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added with carries being propagated towards the high-order
: (left) digits. Carry propagation serializes the otherwise paral-

lel process of addition, thus slowing it down.
Since a carry can be determined only after the addition of

a particular set of bits is complete, it serializes the process of
multi-bit addition. If it takes a finite amount of time, say
(
g), to calculate a carry, it will take 64 (
g), to calculate the
carries for a 64-bit adder. Several algorithms to reduce the
carry propagation overhead have been devised to speed up
arithmetic addition. These algorithms are implemented using
digital logic gates (2) in computers and are termed carry logic.
However, the gains in speed afforded by these algorithms
come with an additional cost which is measured in terms of
the number of logic gates required to implement them.

In addition to the choice of number systems for represent-
ing numbers, they can further be represented as fixed- or
floating-point (3). These representations use different algo-
rithms to calculate a sum, although the carry propagation
mechanism remains the same. Hence, throughout this article,
carry propagation with respect to fixed-point binary addition
will be discussed. Since a multitude of 2-input logic gates
could be used to implement any algorithm, all the measure-
ments are made in terms of the number of 2-input NAND
Gates throughout this study.

THE MECHANISM OF ADDITION

Currently, most digital computers use the binary number sys-
tem to represent data. The legal digits, or bits as they are
called in the binary number system, are 0 and 1. During addi-
tion, a sum, Si, and a carryout, Ci, are produced by adding a
set of bits at the ith position. The carry-out Ci produced dur-
ing the process serves as the carry-in, Ci�1, for the succeeding
set of bits. Table 1 shows the underlying rules for adding two
bits, Ai and Bi, with a carry-in, Ci, and producing a Sum, Si,
and Carry-out, Ci.

CARRY LOGIC

Addition is the fundamental operation for performing digital FULL ADDER
arithmetic; subtraction, multiplication and division rely on it.
How computers store numbers and perform arithmetic should The logic equations that represent Si and Ci of Table 1 are
be understood by the designers of digital computers. For a shown in Eq. (1) and Eq. (2). A block of logic that implements
given weighted number system, a single digit could represent these is called full adder, and it is shown in the inset of Fig.
a maximum value of up to 1 less than the base or radix of the
number system. A plurality of number systems exist (1). In
the binary system, for instance, the maximum that each digit
or bit could represent is 1. Numbers in real applications of
computers are multi-bit and are stored as large collections of
16, 32, 64, or 128 bits. If the addition of multibit numbers in
such a number system is considered, the addition of two legal
bits could result in the production of a result that cannot fit
within one bit. In such cases, a carry is said to have been
generated. The generated carry needs to be added to the sum
of the next two bits. This process, called carry propagation,
continues from the Least Significant Bit or digit, the one that
has the least weight and is the right-most, to the Most Sig-
nificant Bit or digit, the one with the most weight and is the
left-most. This operation is analogous to the usual manual
computation with decimal numbers, where pairs of digits are

Table 1. Addition of Bits Ai and Bi with a Carry-in
Ci�1 to Produce Sum Si and Carry-out Ci

Ai Bi Ci�1 Si Ci

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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1. The serial path for data through a full adder, hence its
delay, is 2, as shown in Fig. 1. A full adder can be imple-
mented using 8 gates (2) by sharing terms from Eq. (1) and
Eq. (2).

Si = AiBiCi−1 + AiBiCi−1 + AiBiCi−1 + AiBiCi−1 (1)

Ci = AiBi + Ci−1(Ai + Bi) (2)

Table 2. List of Gate Counts and Delay of Various Adders

Gate Count/Delay

Adder Type 16-Bit 32-Bit 64-Bit

RCA 144/36 288/68 576/132
CLA 200/10 401/14 808/14
CSA 284/14 597/14 1228/14
CKA 170/17 350/19 695/23

structed with 8 gates, and there are n such adders. Table 2RIPPLE CARRY ADDER
shows the typical gate count and speed for RCAs with varying
number of bits.The obvious implementation of an adder that adds two n-bit

numbers A and B, where A is AnAn�1An�2 . . . A1A0 and B is
BnBn�1Bn�2 . . . B1B0, is a Ripple Carry Adder (RCA). By seri- CARRY PROPAGATION MECHANISMS
ally connecting n full adders and connecting the carry-out,

