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BUFFER STORAGE

A buffer is a contiguous piece of memory address space used
to transfer data between different execution threads of a com-
puter system. The threads might be executions of user pro-
grams (e.g., cooperative parallelism), or the threads might be
executing on behalf of a system service (e.g., the software
component of a storage system). Three general domains of
buffer use are (1) communication between processes (e.g., a
browser downloading a web page), (2) data transfer between
levels of the memory hierarchy (e.g., reading a file), and (3)
database processing.

In many cases, when data are communicated between exe-
cution threads, the data pass through protection boundaries.
For example, a client process may request service from a
server process or from the operating system kernel. The com-
munication buffer limits size and location of the memory
space that the communicating threads will share. Typically,
memory protection is ensured by the operating system’s ker-
nel, explicitly copying the buffer from the sender to receiver,
or by limited-memory space sharing implemented through
virtual memory.

Effective use of buffering greatly increases the efficiency of
a computer system. Transmitting memory between processes
generally incurs significant central processing unit (CPU) and
memory overhead for various types of bookkeeping. Transmit-
ting large blocks of data amortizes the fixed bookkeeping
costs across all the bytes in the buffer. Buffering can also
transform synchronous communication into asynchronous
communication. Also, computer systems often encounter
‘‘bursty’’ behavior (i.e., a brief but intense period of resource
use). For example, a process might write a large block of data
to a file. While the file system transfers the data to the file,
the process can compute the next block of data. The use of
buffers enables caching, or storing popular data high in the
memory hierarchy to save on expensive data-fetch operations.

APPLICATIONS

Buffer storage and management is used in many disparate
areas of a computer system. We discuss issues related to
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three main application areas: communications, memory hier- can substantially reduce the amount of copying. Because the
sender cannot overwrite the message it sends, the sender andarchy, and database management.
receiver do not need to transfer data to and from a shared
buffer. If the message is a large structured data object (e.g.,Communications
a matrix or a database), the receiver might read only a small

In many applications, one thread of execution needs to trans- part of the message and will only perform a small physical
mit a stream of data to another thread of execution. Examples transfer.
include network communications (e.g., communications using
TCP/IP) and cooperative parallelism (e.g., processes obtaining

Asynchronous Data Transfer. A great improvement inwork from a work queue). The primary issues related to
throughput can often be obtained by substituting asynchro-buffer management for communication are transferring data
nous I/O for synchronous I/O. Let us consider an example ofbetween memory spaces and using buffers to match data pro-
a process that transfers data from a disk-resident file to theduction rates with data consumption rates.
network. If the process uses synchronous I/O, it requests the
data from the disk drive, then transfers the data to the net-

Separate Memory Space Domains. In some applications, the work. With asynchronous I/O, the process reads a block of
communicating execution threads share the same memory data from the disk drive and simultaneously writes the previ-
space. For example, one thread might fetch data from a data ous block to the network. The time to do one block transfer
source into a buffer, and the other thread might process the with synchronous I/O is the sum of the disk-drive service time
data in the buffer. Because the threads share their memory and the network service time. Using asynchronous I/O, the
space, no data copying is required for the sharing. In other total time reduces to the maximum of these two service times.
applications, the threads do not share a memory space. For Thus, asynchronous I/O usually improves transfer rates sig-
example, if the operating system does not support multiple nificantly.
threads of execution in the same address space, the example This example is a motivation for the bounded buffer prob-
of asynchronous input/output (I/O) must be implemented lem. To implement asynchronous I/O, we use two threads.
with two separate processes. In another common case, one One thread reads a block of data from the disk drive and puts
of the communicating processes is the operating system the block into a shared buffer. The second thread gets a block
kernel. from the buffer and gives it to the network. Since one of the

There are three primary methods for communicating buff- devices is likely to be faster than the other, we need to syn-
ers between processes with separate memory spaces. In the chronize the two threads. The sender should wait until there
first method, the operating system kernel copies the buffer is room in the buffer before storing its block, and the receiver
from the sender to the receiver. This method is safe, easy to should wait until there is a block of data in the buffer before
use, and general purpose, but incurs a memory copying over- retrieving one. Operating systems typically provide support
head that can be substantial in data-intensive applications for writing an object with the following interface:
(e.g., file servers).

