THE TURING MACHINES

Now we formally define Turing machines. A Turing ma-
chine carries out computation in steps. The architecture of
a Turing machine consists of the tape, the head, and the
finite control (see Fig. 1). The tape is an infinitely long one-
dimensional array of squares, in which each square holds
precisely one symbol from the tape alphabet, a finite set of
symbols. The head is a device for reading from and writing
on tape squares, one at a time, and moves along the tape.
The finite control is the unit that determines the action
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Figure 1. A Turing machine and its three components: tape,
read/write head, and finite control.

of a Turing machine. The unit holds a state, an element
from the state set. Depending on the current state and the
symbol in the tape square of the current head position, the
finite control makes the following decisions:

� it may or may not replace the symbol at the head by
another symbol;

� it may or may not enter a new state; and
� it may or may not change the position of the head,

where if the new position is different from the current
one, it has to be one of the two neighboring positions.

At the beginning of computation, a Turing machine
holds its input in some consecutive squares of the tape,
and all other tape squares hold a special symbol, the blank
symbol. Also, the head position is at the first square of the
input and the state is a special state called the initial state.
Here we demand that the blank symbol should not appear
in the input. More precisely, input symbols are from a spe-
cial set of symbols, the input alphabet, a nonempty subset
of the tape alphabet not containing the blank symbol. A
Turing machine halts precisely when the state has become
one of two special halting states, the accepting state and
the rejecting state. The machine accepts the input if it halts
by entering the accepting state, and it rejects the input if
it halts by entering the rejecting state. The machine could
continue its computation indefinitely without reaching a
halting state.

A mathematical specification of a Turing machine M is
an eight-tuple

where � is the tape alphabet, B∈� is the blank symbol,
�, � �= ∅, and � � �− {B}, is the input alphabet, Q is the
state set, q0 ∈Q is the initial state, qA ∈Q is the accept-
ing state, qR �= qA ∈Q is the rejecting state, and δ is the
transition function of M, which is a mapping from Q×� to
Q×�× {←,→,−}. The map δ(p, a) = (s, b, d) specifies that
if the machine is currently in the state p and if its head is
currently seeing an a, then, in the next step, the machine
will be in the state s, a b will replace the a, and the head
position will be the current position if d =−, the left neigh-
bor of the current one if d =←, and the right neighbor of
the current one if d =→. For the sake of simplicity we of-
ten allow δ to be partial—by leaving out some of its values.
We assume that when the state–symbol pair has become
one at which δ has no values, the machine immediately en-
ters the rejecting state. Overall, there are three outcomes
of computation by a Turing machine; namely, the machine
accepts, the machine rejects, and the machine fails to halt.

Now we define decision problems that Turing machines
can deal with. A word over an alphabet � is a string of finite
length all of whose letters are from �. A language over �

is a set of words over �.

Definition 1 Let M be a Turing machine. The language
that M recognizes, denoted by L(M), is the collection of all
words w over M’s input alphabet such that M accepts w.
The machine M decides L(M) if M halts on all inputs.

An important concept about Turing machines is configu-
ration, which is the status of Turing machines at a specific
computational step. More precisely, a configuration con-
sists of the state, the contents of the tape, and the head
position. One can view computation by Turing machines
as a process of modifying the configuration. For two con-
figurations C and C′, if C′ results from C by applying the
rewriting rule specified by δ, then we describe this fact by
notation C � C′, and if C′ results from applying the rewrit-
ing rules specified by δ a finite number of times, then we
write C �* C′. We call C an accepting configuration if its
state is qA, and a rejecting configuration if its state is qF.

Two Examples of Turing Machine Computation

Here we present two examples of Turing machine compu-
tation. The first is a machine M, which decides whether
a given word x over the alphabet {0, 1} is a palindrome,
namely, whether the letters of x in the reverse order spell
x.

We base the construction of M on three simple properties
of palindromes.

1. The empty word is a palindrome.
2. Single letters are palindromes.
3. A word x of length≥2 is a palindrome if and only

if the first and the last symbol of x are equal and x
without these two symbols is a palindrome.