In a scenario where all the carries are available right at theC1, from each full adder as the Ci�1 of the succeeding full
beginning, addition is a parallel process. Each set of inputsadder, it is possible to propagate the carry from the Least
Ai, Bi, and Ci�1 could be added in parallel, and the sum for 2Significant Bit (LSB) to the Most Significant Bit (MSB). Fig-
n-bit numbers could be computed with the delay of a fullure 1 shows the cascading of n full adder blocks. It is clear
adder.that there is no special carry propagation mechanism in the

The input combinations of Table 1 show that if Ai and BiRCA except the serial connection between the adders. Thus,
are both 0s, then Ci is always 0, irrespective of the value ofthe carry logic has a minimal overhead for the RCA. The
Ci�1. Such a combination is called a carry kill term. For combi-number of gates required in 8n, as each full adder is con-
nations where Ai and Bi are both 1s, Ci is always 1. Such a
combination is called a carry generate term. In cases where
Ai and Bi are not equal, Ci is equal to Ci�1. These are called
the propagate terms. Carry propagation originates at a gener-
ate term, propagates through any successive propagate terms,
and gets terminated at a carry kill or a new carry generate
term. A carry chain is a succession of propagate terms that
occur for any given input combination of Ai and Bi. For the
addition of two n-bit numbers, multiple generates, kills, and
propagates could exist. Thus, many carry chains exist. Addi-
tion between carry chains can proceed in parallel, as there is
no carry propagation necessary over carry generate or kill
terms.

Based on the concept of Carry Generates, propagates, and
kills, logic could be designed to predict the carries for each bit
of the adder. This mechanism is static in nature. It can be
readily seen that different carry chains exist for different sets
of inputs. This introduces a dynamic dimension to the process
of addition. The dynamic nature of the inputs could also be
used and a sum computed after the carry propagation
through the longest carry chain is completed. This leads to a
classification into static and dynamic carry logic.

An adder that employs static carry propagation always
produces a sum after a fixed amount of time, whereas the
time taken to compute the sum in a dynamic adder is depen-
dent on the inputs. In general, it is easier to design a digital
system with a static adder, as digital systems are predomi-
nantly synchronous in nature, i.e., they work in lock step
based on a clock that initiates each operation and uses the
results after completion of a clock cycle (4).

STATIC CARRY LOGIC
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From Eq. (1), if Ai and Bi are both true, then Ci is true. If Ai

or Bi is true, then Ci depends on Ci�1. Thus, the term AiBi inFigure 1. A Ripple Carry Adder ripples the carry from stage to stage
using cascaded Full Adders. Eq. (1) is the Generate term or gi, and Ai � Bi is the propagate
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Figure 2. A group Carry Look Ahead Scheme with n/k groups each of size k.

term or pi. Eq. (1) can be rewritten as in Eq. (3): In typical implementations, a CLA computes the sum in
log2n time and uses gates to the order of nlogn. Table 2 lists
the gate count and delay of various CLAs. Thus, with someCi = gi + piCi−1 (3)
additional gate investment, considerable speed up is possible

where gi � AiBi and pi � Ai � Bi. Substituting numbers for i using the CLA carry logic algorithm.
in Eq. (3) results in Eq. (4) and Eq. (5). Based on the CLA algorithm, several methods have been

devised to speed up carry propagation even further. Three
such adders that employ circuit level optimizations to achieveC1 = g1 + p1C0 (4)

faster carry propagation are the Manchester Carry Adder (4),C2 = g2 + p2C1 (5)
Ling Adder (5), and the Modified Ling Adder (6). However,
these are specific implementations of the CLA, and do notSubstituting the value of C1 from Eq. (4) in Eq. (5), yields
modify carry propagation algorithms.Eq. (6):