The second method uses the virtual memory system to
bounded_buffer(N,K) Create a buffer with Nshare a buffer. The communicating processes ask the virtual

blocks of data, each Kmemory system to map portions of their virtual address space
bytes in size, initiallyto the same physical memory block. Data are transferred from
all empty.the sender to the receiver by writing to and reading from the

void put_block(char *dat) Wait until there is anshared memory block. This method of communication avoids
empty block in thea data copy. However, the virtual memory system places re-
buffer, then transferstrictions on the possible sizes of the shared memory block,
the data pointed to byand the allocation of the shared block might be cumbersome.
dat into the emptyIn addition, the communicating processes must follow a proto-
block, making it full.col that restricts access to the shared memory block, or else

void get_block(char *dat) Wait until there is a fullthe sender might overwrite a message before the receiver has
block in the buffer,finished reading it.
then transfer its con-The third method for communicating data between execu-
tents to the memory lo-tion threads also uses the virtual memory system. When the
cation pointed to bysender sends a message to the receiver, it tells the kernel
dat, and make thethe address range to be transferred. Instead of copying the
buffer empty.data in the address range, the kernel maps an equal-size ad-

dress range in the receiver process to the physical memory
pages in the sender. To ensure safety, if the sender writes to A program built using this interface can implement asyn-

chronous I/O as long as N � 2. However, there is a greata virtual memory page shared in this manner, the kernel will
first copy the physical memory page and remap the receiver’s deal of unnecessary copying. The solution that is preferred in

practice returns pointers to data blocks instead of the datavirtual memory to point to the copied page (this is copy on
write). If the receiver cannot access the sender’s physical blocks themselves. Data-block consumption works in both di-

rections. The sender consumes empty blocks and produces fullmemory (e.g., they reside on different computers), then when-
ever the receiver reads a first byte from a shared page, the blocks, while the receiver consumes full blocks and produces

empty blocks. The buffer maintains separate lists of full andkernel copies the page from the sender into the local physical
memory space (copy on read). This method of communication empty blocks. Because of the bidirectional flow of buffer
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blocks, this type of buffering is referred to as double buffering. tion (a seek command), and then one issues a read (write)
system call with a pointer to the data buffer. The mechanismsThe interface for a double buffer is:
of the buffer data transfer have been discussed earlier. The

double_buffer(N,K)
main issues with file systems relate to caching file blocks and

char *get_empty_block()
storing the file on secondary storage so that it can later be

char *get_full_block()
read again.

void put_empty_block(char *dat)
Typical data access patterns on a file system show a great

void put_full_block(char *dat)
deal of locality. For example, at any given time one typically
works on a small collection of the documents that are storedA double-buffering program would be implemented as

follows: in the file system. Some files (popular programs, for example)
are frequently read. These are examples of temporal local-

double_buffer dbuf(N,K)
ity—If you access a data block now, you are likely to do so
again in the near future. Files are usually read from begin-

producer() consumer()
ning to end in sequential order. Therefore they exhibit a great

char *dat char *dat
deal of spatial locality—if you read (write) a block now, you

while(1) while(1)
are likely to read (write) the next block in the file in the near

dat= dat=get_full_block()
future. We can greatly improve the performance of the file

dbuf.get_
system by taking advantage of these types of locality.

empty_block()
A cache is a temporary copy of data that resides on slower

read_from_disk(dat) write_to_net(dat)
memory devices. If a user program requests to read a data

put_full_block(dat) put_empty_block(dat)
block which is cached, a cache hit occurs (respectively, a cache
miss). On a cache hit, the operating system can return the

In some applications (e.g., compressed multimedia) the
cached data instead of making a slow and expensive request

sender or the receiver might have significant variation in its
to secondary storage. Caching can also speed up user level

cycle time. These variations in speed can be smoothed out by
write requests. Instead of writing the data block immediately,

using large numbers of blocks but at the cost of significantly
the operating system returns control to the user program im-

more storage overhead.
mediately and schedules the physical write to secondary stor-
age to occur later (write-back caching). This policy imple-