The states of the machine are the initial state q0, the ac-
cepting state qA, the rejecting state qR, and five additional
states, s0, s1, r0, r1, and c. The tape alphabet of M is {0, 1,
B} and the input alphabet is {0, 1}. Let u denote the tape
contents of M, where the infinitely many blank symbols ap-
pearing at the two ends of the tape are omitted. The initial
value of u is the input x, and throughout the execution of
the algorithm, u will never contain a B.

The machine M executes the following simple loop:

� If |u|, the length of u, is at most 1, then accept. Other-
wise, compare the two end symbols of u. If they match,
then erase them and re-enter the loop; otherwise re-
ject.

More precisely M behaves as follows:

� First M examines the leftmost (or the first) symbol of
u. Whenever M does this it is in the state q0, and in
no other occasions, the state is q0. If the machine sees
a B in state q0, it translates this as u being empty,
and accepts. Otherwise, M memorizes the symbol by
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entering s0 if it is a 0 and s1 if it is a 1, and erases the
memorized symbol. Then, it starts moving its head to
the right.

� In s0 as well as in s1, M looks for the last nonblank
symbol of u: M keeps moving its head to the right until
it sees a B, then moves the head to the left by one
square. While at this, M preserves the symbols it sees
and remains in the same state. On accomplishing this
task, M changes its state: from s0 to r0, and from s1 to
r1.

� In r0 as well as in r1, M compares the current symbol
of u and the symbol it has memorized.

If they are equal, u was of the form ava with a∈ {0,
1} at the beginning of the current round of the
loop. So, M erases the current symbol, thereby
turning u into v, and starts moving the head to
the left by entering the state c.

If they are not equal but the current symbol is a
B, then the head is currently on the square that
held the symbol M is memorizing. This implies
that u had only one symbol at the beginning of
the current round of the loop, so M enters qA.

Otherwise, M enters qR.
� In state c, M keeps moving the head to the left while

preserving the symbols it sees until it encounters a B.
When it sees a B, then M moves the head to the right
by one square and enters q0 in order to re-enter the
loop.

Table 1 shows the exact transition function of M and
Fig. 2 illustrates the computation of M on u = 101.

The second example is a machine with {a, b, c, B} as the
tape alphabet that performs the procedure for inserting a c
after the first b to the right of the current position. Here, the
first B to the right of the starting position acts as the right
end of the string. The algorithm of the machine consists of
two phases:

� In the first phase, the state is in q0. In this state, the
machine keeps moving the head to the right in search
for a b or a B. Upon finding a B, the machine enters
the rejecting state qR, and upon finding a b, it enters
qc and moves the head to the right neighbor of this b.

� In the second phase, the state is one of qa, qb, and qc.
These states respectively represent the situations in
which the machine is about to insert an a, a b, and a
c. The machine executes the insertion by exchanging
the symbol in its memory and the symbol it sees; i.e.,
if the current symbol is x and the current state is qy,
x, y∈ {a, b, c}, then the machine replaces the x by a y

Figure 2. Palindrome recognition. Shaded squares are the loca-
tions of the tape. The 1s at the end are matched and erased, then
the middle 0 is matched to itself and erased.

and enters qx. Upon seeing a B, the machine stops its
computation by entering qA.

Table 2 shows the exact transition function of the ma-
chine.

Languages That Are Not Turing-Decidable

The difference between recognition by Turing machine and
decision by Turing machines is how they treat nonmem-
bers; in the former concept we demand only that the ma-
chines avoid accepting nonmembers, while in the latter we
demand that they clarify their assertions by rejecting. The
incompleteness result that Turing proved in his 1936 paper
(6) clarifies that the difference is not trivial.

Theorem 1. Turing’s Incompleteness Theorem.
There exists a language L that is recognizable by Turing
machines but not decidable by them.

For a language L over an alphabet �, define L̄, the com-
plement of L, to be the set of all words over � not belonging
to L. It follows immediately from the definition that a lan-
guage L is decidable by Turing machines if and only if both
L and L̄ are recognizable by Turing machines. This gives
another view of Theorem 1.
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Corollary 1 There is a language L that is recognizable by
Turing machines such that L̄ is not recognizable by Turing
machines.