Carry Select AdderC2 = g2 + p2 g1 + p2 p1C0 (6)

The discussion in the previous section shows that the hard-
Generalizing Eq. (6), to any carry bit, i, yields Eq. (7). ware investment on CLA logic is severe. Another mechanism

to extract parallelism in the addition process is to calculate
two sums for each bit, one assuming a carry input of 0 and
another assuming a carry input of 1, and choosing one of the

Ci = gi + pigi −1 + pi pi −1gi −2 + · · · + pi pi −1 . . . p1g1

+ pi pi −1 pi −2 . . . piC0
(7)

sume based on the real carry generated. The idea is that the
By implementing logic for the appropriate value of i in Eq. selection of one of the sums is faster than actually propagat-
(7), the carry for any set of input bits can be predicted. ing carries through all the bits of the adder. An adder that

employs this mechanism is called a Carry Select Adder (CSA)
Carry Look-Ahead Adder and is shown in Fig. 3. A CSA works on groups of k-bits, and

each group works like an independent RCA. The real carry-inAn adder that uses Eq. (7) to generate carries for the various
is always known as the LSB, and it is used as C0. In Fig. 3,bits, as soon as A and B are available, is called a Carry Look-
Ck is used to select one of the sums, like S1

3k�2k�1 or S0
3k�2k�1Ahead Adder (CLA). From Eq. (7), the carry calculation time

from the next group, gp2. In general, the selection and thefor such an adder is 2 gate delays, and a further 2 gate delays
addition time per bit are approximately equal. Thus, for aare required to calculate the sum with bits Ai, Bi, and the
group that is k bits wide, it approximately takes 2k units ofgenerated carry. In general, for a large number of bits n, it is
time to compute the sums and a further two units of time toimpractical to generate the carries for every bit, as the com-
select the right sum, based on the actual carry. Thus, the to-plexity of Eq. (7) increases tremendously. It is commonly
tal time for a valid carry to propagate from one group to an-practice in such cases to split the addition process into groups
other is 2(k�1) time units. Thus, for an optimal implementa-of k-bit CLA blocks that are interconnected. A group carry-
tion, the groups in the CSA should be unequal in size, withlookahead adder is shown in Fig. 2. The groups now provide
each succeeding group being 1 bit wider than the precedingtwo new output functions G* and P*, which are the group
group. The gate count and speed of various CSAs is listed ingenerate and propagate terms. Equation (8) and Eq. (9) pro-
Table 2.vide examples of how these terms are generated for 4 bit

blocks. Equation (10) shows the generation of C4 using G*1 Carry Skip Logicand P*1 .
If an adder is split into groups, gp 0, gp 1 and so on of RCAs

G∗
1 = g4 + p4 g3 + p4 p3 g2 + p4 p3 p2 g1 (8) of equal width k, and if a carry-in of 0 is forced into each

group, then the carry out from each group is its generateP∗
1 = p4 p3 p2 p1 (9)

term. The propagate term is simple to compute and can be
computed by using Eq. (9). Since the group generate termsC4 = G∗

1 + P∗
1C0 (10)
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Figure 3. The CSA and CKA propagate
carries over groups of k-bits.
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and propagate terms are thus available, the real carry-in at Pi is the propagate term, and Gi is the generate term at bit
position i at the boundary of a group of size k.each of the groups could be predicted and used to calculate

the sum. An adder employing this mechanism for carry propa-
gation is called a Carry sKip Adder (CKA) and is shown in (Gi, Pi) = (gi, pi) if i = 1 and (gi, pi)

∗(Gi−1, Pi−1) if n ≥ i > 1
(12)Fig. 3. The logic gates outside of the groups in Fig. 3, imple-

ment Eq. (11), which is a generalization of Eq. (10) for the
where (gt, pt)*(gs, ps) � (gt � ptgs, ptps) by modifying Eq. (3).