Memory Hierarchies
ments a form of asynchronous I/O. Write-back caching can
also help improve file layout, as we discuss later. When theBuffers are commonly used to communicate data between

memory hierarchies. Primary storage is fast silicon memory. cache is full, some of the blocks in the cache must be removed
to make space for the newly referenced blocks. We discussThis type of memory is expensive and volatile (the contents

are erased when power is turned off). Primary storage can cache-replacement policies in more detail later.
If a user program requests to read a file block now, it ishave many levels of hierarchy also (registers, on-chip cache,

off-chip cache, local memory, remote memory, etc.), but we do likely to request the next file block in the near future because
of spatial locality. By prefetching the next few file blocks andnot explore these issues here. Secondary storage is slow, but

large, inexpensive, and nonvolatile. Secondary storage is usu- transferring them into the cache, we can exploit spatial local-
ity. If the file block prefetch is performed asynchronously, theally implemented with magnetic disk drives, but other media

can be used (nonvolatile silicon storage, optical disks, tapes, user program will not experience delays when it reads the
prefetched blocks. In addition, it is likely that the prefetchedetc.). A tertiary storage system is composed of a robot arm that

can serve removable media (e.g., tapes) to read/write drives. blocks are physically close to the requested block and there-
fore are inexpensive to read immediately after reading theTertiary storage has long file access latencies (10 s to 1000 s),

but is 1 to 2 orders of magnitude less expensive than second- requested block. Concurrent requests for data from the mag-
netic disk might make access to the next file block slow whenary disk storage.

Buffer space is used to provide transparent access to sec- the user program actually makes the request.
The way that a file is written to typical nonvolatile mem-ondary and tertiary storage, and to improve performance.

Typically, the global buffer space is divided into buffer blocks. ory devices such as magnetic disk drives can affect the speed
with which the file can be accessed again. Magnetic diskWe discuss three examples of access to a memory hierarchy

and the issues related to each type of access. drives have moving parts, so a file layout that minimizes ag-
gregate disk drive movement allows the file to be read faster
than a layout that does not minimize movement. In addition,File Systems. In general usage, a file is an ordered collec-

tion of uninterpreted bits residing on secondary storage. One information about the file (the metadata), including its physi-
cal locations on secondary storage, must also reside on sec-must open a file before accessing the data in it. Typically, a

file system provides a hierarchical directory for convenient se- ondary storage. We discuss these issues in more detail later.
lection of the desired file. Once a file is opened, one can read
from or write to arbitrary positions in the file. If one writes Virtual Memory. Most modern operating systems provide

virtual memory. With virtual memory, a process’ addresspast the end of the file, the file length is automatically ex-
tended. Modern operating systems typically provide addi- space is not mapped directly to any physical address space.

Instead the logical memory addresses accessed by a processtional operations on their file systems, but such a discussion
is beyond the scope of the present article. are translated into physical addresses by a combination of

memory management hardware and operating system soft-To read (write) a block of data, one typically issues a posi-
tioning system call to indicate the desired read (write) loca- ware. The unit of address translation is typically a fixed size
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block called a page. The address translation mechanism can A block of data that is fetched into the buffer is pinned
into the buffer. No pinned block will be overwritten, so it isindicate that a page does reside on main memory, but instead

resides on slower secondary memory. If a process references safe for the application to access the pinned block directly.
When the application is no longer needed, it is unpinned. Ana memory location on a page that is not resident on main

memory, a page fault occurs. The process is suspended, the unpinned block retains its association with the data at loca-
tion address to take advantage of possible future cache hits.page is fetched from secondary memory (the backing store),

and then the process is resumed. The backing store is typi- However, the block becomes a candidate for replacement.
The user application might know of a good strategy for per-cally one or more files managed by the file system.

The details of virtual memory management are far beyond forming block replacement. For example, in an index struc-
ture an unpinned leaf node is a good candidate for replace-the scope of this article. However, we discuss it because of its

close relationship to buffer management. We have already ment. These issues will be discussed in more detail later.
The explicit buffer management might be hidden from theseen that virtual memory can be used as a mechanism for

buffer communication. In many operating systems, virtual application programmer by using a persistent object store. Per-
sistent objects are data objects (e.g., C�� objects) that residememory is used for file access by opening a memory mapped

file. The backing store for a portion of a process’ address space on secondary storage and can be accessed in main memory
through an implicit cache. A common method of access isis defined to be the memory mapped file. Read and write ac-

cess is performed by reads and writes to logical memory. pointer swizzling, which uses virtual memory to detect a refer-
ence to a noncached persistent object (1). Another commonAnother connection between virtual memory and file buffer

management is the treatment of caching. The main-memory- access method is through object container classes.
resident portion of a processes virtual memory space is equiv-
alent to a file system cache. Similar cache-management con- Database Systems
siderations apply. One significant difference between file