The proof of Theorem 1 consists of the following three
observations.

1. One can encode an arbitrary Turing machine, even
an arbitrary machine-input pair, as a word over {0,
1}.

2. There is a universal Turing machine MU that, given
an arbitrary machine-input pair (M, x), simulates the
computation of M on x.

3. Define LN to be the collection of all encodings w of
a Turing machine such that the Turing machine w
does not accept the word w. Then no Turing machines
cannot recognize LN, let alone decide.

The language LN is a typical undecidable language.
There is a rich theory about undecidable problems, founded
by Kleene and Post (see Computability). Now we describe
sketches of the previous three steps.

Encoding Turing Machines. Suppose we wish to encode
a Turing machine M whose tape alphabet, input alphabet,
and state set are of size respectively, g, s, and t. Assign num-
bers from 1 to g to the tape symbols so that those from 1 to
s correspond to the input symbols, and so that the number
g corresponds to the blank symbol. Assign numbers from 1
to t to the states so that states 1, 2, and 3 are, respectively,
the initial state, the accepting state, and the rejecting state.
Assign numbers 1, 2, and 3 to the head moves←,→, and−.
With these number assignments, we encode the map δ(p,
a) = (q, b, d) by the word

where i(x) is the index of the object x. Here 1 acts as a
delimiter. Concatenating the encodings of all the maps of
δ with a longer delimiter 11 gives the description of δ. We
encode the sizes with a new delimiter 111

Appending the encoding of δ to the encoding of the sizes
with the delimiter 111 gives the full encoding code(M) of
M. Encoding x = ab ··· c is similar; code(x) is

Encoding of the machine-input pair code(M, x) is
code(M)1111code(x).

Universal Turing Machines. An idea for building MU is to
split the tape of MU into two parts separated by a delimiter
#, where one part holds code(M) and the other holds an
encoding of a configuration of M on x. The encoding of a
configuration in which the state is q, and in which the tape
contents are a1a2 ··· akb1b2 ··· bl with the head residing on
the square holding b1 is

where i(x) is the index of the object x and % is another
special symbol. The machine MU performs simulation of
M on x by constructing the initial configuration, and then
simulating each computational step of M on x by rewriting
the encoding of a configuration with reference to the first
part of the tape. In order to simulate a computational step
of M, MU looks for the map to apply. The machine does this
by comparing the string 0i(q)10i(b1) with the first two entries
of each map in code(M).

The Paradoxical Language. The proof that LN is not rec-
ognizable by Turing machines is by way of contradiction.
Assume otherwise, and let D be a recognizer of LN and u
be the encoding of D. Suppose D accepts u. Then, since D
is an acceptor of LN, u∈LN, and thus, D cannot accept u.
This is a contradiction. So, D does not accept n. However,
if this were the case, then, since D is an acceptor of LN, u
/∈ LN, and thus, D accepts u, a contradiction. Hence, LN is
not recognizable by Turing machines.

Turing Machine Transducers

We formulate the notion of Turing machine transducers by
viewing the final contents of the tape as the values they
compute. We stipulate that a Turing machine M has an
output on an input w if and only if M on w accepts, and
we define the output as the shortest string u such that the
tape holds at the end of computation the string u in some
consecutive tape squares and the blank symbol everywhere
else. Then we define the partial function that M computes
as a mapping from the words over � to those over � such
that the domain of f is precisely L(M) and such that for
all words x over �, f(x) is the output of M on input x. A
partial function f is Turing-computable if there is a Turing
machine M that computes f.

The notion of Turing-computable functions offers an-
other view of Theorem 1. For a partial function f from the
words over � to those over �, define the total-version of f
to be the function g defined by: g(x) = f(x) followed by a non-
blank symbol a∈� if f(x) is defined, and the empty word
otherwise. Then, Theorem 1 is equivalent to the following.

Corollary 2 There exists a partial function f such that
f is Turing-computable but its total-version is not Turing-
computable.

