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CELLULAR AUTOMATA

Cellular automata (CA) are collections of identical, inter-
acting, finite-state machines. CA were originally proposed by
John von Neumann as models of self-reproduction. Since
then, CA have been most extensively studied in the context
of complex systems modeling where the evolutionary behavior
of a complex system is modeled through a large number of
simple, identical, interacting cells.

John Conway’s game of Life (1) is perhaps the best known
example of a CA. Life, which became popular in the early 70s,
is a computer program that models the evolutionary interac-
tions among a population of organisms. Each organism is
identical to the others. The life and death of an organism at
any time is based on some simple rules about the other organ-
isms in its vicinity. Life delighted people around the world by
exhibiting complex population wide propagative and ex-
tinctive behavior based on simple rules of engagement be-
tween an organism and its neighbors.

CELLULAR AUTOMATA EXAMPLES

Consider a one-dimensional array of cells where each cell as-
sumes a value of either zero or one. Values in the cells change
over discrete time steps. We assume that the cells wrap
around so that every cell has exactly two neighbors. The
neighborhood of a cell consists of itself and its two neighbors.
The new value of a cell is computed using the current values
of the cells in its neighborhood. New values of all cells are
simultaneously computed using the present values of all the
cells and using the same rule for each cell. Consider the fol-
lowing rules:

1. The new value of a cell is one only if exactly one cell in
its neighborhood currently has a value of one.

2. The new value of the cell is one only if exactly one cell
in its neighborhood currently has a value of one or the
cell itself has a zero but both of its neighboring cells
have values of one.

Figure 1 shows the evolution of values in 200 cells over
200 time steps when the above rules are used to update the
values in the cells in each time step. The first rule, called
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Figure 1. Evolution of a simple linear cellular
automaton with 200 cells over 200 time steps. (a)
Rule 22 with random initialization of the cells. (b)
Rule 22 with only one cell initialized to one. (c)
Rule 54 with random initialization. (d) Rule 54
with only one cell initialized to one. These figures
are generated using the CA animations accessible
on the world wide web at URL http://
alife.santafe.edu:80/alife/topics/ca/caweb.

Rule 22, is an example of a chaotic rule, and the second rule, CA is in a global configuration, the local configuration ob-
served by a cell at position p � R is denoted by lc,p and iscalled Rule 54, is an example of a complex rule. Both types of

rules are discussed later. Statistical properties of these cellu- given by lc,p(n) � c(p � n), for all n � N.
Let �N � S� denote the set of all possible local configura-lar of automata have been extensively studied (2).

tions of the neighborhood of a cell. The state-transition func-
tion of a cell is specified as a mapping f : �N � S� � S. ThisCELLULAR AUTOMATA THEORY
mapping is called the local rule or the evolution rule of the CA.

All cells in the CA use the same neighborhood definitionBasic Definitions
and the same local rule and make state transitions synchro-

A cellular automaton (3) is a collection of identical cells identi- nously. A global state-transition function, also called the
fied by their integral positions in a d-dimensional Euclidean global rule, F: �R � S� � �R � S� is constructed from the
lattice R � Zd, where Z denotes the set of integers. Each cell local rule as follows: F(c1) � c2 where for all p � R, c2(p) �
is a finite-state machine with a set of states S. The global f (lc1,p). Given the local rule, the CA evolves synchronously
state, also called the configuration, of the CA is completely from configuration to configuration in discrete time steps.
characterized by the individual states of its cells. The global
configuration is specified by a mapping c: R � S. Variations and Generalizations

Given a configuration c, the next configuration of the CA
It is possible to generalize the definition of the basic CA inis determined by simultaneously determining the new state of
many different ways. Some of these generalizations are men-each cell. The new state of a cell is determined by its current
tioned here.state and the states of some neighboring cells. The neighbor-

hood of a cell is identified by a finite set N � Zd, such that
the elements of N denote the relative coordinates of the neigh- Nondeterministic Cellular Automata. Specification of the lo-

cal rule as a relationship instead of a function leads to theboring cells. By this convention, a cell at position p � R re-
ceives as its inputs the states of the cells at positions p � n nondeterministic CA in which each cell selects one among sev-

eral possible next states nondeterministically. In a probabilis-for all n � N.
A mapping l: N � S denotes the configuration of the neigh- tic CA, the next state is chosen from among a set of possible

states based on probabilities (4). In asynchronous cellular au-borhood of a cell and is called a local configuration. When the
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tomata (5), a variation of the nondeterministic CA, each cell jective. Given a local rule, deciding whether a Garden of Eden
state exists for the CA is a well-studied decision problem.makes an arbitrary choice whether its state should be up-

dated in an evolution step. This problem is decidable for one-dimensional CA and unde-
cidable for two-dimensional CA.