Buffer management for database applications has received in-
cache management and virtual memory management, how-

tense scrutiny in the research community. Part of this effort
ever, is the mechanism by which data blocks are requested. A

relates to special buffer allocation and block replacement
request for a file block is made explicitly through a system

strategies for database systems. A typical database applica-
call, and the operating system can spend nontrivial resources

tion answers queries through a composition of database oper-
recording cache hits. A request for data on a virtual memory

ators (i.e., select, project, join, etc.). These operators are
page is made at the level of the processor’s instructions. To

highly tuned, and a great deal is known about their data ac-
avoid slowing down the processor, only very simple operations

cess patterns. Inexpensive performance improvements are
can be made to record cache hits. The typical mechanism is

possible by using explicit buffer management with a tuned
to associate a reference bit with each page. On any access to

buffer allocation policy. However, the same is true for other
data in the page, the reference bit is set. The rate at which

applications (e.g., scientific computing) so we will not address
the page is accessed can be determined by periodically clear-

the issue further here.
ing the reference bit and measuring the time until the refer-

Database systems typically implement a type of formal
ence bit is set again. We will discuss virtual memory manage-

data sharing between concurrently executing programs. A
ment algorithms in more detail later. In addition to the

transaction is a program that has atomicity, consistency, iso-
reference bit, virtual memory management hardware typi-

lation, and durability (ACID) properties. The start of a trans-
cally provides a dirty bit, which is set whenever a memory

action is indicated by a begin_transaction statement and
location in a page is written to.

is ended by a end_transaction statement. Isolation means
that the execution of a transaction is not affected by concur-

Explicit Buffer Access. In some application areas, it is pref-
rently executing transactions. Atomicity means that either

erable to use explicit buffer management. A typical example
the transaction executes to completion, or all traces of a par-

is an index structure that is designed for efficient search
tial execution are removed. Durability means that the effects

while only a portion of the index resides on main memory.
of a completed transaction are not undone by system failures

More generally, database applications often bypass file sys-
(though they can be undone or modified by subsequent trans-

tem buffering and perform their own.
actions). Consistency means that a transaction takes a data-

An application that performs explicit buffer management
base from one consistent state to another consistent state.

typically makes use of a buffer manager. A simple interface
The theory of transaction processing is extensive, and more

for a buffer manager is the following:
than a cursory discussion is beyond the scope of this article.
However, we note that guaranteeing ACID properties often

buffer_manager(N,K) Create a buffer with N
reduces to a matter of deciding when a transaction is allowed

blocks of data, each K
to access a buffer and guaranteeing that modified buffers are

bytes in size, initially all
written to stable storage before the transaction is allowed to

unpinned.
complete. We return to this topic in more detail later.

char *get_block(int Load K bytes of data from
address) the location indicated by

address on secondary BUFFER ALLOCATION POLICIES
storage into an unpinned
buffer. Pin the buffer and The use of caching is of great benefit in making computer

systems more efficient. When properly applied, a program canreturn its address.
void unpin(char *dat) Unpin the block pointed to access a vast (but slow) memory at a speed close to that of a

fast (but small) memory. In this section, we discuss cache-by dat.
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management policies and more generally buffer manage- tual data access behavior to a reasonable degree. If the data
reference pattern is IRM, then the optimal cache-replacementment policies.

There are several dimensions to the choice of a buffer allo- algorithm (called OPT or A*) for N blocks is to pin in the
cache the N � 1 data items with the highest probability ofcation policy. One dimension is to look at local versus global

allocation policies. A local allocation policy assumes a fixed- reference and use the remaining block to handle cache misses.
The OPT algorithm cannot be used in practice because thesize buffer, and makes decisions about which block to replace

on a cache miss. A global allocation policy allocates buffer probabilities of reference are not known a priori. However,
the LRU algorithm is a maximum likelihood estimator (MLE)space to a set of concurrently executing processes (each of

which can make local allocation decisions). Some buffer allo- of the OPT algorithm given that the only information that is
available is the time since the last reference. In addition,cation policies make a clear distinction between global and

local allocation, while some let the concurrent processes com- LRU often performs well when IRM is violated. For example,
the data item reference probabilities often change because ofpete for blocks in a global pool.