COMPUTATIONAL COMPLEXITY THEORY

The computational model of computational complexity the-
ory is the multitape Turing machines, an extension of the
Turing machine model. Here Turing machines may have
more than one tape to handle. For a natural number k≥1,
a k-tape Turing machine has k separate tapes, on each of
which there is a unique read/write head. As in a single-
tape Turing machine, the action of a k-tape Turing machine
at a single computational step is dependent on its state
and the k symbols that its k heads are seeing. More pre-
cisely, the transition function is a mapping from Q×�k to
Q×�k × {←,→,−}k. At the beginning of computation the
first tape of a k-tape Turing machine has its input in the
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Figure 3. An example of off-line Turing machines. The input tape
is read-only. The input is between special symbols, � and 	.

same way as single-tape Turing machines do and the re-
maining k−1 tapes have the blank symbol everywhere. We
define the notion of halting,accepting,and rejecting compu-
tations as we did for single-tape Turing machines. A special
case of the multitape Turing machine model is the off-line
Turing machine model, in which the first tape is read-only
and has the input between the special end markers� and	
(see Fig. 3). In contrast on-line Turing machines are those
that are not off-line.

Time Complexity Classes

The principal resource of computation is time. For a multi-
tape Turing machine M and an input x to M, the running
time of M on x, denoted by timeM(x), is the number of steps
that M expends on x before halting. In the case when M on
x does not halt, timeM(x) is∞. For a mapping T(n) from the
set of natural numbers to itself such that T(n)≥n for all n,
we say that a Turing machine M has the time-bound T(n)
if for every input x to M, timeM(x)≤T(|x|). The requirement
T(n)≥n comes from our supposition that a reasonable ma-
chine should read all its input symbols before halting, and
from the fact that reading n symbols requires n steps at
least.

A time complexity class is a collection of problems de-
cided by Turing machines sharing the same time bound.

Definition 2 A decision problem L has time complexity
T(n) if there is a Turing machine M with time-bound T(n)
that decides L. TIME(T(n)) represents the class of all deci-
sion problems whose time complexity is T(n).

The Linear Speed-Up Theorem. It is clear from the def-
inition that if T(n)≤T′(n) for all n, then TIME(T(n)) �
TIME(T′(n)). How much larger than T(n) does T′(n) have
to be in order for this inclusion to be proper? The linear
speed-up theorem (2) states that if T′(n) is within a con-
stant factor of T(n), then the classes are equal.

Theorem 2 The Linear Speed-Up Theorem. For every
time function T(n) and every constant c > 0, TIME(T(n))
� TIME(n + c(n +T(n))).

The key idea for accelerating computation is to compress
many tape symbols into one. Let M be a T(n)-time-bounded
k-tape Turing machine with � as the tape alphabet. We di-

vide the tape of M into blocks of consecutive H tape squares
and construct an extension �′ of �. In addition to all the
symbols in �, �′ contains symbols for encoding the contents
of any size-H block, together with the information whether
the head is on any of the H squares, and if so, where. We
construct a Turing machine M′ that has the same number
of tapes as M does, has �′ as the tape alphabet, and sim-
ulates M with the compressed alphabet. Noting that in H
steps, the heads of M can touch only two blocks, namely
the current block and one of the two neighboring blocks,
we can program M′ so that it simulates H moves of M in
eight steps: four for finding out what the current symbols
are, and four for rewriting the compressed encoding so that
it reflects the result of applying H moves of M. The input x
to M does not respect this compressed encoding scheme. So,
the first task of M′ is to generate from x in tape 1 the com-
pressed form of x in tape 2. The machine M′ simply scans
the symbols of x from left to right while erasing them, and
accumulates symbols of x; it produces a symbol each time it
has accumulated H symbols. After having seen all of x, M′

writes any left-over symbols as a single-symbol in �′ and
moves the head to the start of the compressed x in tape 2.
This conversion requires n + [n/H] steps. Then, M′ carries
out the simulation with the role of tape 1 and that of tape
2 exchanged. The total amount of time is

So, for any c > 0, for a sufficiently large H

for all n.
The following two corollaries yield to the linear speed-up

theorem.