carry at any position i. Thus, the process of carry propagation Note that * is NOT commutative. All Ci can be computed in
takes place at the group level, and it is possible to skip cary parallel. Since * is associative, the recursive Eq. (12) can be
propagation over groups of bits. broken in arbitrary ways. The logic to compute carries can be

constructed recursively too. Figure 4 shows an example of
carry computation using the prefix computation strategy de-Ci = G∗

i / k + P∗
i / kCki (11)

scribed in Eq. (12), with block size k � 4 and how a combina-
tion of two 4-bit carry-logic blocks can perform 8-bit carryIt takes 2k time units to calculate the carry from any group
computation.of size k. Carry propagation across groups takes an additional

The CLA, CKA, CSA, and Prefix computation have beenn / k � 2 time units, and it takes another 2k time units to
discussed in detail by Swartzlander (7), Henessey (8), andcalculate the final sum. Thus, the total time is 4k � n / k �
Koren (9).2 time units. By making the inner blocks larger in size, it is

possible to calculate the sum faster, as it is then possible to
skip carry propagation over bigger groups. Table 2 lists the DYNAMIC CARRY LOGIC
gate count and performance of various CKAs.

Dynamic carry propagation mechanisms exploit the nature of
the input bit patterns to speed up carry propagation and relyPrefix Computation
on the fact that the carry propagation on an average is of the

Binary addition can be viewed as a parallel computation. By order of log2n. Due to the dynamic nature of this mechanism,
introducing an associative operator *, carry propagation and valid results from addition are available at different times for
carry generation can be defined recursively. If Ci � Gi in Eq. different input patterns. Thus, adders that employ this tech-

nique have completion signals that flag valid results.(3), then Eq. (12) with * as the concatenation operator holds.
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Carry Completion Sensing Adder

The carry-completing sensing adder (CCA) works on the prin-
ciple of creating two carry vectors, C and D, the primary and
secondary carry vectors, respectively. The 1s in C are the gen-
erate terms shifted once to the left and are determined by
detecting 1s in a pair of Ai and Bi bits, which represent the
ith position of the addend and augend, A and B, respectively.
The 1s in D are generated by checking the carries triggered
by the primary carry vector C, and these are the propagate
terms. Figure 5 shows an example for such a carry computa-
tion process. The sum can be obtained by adding A, B, C, and
D without propagating carries. A n-bit CCA has an approxi-
mate gate count of 17n � 1 and a speed of n � 4. Hwang (10),
discusses the carry-completion sensing adder in detail. Sklan-
sky (11), provides an evaluation of several Two-summand
Binary Adders.

Carry Elimination Adder

Ignoring carry propagation, Eq. (1) describes a Half-adder,
which can be implemented by a single XOR gate. In principle,

CCA sum

Sum
Step

number:

Primary carry
vector

A & B <<1

Secondary
carry vector

A:
B:

C:
D:

S:

0011101101101101
0100111000010101

0001010000001010
1110100011110000

1000100110000010

A:
B:

0011101101101101
0100111000010101

0011101101101101
0111010101111000
0110000101110010
0100100101100010
0000100101000010
1000100100000010
1000100110000010

1
2
3
4
5
6
7

0100111000010101
0001010000001010
0010100000010000
0100000000100000
1000000001000000
0000000010000000
0000000000000000

Carry

Registers

Same as
C above

Valid SUM result Zeroed CARRY register
means valid SUM

Figure 5. The CCA and CEA use dynamic carry propagation.

it is possible to determine the sum of 2 n-bit numbers by per-
forming Half Addition on the input operands at all bit posi-
tions in parallel and by iteratively adjusting the result to ac-
count for carry propagation. This mechanism is similar to the
CCA. However, the difference is that the CCA uses primary
and secondary carry vectors to account for carry propagation,
whereas the Carry Elimination Adder (CEA) iterates. The
CEA algorithm for adding 2 numbers A and B is formalized
by the following steps:

1. Load A and B into two n-bit storage elements called
SUM and CARRY

2. Bit-Wise XOR and AND SUM and CARRY simultane-
ously

3. Route the XORed result back to SUM and left shift the
ANDed result and route it back to the CARRY

4. Repeat the operations until the CARRY register be-
comes zero. At this point the result is available in SUM

The implementation of the algorithm and detailed compari-
sons with other carry-propagation mechanisms have been dis-
cussed by Ramachandran (12).