A second dimension is whether the blocks are of fixed or temporal locality. Because LRU stored only a small amount
of information, it is able to react to changes in temporal local-variable size. Fixed-size block management is more efficient

than variable-size block management in all but a few special ity quickly.
cases. Most of this discussion assumes fixed-size blocks, with
a special section on variable-size block management. A third Statistical Estimation Methods. The performance of the LRU

cache-replacement algorithm can be improved by using moredimension is whether cache hits are explicitly (a system or
procedure call is required to access the block) or implicitly information to estimate the reference rate of a data item (2–

4). The LRU/2 algorithm records the time of the last and therecorded (i.e., virtual memory).
penultimate reference to a data item. The data item whose
penultimate reference is furthest in the past is chosen for re-Local Allocation; Fixed-Size Blocks; Explicit Cache Hits
placement.

The most common local replacement algorithm for fixed-size Unfortunately, the LRU/2 algorithm is expensive to imple-
buffers with explicit knowledge of cache misses is the least ment. Ordering on the time of the penultimate reference can-
recently used (LRU) algorithm. If a cache miss occurs, then not be implemented with simple list operations. Instead a pri-
the unpinned block that holds the data requested furthest in ority queue must be used, which is complex to implement and
the past is chosen for replacement (i.e., the least recently is (relatively) expensive to manipulate.
used block). A fast approximation to the LRU/2 algorithm is the 2Q

LRU has a simple implementation. Each main-memory algorithm. The 2Q algorithm uses two lists (‘‘two queues’’) to
cache block has a forwards and backwards pointer. The manage the cached blocks. The first list is a probation queue,
pointers are used to implement a doubly linked list, with the and the second list is the main cache. The main cache has a
head of the list being the most recently requested block and desired maximum size. When a cache miss occurs, a block is
the tail of the list being the least recently requested block removed from the tail of the main cache if the main cache
(pinned blocks, if any, are managed separately). On a cache exceeds its maximum size or otherwise from the tail of the
miss, the block at the tail of the list is removed from the list, probation queue. The block is loaded with the referenced data
the association of the block with its current contents is bro- and is placed at the head of the probation queue. When a
ken, the new data are loaded into the block (and an associa- cache hit occurs and the block is in the probation queue, the
tion of the data with the block is made), and the block is block is placed at the head of the main cache. When a cache
placed on the head of the list. On a cache hit, the referenced hit occurs and the block is in the main cache, the block is
block is removed from the list and then placed at the head of removed from its position in the list and placed at the head
the list. The forwards and backwards pointers associated with of the main cache. The effect is to place only ‘‘hot’’ data items
each cache block ensure that only a few instructions are re- into the main cache, where hot data items are detected by a
quired to manipulate the list. short period between successive references.

Although it is a very simple algorithm, LRU has many nice To make the statistical estimation algorithms work well,
properties. First, it is fast and easy to implement. Second, it some additional complications must be introduced. Temporal
has good theoretical optimality properties. LRU is an opti- locality is particularly strong immediately after a data item
mally competitive algorithm. Roughly, this means that LRU has been referenced. Even cold data items are likely to be
will not have significantly worse performance than other referenced again shortly after an initial reference. To filter
cache replacement algorithms even on worst-case patterns of out these correlated references, statistical estimation methods
data access. In addition, increasing the space allocated to a do not count repeat references to a data item during the corre-
cache that is managed by LRU is guaranteed to reduce the lated-reference period after a cache miss. In the 2Q algorithm,
cache-miss rate. Some cache-replacement algorithms, such as the correlated-reference period is implemented by placing a
first in—first out (FIFO) do not have this property (this is correlated-reference queue in front of the probation queue. On
known as Belady’s anomaly). a cache miss, the block with the referenced data item is