Corollary 3 For every c > 0 and every time function T(n)
such that limn→∞ T(n)/n =∞, TIME(T(n)) =TIME(cT(n)).

Corollary 4 For every constants c, ε > 0,
TIME(cn) =TIME((1 + ε)n).

Time Hierarchy Theorems. A function T(n) is time-
constructible if there exists a Turing machine C such that
timeC(x) =T(n) for all n and every x of length n. Many func-
tions such as nk, 2kn, and 2nk for any natural number k are
time-constructible.

Frederick Hennie and Stearns (19) showed that if a
time-constructible T′(n) grows more rapidly than T(n) log
T(n), then TIME(T(n)) is different from TIME(T′(n)). This
significantly improves an early result by Hartmanis and
Stearns.

Theorem 3 The Time Hierarchy Theorem. If V(n) is
time-constructible and limn→∞ (T(n) log T(n))/V(n) = 0, then
TIME(T(n)) is a proper subclass of TIME(V(n)).

The proof of this theorem has two parts.

1. Show for every Turing machine M, that there is a
two-tape Turing machine simulator S of M such that
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for every x

2. Based on the first part, construct a language in
TIME(V(n)) not in TIME(T(n)).

Hennie and Stearns use a very clever idea to prove the
first part: the simulator S conducts its simulation not by
moving the heads along the tape but by shifting the tape
contents so that at the end of a simulation of a single step of
M, the work-tape head of S is always at its initial position.

The second part uses a proof technique called diagonal-
ization. Based on the efficient simulation in the first part,
we construct a two-tape Turing machine SU that, on an
input w of the form 1hcode(M) for some integer j and a Tur-
ing machine M behaves as follows: SU spends at most V(|w|)
steps for simulating M on code(M) by means of the previ-
ous time-efficient simulation with reference to code(M) in
the first tape, and accepts if and only if it has discovered
that M rejects code(M). Reference to the encoding results
in an O(|code(M)|) multiplicative slowdown in time, but for
every T(n)-time-bounded M, if h is large enough, then the
time given to SU (i.e., V(n + |code(M)|)) is so large that SU

will finish simulation of M on code(M). So, L(SU) cannot be
decidable by any T(n)-time-bounded machine. On the other
hand, since SU is cV(n)-time-bounded for some constant c >

0, so L(SU)∈TIME(V(n)). Thus, TIME(T(n)) �= TIME(V(n)).

A Gap Theorem. The time-hierarchy theorem demands
that the function T′(n) be time-constructible. One may won-
der why the constructibility is so important. The reason
is that without that notion we would see a very counter-
intuitive collapse; there would exist a function f(n) such
that the time-bounds f(n) and 2f(n) would generate the same
complexity classes. The result below, which we call a gap
theorem, is due to Allan Borodin (1). This is rediscovery of
an earlier result by a then-in-Russia mathematician Boris
Trakhtenbrot [1967] (20).

Theorem 4 A Gap Theorem. There is a total recursive
function f such that

Space Complexity Classes

Another important resource of computation is space. For
an off-line Turing machine M and an input x to M, the
space of M on x, denoted by spaceM(x), is the total num-
ber of work-tape squares of M that the heads of M have
visited at the time of termination. If M on x does not halt,
spaceM(x) =∞. For a mapping S(n) from the set of natural
numbers to itself such that S(n)≥1 for all n, we say that
a Turing machine M has the space bound S(n) if for every
input x to M, spaceM(x)≤S(|x|). We define space complexity
analogously to time complexity, and observe similar basic
results.

Definition 3 A decision problem L has space complex-
ity T(n) if there is a Turing machine M with space-bound

S(n) that decides L. SPACE(S(n)) represents the class of
all decision problems whose space complexity is S(n).

The following theorem, due to Hartmanis, Lewis, and
Stearns (14), is analogous to the linear speed-up theorem
(Theorem 2). As in the proof of Theorem 2, the key idea is
to compress many symbols into one.

Theorem 5. The Tape Compression Theorem For
every space-bound S(n) and every constant c > 0,
SPACE(S(n)) = SPACE(cS(n)).