Tessellation Automata. Specification of a set of rules, one of
which may be chosen as the local rule to use at any time step, Reversibility. A CA is said to be reversible if for any con-
leads to tessellation automata (6). The choice of the rule may figuration it is possible to determine correctly and uniquely
be arbitrary or may depend on the time step. Another varia- what the previous configuration was. Not all CA are revers-
tion allows the possibility of different cells using different ible. For example, the one-dimensional automata discussed
rules leading to hybrid CA. earlier are not generally reversible. However, reversible au-

tomata are important models of computation because revers-
Arrangement of Cells. The common practice is to consider ible machines avoid the fundamental lower bounds on power

finite lattice structures for the arrangement of the CA cells. dissipation associated with irreversibility of conventional
Both wraparound (periodic-boundary CA) and nonwrap- logic. For this reason reversible CA received special atten-
around (null-boundary CA) structures have been studied. tion (8).
Nonlattice structures considered include tori, trees, and
trellises. Self-Reproduction. CA were originally proposed (9) as mod-

els of self-replicating machines. One common way of studying
Classification self-reproduction is to observe whether the initial configura-

tion repeats itself after a finite number of evolutionary steps.Wolfram (7) categorized cellular automata into four classes.
Another way is to observe whether certain local patterns re-Although not formally defined, this classification continues to
peat themselves infinitely often. For example, if the states ofprovide an informal way to discuss properties of cellular au-
a cell are represented by integers modulo k for some primetomata.
number k and module-k addition of the neighborhood states
is used as the local rule, then any finite pattern of nonzero1. Class 1, Homogeneous CA: Evolution in Class 1 CA leads
integers embedded in a ‘‘sea’’ of zeros repeats itself after kmto a unique homogeneous configuration where all cells
steps for some large m (10).enter and remain in the same state. Initial state infor-

mation is completely lost upon reaching this homoge-
neous state. Universality. A computing device is said to be universal if

it can be programmed to compute any arbitrary computable2. Class 2, Filtering CA: Evolution in Class 2 CA leads to
function including reproducing itself. Some cellular automataseparated, simple, persistent structures from particular
are universal computing devices and are equivalent to Turinginitial-state sequences. The evolved simple structure
machines. For example, Conway’s game of Life CA have themay be stable or periodic, typically with a small period.
property of computational universality. A very simple two-3. Class 3, Chaotic CA: After a finite number of time steps,
dimensional CA with two states and nine neighborhood cellsClass 3 CA exhibit chaotic or aperiodic patterns. Some
is shown to be universal in Ref. 11.chaotic CA may evolve into highly regular fractal pat-

terns and others exhibit irregular pseudorandom con-
figurational sequences. Algorithms and Complexity. One of the original themes of

CA research has been to study CA as models for analyzing4. Class 4, Complex CA: Class 4 automata exhibit compli-
computability. Can a CA implement an algorithm for a com-cated localized and propagating configurations. Al-
putable function and how much time/space does CA requirethough most cells reach a stable ‘‘death’’ state, gliding
to solve a problem? These questions have been studied exten-periodic structures emerge in some localities. Class 4
sively, especially in the area of formal language recognitionCA are universal computing machines, capable of exhib-
using CA (12,13).iting arbitrary algorithmic behavior when correctly pro-

grammed with suitable initial configurations.

APPLICATIONS OF CELLULAR AUTOMATAProblems Studied

Local and Global Properties. Global properties are proper- CA have been studied extensively in numerous application
ties of the global rule F. Exploring the relationships between domains ranging from biological evolution to computer arith-
local rules and global properties has been a major area of CA metic. Some of these application areas are reviewed here.
studies. Because CA exhibit complicated overall behavior
based on simple local interactions, determination of whether

Complex Systems Modelinga global property is a consequence of a local rule ( forward or
analysis problem) and discovery of a local property to ensure Modeling complex dynamical systems through a large number
a global property (backward or synthesis problem) are both of simple interacting agents continues to be one of the most
important CA topics. important applications of CA (14,15). For example, CA have

been used to model urban development and ecological sys-
tems. In Ref. 16, the effect of forest fires and dispersal onGardens of Eden. A Garden of Eden of a CA is a configura-

tion which the CA never reach except as the initial configura- spatial patterns is modeled. In Ref. 17, a CA model of compe-
tition between species of grass is modeled.tion. Garden of Eden states exist when the global rule is sur-
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