Third, LRU tends to have good performance in practice. To placed at the head of the correlated-reference queue, and the
see why, consider a common model of data reference behavior, block at the tail of the correlated-reference queue is placed at
the independent reference model (IRM). IRM assumes that ev- the head of the probation queue. Cache hits on the block in
ery data item Di that can be accessed has an associated proba- the correlated-reference queue have no effect.
bility of being referenced pi. On each data access, the proba-
bility of referencing Di is pi, independent of all preceding data Special Purpose Algorithms. In some special applications,

the user might know enough about the data access pattern toaccesses. Although this model is simple, it approximates ac-
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be able to use a special cache-replacement algorithm and re- tion is a better strategy. For example, file cache tends to be
duce the cache-miss rate. For example, a common access pat- equally accessed by all processes, while (nonshared) virtual
tern is to scan a large database repeatedly. If the database is memory tends to be allocated.
larger than the cache, then replacing the most recently used If the buffer space is not partitioned, then the global buffer
(MRU) cache block minimizes the cache-miss rate. Special allocation strategy is to have each process execute a local re-
cache-replacement algorithms can also be used for index placement algorithm on the global set of buffers. If the buffer
structures. However, both the LRU/2 and the 2Q cache-re- space is partitioned, then each process executes a local re-
placement algorithms have near-optimal performance on both placement algorithm on its allocated buffer space. The final
scan and index structure data reference patterns. problem is to determine an optimal allocation of buffer space

to processes.
Handling ‘‘Dirty’’ Blocks. If a process updates a cached Because the data access patterns of most processes exhibit

block, the block becomes ‘‘dirty’’. Dirty blocks are more expen- temporal locality, a process will have a low page-fault rate as
sive to replace from the cache than clean blocks, because their long as its working set is resides on main memory. The work-
contents must be written back to secondary storage. Many ing set of a process is the collection of pages referenced by the
cache-management systems perform data cleaning periodi- process in the last T seconds. An optimal buffer allocation
cally to avoid choosing a dirty block for replacement. If a dirty algorithm will allocate to each process the number of pages
block is chosen, it can be cleaned immediately, or the cleaning in its working set.
can be deferred and another block chosen for replacement. Implementing an optimal buffer allocation strategy is not

feasible. Instead, the buffer pressure of each buffer partition
Local Allocation; Fixed-Size Blocks; Implicit Cache Hits can be measured and used to estimate the optimal allocation.

If a process has a buffer that is too small, it will incur manyIn virtual memory systems, cache hits are not explicitly regis-
misses. If the buffer is too large, it will incur few misses. Thetered so a LRU-type algorithm cannot be implemented. Most
allocation can be balanced by taking pages from a processmemory management hardware supports reference bits, so
with a low miss rate and giving them to a process with athe time between references to the page can be approximated.
high miss rate. In clock algorithms, the imbalance in bufferA large class of page-replacement algorithms are known as
allocation can be measured by observing the difference in theclock algorithms. With these algorithms, the metadata for the
rates at which the clock scans through the virtual memoryvirtual memory pages are placed in an array. A clock algo-
pages.rithm keeps a pointer to the last page examined during the

last page replacement invocation. On a page fault, the clock
algorithm scans the virtual memory pages, starting where it

VARIABLE-SIZE BLOCKSleft off on the last invocation. If the pointer reaches the end
of the array, it starts again at the beginning of the array. The

In some applications, variable-size buffers are preferable tomotion of the pointer through the virtual memory pages can
be visualized as the hand of a clock scanning through the fixed-size buffers. One example is tertiary storage manage-
hours of a day. When enough pages have been selected for ment. To improve performance, a region of magnetic disk is
replacement (perhaps just 1), the clock algorithm stops. used to cache tertiary storage-resident files that have been

The second-chance algorithm is the simplest nontrivial accessed. The data access, and thus the caching, is typically
clock algorithm. When the second-chance algorithm examines on a per-file basis. The files sizes can range through 6 orders
a page, it looks at the reference bit of the page. If the refer- of magnitude.
ence bit is set, the second-chance algorithm clears the bit and The wide variety of file sizes opens a new dimension in
proceeds to the next page. If the reference bit is not set, the determining an optimal buffer allocation. A large file is ex-
page is chosen for replacement. Frequently referenced pages pensive to store, but caching it can return a large benefit if it
will tend to have their reference bits set, while infrequently is frequently accessed. Reducing the miss rate requires that
referenced pages will not. one cache the files whose per-byte amortized access rate is

The second-chance algorithm can be extended with r his- the highest.
tory bits. When a page is examined, the reference bit is An algorithm (called GOPT or ST-LRU) (5) for determining
shifted into the history bits, then reset. If all of the history which cached file to replace is the following. For each cached
bits are zero, the page is chosen for replacement. file Fi, compute the weight of the file wi to be the product of