A function S(n) is space-constructible if there exists
a Turing machine C halting on all inputs such that
spaceC(x) = S(n) for all n and every x of length n. The fol-
lowing theorem, proven in Ref. 14, is analogous to the time
hierarchy theorem (Theorem 3).

Theorem 6. The Space Hierarchy Theorem If S′(n)
is space-constructible and limn→∞ S(n)/S′(n) = 0, then
SPACE(S(n)) is a proper subclass of SPACE(S′(n)).

Nondeterministic Turing Machines

The nondeterministic Turing machine model is a variation
of the Turing machine model in which transition functions
may have more than one value. A nondeterministic Turing
machine carries out its computation by nondeterministi-
cally picking up one move from the list of possible choices,
where it enters the rejecting state immediately if there is
no choice. We often call Turing machines that are not non-
deterministic by deterministic Turing machines. We say
that a nondeterministic Turing machine halts on input x if
it eventually enters a halting state regardless of its nonde-
terministic choices. The machine accepts x if it enters the
accepting state for some nondeterministic choices; and it
rejects x if it enters the rejecting state regardless of its non-
deterministic choices. We often view nondeterministic Tur-
ing machine computation as a tree (computation tree). The
computation tree of a nondeterministic Turing machine N
on an input x consists of nodes labeled by configurations of
N. The root of the tree is the initial configuration of N on
x, and children of a node are the next possible configura-
tions of the node. Here a node is a leaf if and only if it is
a halting configuration. So, we call a downward path from
the root to a leaf a computation path. The machine N on
x accepts if and only if there is a computation path to an
accepting configuration. The language that a halting non-
deterministic Turing machine N decides, denoted by L(N),
is the collection of all w such that N on input w accepts. For
a nondeterministic Turing machine N, we define the time-
bound and the space-bound of N by taking the maximum
over all computation paths of N.

Definition 4 A nondeterministic Turing machine N has
time-bound T(n) if for every n, every input x of length n,
and every computation path of N on input x, N runs for at
most T(n) steps. NTIME(T(n)) is the class of all languages
decided by nondeterministic Turing machines with time-
bound T(n).
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A nondeterministic Turing machine N has space-bound
S(n) if for every n, every input x of length n, and every
computation path of N on input x, N on x halts and scans at
most S(n) squares of its work-tapes. NSPACE(S(n)) is the
class of all languages decided by nondeterministic Turing
machines with space-bound S(n).

The tape compression technique that we used for prov-
ing both the linear speed-up theorem and the tape com-
pression theorem allows us to obtain their nondetermin-
istic computation versions. We can also prove a nonde-
terministic space hierarchy theorem of the same kind:
if S′(n), S(n)≥ log n are space-constructible and limn→∞
S(n)/S′(n) = 0, then NSPACE(S(n)) �= NSPACE(S′(n)). The
proof makes use of Theorem 10. As to a nondetermin-
istic time hierarchy theorem, the best known result is
by Joel Seiferas, Michael Fisher, and Albert Meyer (21):
for every T(n) and T′(n), if limn→∞ T(n + 1)/T′(n) = 0, then
NTIME(T′(n)) properly contains NTIME(T(n)).

Relationships Among Standard Complexity Classes. It is
obvious that TIME(T(n)) � NTIME(T(n)) for every T(n)
and that SPACE(S(n)) � NSPACE(S(n)) for every S(n) be-
cause (deterministic) Turing machines are special nonde-
terministic Turing machines. Also, for every k≥1 and t,
the number of work-tape squares that a k-work-tape Tur-
ing machine can touch in t steps is at most k · t. So, using
the tape compression theorem, we can prove for all T(n),
that TIME(T(n)) � SPACE(T(n)) and that NTIME(T(n))
� NSPACE(T(n)). As a matter of fact, even NTIME(T(n))
� SPACE(T(n)) holds. In order to see this, let N be a
T(n)-time-bounded nondeterministic Turing machine. In-
tuitively, we try all computation paths of N on x. For every
t, we can write each computation path of length t using t
symbols. We increase the value of t from 1 and test whether
there is an accepting computation path of length≤ t. By
the time t =T(n), we will find either that N on x accepts
or that all the computation paths are rejecting, therefore
N on x does not accept. More precisely, there is a constant
H, such that N has at most H possible moves at each step.
So, we can view a sequence σ of numbers from 1 to H as
a potential computation path of N on x, by letting the ith
component of σ represent N’s nondeterministic choice at
the ith step. By appending at the end of σ dummy entries 0
in the case that the computation lasts for less than t steps,
for each t≥1, we can encode each computation of N until
either when t steps have passed or when the computation
has stopped, whichever comes first, as a unique element in
St = {0, . . . , H}t. We can test whether a given sequence is
a legitimate encoding by simulating N on x with reference
to the sequence. Note that