Figure 5 shows an example of adding two numbers using
the CEA algorithm. Note that the Primary carry vector C in
the CCA is the same as the CARRY register value after the
first iteration. The number of iterations that the CEA per-
forms before converging to a sum is equal to the maximum
length of the carry chain for the given inputs A and B. On
average, the length of a carry chain for n-bit random patterns
is log2n. The gate count of the CEA is about 8n � 22 gates. It
approaches the CLA in terms of speed and the CRA in terms
of gate count.

MATHEMATICAL ESTIMATION
OF THE CARRY-CHAIN LENGTH

Two 4-bit blocks combined

1,2,3,4, etc. stand for (g1,p1), (g2,p2), (g3,p3), (g4,p4), etc.

a
b
c
d

= 1
= 1*2
= (1*2)*3
= (1*2) * (3*4)

a
b
c
d

= 1
= 1*2
= (1*2)*3
= (1*2) * (3*4)

e
f
g
h

= d*5 = (1*2*3*4) * 5
= (1*2*3*4) * (5*6)
= (1*2*3*4) * (5*6) * 7
= (1*2*3*4) * (5*6*7*8)

and

1 2 3 4

1 2 3 4

5 6 7 8

a b c d e f g h

a b c d

Extending from the binary number system to any k-ary num-Figure 4. Performing 4-bit prefix computation and extending it to 8-
bit numbers. ber system, it can be said that in the addition of two k-ary
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numbers of width n, (An�1, An�2, . . . A1, A0) and (Bn�1, Bn�2, tributes to Pn( j) is included once and only once in the disjoint
collections of classes 1 and 2.. . ., B1, B0), the sum Ai � Bi is:

Adding the probabilities for collections 1 and 2 leads to the
dynamic programming solution to Pn( j) provided below,1. In the ‘‘propagate’’ state if Ai � Bi � k � 1
where Pn( j) � pn( j) � pn( j � 1) � � � � � pn(n � 1) � pn(n),2. The ‘‘generate’’ state if Ai � Bi � � k
where pn(i) is the probability of the occurrence of a maximal

3. The ‘‘kill’’ state if Ai � Bi 	 k � 1 length carry chain of precisely length i. Thus, the expected
value of the carry length [being the sum from i � 1 to n of

For a given carry chain of length j, the probability of being in i*pn(i)] becomes simply the sum of the Pn( j) from j � 1 to n.
the propagate state is k/k2 � 1/k. Define Pn( j) as the probabil- Results of dynamic programming indicate that the average
ity of the addition of two uniformly random n-bit numbers carry length in the 2-ary number system for 8-bits is
having a maximal length carry chain of length �j. 2.511718750000; for 16-bits it is 3.425308227539; for 32-bits,

4.379535542335; for 64-bits, 5.356384595083; and
Pn( j) = 0 if n < j, and Pn(n) = (1 / k)n (13) 8.335725789691 for 128-bits.

Pn( j) can be computed using dynamic programming if all the
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CARTESIAN COMPONENTS. See VECTORS.
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The term Pm(m) � (1/k)m handles the case of a carry chain of
full length, m, and the summand handles the individual cases
of maximal length carry chains of length j, j � 1, j � 2, . . .,
m � 1. Any outcome with a maximal carry chain with length
�j not belonging to class 2 belongs to 1. In summary, any
outcome with a maximal carry chain of length �j which con-