� N on x accepts if and only if for some t≥1, some σ ∈St

is an accepting computation path of N on x, and that
� N on x rejects if and only if for some t≥1, all legitimate

encodings in St are rejecting computation paths of N
on x.

The smallest t for which one of the above two conditions
holds is at most T(|x|). Thus, we construct a Turing machine

S that for t = 1,2, ···, tests the previous two conditions for
t by cycling through the elements σ in St and trying to
simulate N on x along σ. The space-bound of S is O(T(|x|)).
So, by the tape compression theorem, we can reduce the
bound on space to T(|x|). In summary,

Theorem 7 For all T(n),

The Reachability Problem and Nondeterministic Space
Classes. The reachability problem is the problem of de-
ciding, for a given directed graph G = (V, A) and s, t∈G,
whether there is a directed path from s to t in G. Let N
be a halting off-line nondeterministic Turing machine and
x be an input N. Then we can state the question whether
N on x accepts as an instance of the reachability problem.
Suppose N has one work-tape and is S(n)-space-bounded,
where S(n)≥ log n is space-constructible. Let Vx be the set
of all configurations of N on x. We can assume that the ele-
ments of Vx are four tuples (q, i, w, j), where q is the state, i
is the head position on the input tape, w is a string of length
S(|x|) representing the contents of N’s work tape, and j is
the head position on w. So, the number of elements |Vx| in
Vx satisfies

for some constant C depending only on N. (The second
multiplicative factor is |x|+ 2 because there are two end-
markers before and after the input.) Define the graph
Gx = (Vx,Ax) by drawing an arc from each configuration u to
another v if and only if either u = v or u � v; i.e., if and only
if v results from u by applying at most one computational
step of N. Let sx be the initial configuration of N on x and
Rx be the set of all accepting configuration of N on x. Now
N on x accepts if and only if there is a path from sx to some
v∈Rx in Gx.

From this observation we obtain a deterministic time-
efficient simulation of NSPACE(S(n)). Let Mx be the ad-
jacency graph of Gx. For each v∈Rx, v is reachable from
sx if and only if the (sx, v)th entry of the |Vx|th power of
Mx with logical-AND and logical-OR in place of multiplica-
tion and addition, respectively, is a 1. Since S(n) is space-
constructible, we can construct a Turing machine that de-
cides L(N) by enumerating Vx, constructing Mx, computing
the |Vx|th power of Mx, then accepting x if and only if the
(sx,v)th entry is a 1 for some v∈Rx. We can design the ma-
chine so that its running time is at most (CS(n))k for some
constant k depending only on N. Thus,

Theorem 8 If S(n)≥ log n, S(n) is space-constructible, and
L∈NSPACE(S(n)), then there is a constant D > 0 such that
L∈TIME(DS(n)).

Another method for solving the reachability problem is
by recursion. Suppose we wish to determine whether some
tx is reachable from sx. Define the predicate Q(u, v, i) as
“there is a path from u to v in Gx of length at most 2i.”
Note that the length of the path from u0 to v0 is at most
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CS(|x |)≤2cS(|x |) for some integer constant c. So, there is a
path from s0 to t0 in Gx if and only if Q(u0, v0, cS(|x|)) eval-
uates to 1. We can compute Q(u0, v0, cS(|x|)) with recursion
of depth cS(|x|). Note that if i≥1, then Q(u, v, i) is equiva-
lent to

In our Turing machine algorithm, given u, v, and i, we
examine every element in Vx as w, and for each such w, we
solve the left subproblem Q(u, w, i−1) first. If this subprob-
lem evaluates to 1, then we move on to the right subprob-
lem Q(w, v, i−1). If this subproblem evaluates to 1, too,
then we return with the value 1. Otherwise we continue
on to the next w. If we discover that no w makes both parts
1, then we return with the value 0. At the bottom of the
recursion, we need to evaluate Q(y, z, 0) for configurations
y and z, but this does not require any extra space since we
know the machine N. Since the recursion depth is cS(|x|)
and each configuration requires O(S(|x|)) tape squares, the
total storage space of this algorithm is O(S(n)2) as claimed.
This is the result by Walter Savitch (22).

Theorem 9. Savitch’s Theorem For every space-
constructible S(n)≥ log n, NSPACE(S(n)) � SPACE(S(n)2).

An important question about nondeterministic classes
is the complexity of complementary decision problem. By
convention, for a nondeterministic class C, let co-C denote
the class of all languages L such that L̄ belongs to C. Then,
the question we ask is whether C = co-C for a nondetermin-
istic complexity class C. Our intuition tells that equality is
unlikely to hold, because the way nondeterministic Turing
machines act on members is very different than the way
they act on nonmembers; that is, they have accepting paths
for members while they do not for nonmembers. However,
to our great astonishment, Neil Immerman (23) and Robert
Szelepcsényi (24) independently showed in the late 1980s
that such intuition was wrong for nondeterministic space
complexity classes.

Theorem 10. The Immerman-Szelepcsényi Theo-
rem For every space-constructible function S(n)≥ log n,
NSPACE(S(n)) = co-NSPACE(S(n)).

Broader Classifications of Problems. In computational
complexity we often use broader classifications of decision
problems than those discussed. In the broader classifica-
tions, the standard classes are L, NL P, NP, and PSPACE.
Among these the smallest class is L (the deterministic
logspace), which is SPACE(log n). A representative is the
problem of computing a specified bit of the product of two
binary numbers. The class NL (the nondeterministic de-
terministic logspace) is NSPACE(log n). Representatives
of this class are the reachability problem and the maze-
threadability problem. The class P (the polynomial time)
is ∪k≥0 TIME(nk). A standard complete problem in this
class is the circuit value problem, a problem of computing
outputs of logic-gate circuits. The class NP (the nondeter-
ministic polynomial time) is ∪k≥0 NTIME(nk). Representa-
tives of this class are NP-complete problems. To name a

few, standard NP-complete problems are the clique prob-
lem (the problem of testing whether a given undirected
graph contains a complete graph of given size), the Hamil-
ton path problem (the problem of deciding whether a given
directed graph contains a node disjoint cycle that visits
all the nodes), and the satisfiability problem (the problem
of deciding whether a given formula of propositional logic
has satisfying assignment). A related important class is
co-NP, the complementary class of NP. The DNF-tautology
problem is complete for this class. The class PSPACE (the
polynomial space) is ∪k≥0 SPACE(nk). A typical complete
problem for this class is the game GO (the problem of de-
ciding whether there exists a winning strategy for the first
player starting from the current placement of the pebbles).
These classes become larger in the order of their mention;
i.e.,

The only proper inequalities we know are: NL �= PSPACE
(by combining Savitch’s theorem and the space hierar-
chy theorem) and L �= PSPACE, which results from NL �=
PSPACE. Defining NPSPACE as ∪k≥0 NSPACE(nk) is pos-
sible, but by Savitch’s theorem, NPSPACE = co-NPSPACE
= PSPACE, so defining the class does not make sense. Also,
by the Immerman–Szelepcsényi Theorem, co-NL = NL. We
still do not know whether co-NP = NP. Nor do we know
whether the intersection of NP and co-NP properly con-
tains P. An important problem in this intersection but not
known to be in P was Primality, the problem of testing
whether a given binary integer is a prime number. Re-
cently, Manindra Agrawal et al., (25) proved that this prob-
lem is polynomial-time solvable, and thus in P, resolving a
long-time open question.
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