Virtual memory managers typically use a free pool or a set its size and the time of its last access. On a cache miss, choose
of pages already selected for replacement. On a page fault, a for replacement the file with the largest weight until enough
page in the free pool is chosen to store the referenced data. A free space exists to load the requested file. The GOPT algo-
cleaning daemon is periodically executed to run a clock algo- rithm has been proved optimal under certain conditions.
rithm until the free pool is sufficiently large. Writes are The GOPT (or ST-LRU) algorithm is expensive to execute
scheduled for the dirty pages that are added to the free pool. because each cached file must be evaluated on every cache

miss. A less-expensive alternative is the ST-bin algorithm (6).
Global Buffer Management Files are hashed into buckets based on their size, where each

bucket represents a contiguous range of file sizes. The files inA global buffer management strategy can let all concurrent
each bucket are organized into an LRU queue. On a cacheprocesses compete for the same set of buffers or can partition
miss, the weight of the file at the head of each bucket’s queuethe buffer space among the processes. If one expects that dif-
is evaluated, and the heaviest file is chosen for replacementferent processes will tend to access different data, then parti-

tioning is likely to be the best strategy. Otherwise, competi- until enough space exists to load the requested file. The ST-
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bin algorithm has performance close to that of the ST-LRU al- tor locations on the disk drive that contain the corresponding
data. Since this mapping might be very large, it is oftengorithm.
stored separately from the directory. An I-node is a compo-
nent in this mapping. The map from addresses to sectors

BUFFER STORAGE might be laid out as a list, a bit map, or a hierarchy.
File systems support allocation and deallocation of file

Data buffers are typically stored on secondary storage in files data. The free list is a secondary storage-resident description
using a file system. A file system provides support of identi- of the unallocated sectors remaining on secondary storage.
fying the desired file through the use of directories. A direc- The free list can have many representations, including lists
tory entry for a file contains a file name and metadata about of free regions and bitmaps. Allocating a block of secondary
the file. Some of the metadata indicates the locations of the storage for a file entails finding an appropriate block on the
file on secondary storage. In this discussion, we assume that free list, marking it allocated, then incorporating the block
the secondary storage is a magnetic disk drive, and that the into the file’s address map. Deallocating space (e.g., deleting
file system is similar to the well-documented Fast File System the file) is accomplished by deleting blocks from the file’s ad-
of 4.3 BSD UNIX. While other file systems differ in many dress map and returning them to the free list.
details, the fundamental problems and solutions are similar.

File Layout and Access
Disk-Drive Performance Characteristics

The efficiency of the file system can be improved by placing
Magnetic disk drives consist of one or more spinning stacked file data and metadata in spatially local areas. Given the on-
platters coated with magnetic media and a disk arm that po- line nature of file creation and deletion, optimal algorithms
sitions a read/write head on each active surface of the plat- are difficult to obtain. However a number of heuristics have
ters. Each platter is divided into a number of tracks, and each been developed:
track is divided into a number of sectors. A magnetic disk
drive will transfer data (read or write) in the unit of a single • Attempt to locate file I-nodes near the file’s directory,
sector. File systems often make their block sizes equal to an and the file’s data near the file’s I-nodes. Attempt to allo-
integral number of sector sizes. cate contiguous regions of file address space as contigu-

The physical characteristics of a magnetic disk drive are ous or nearby disk blocks.
the cause of its performance characteristics. Disk sectors tend

• Use write-back caching to obtain a large sequential col-
to be large. So while a disk drive can transfer data at a high lection of file data blocks before secondary storage alloca-
rate, it can read from or write to only a few sectors per second. tion is performed. Prefer to allocate secondary storage
Obtaining data from a magnetic disk drive requires mechani- data blocks in units of multiple sectors.
cal movement. Accessing a sector on the same track incurs a

• Create several zones on the disk, where each zone is arotational latency for the platter to spin and make the desired
contiguous region of tracks. Prefer to allocate directories,track come under the read/write head. Requests for sectors
I-nodes, and file data blocks all in the same zone.on the same track of a different platter incur a rotational la-

• If write-back caching is used, sort the disk blocks to writetency and a head calibration delay. Accessing a sector on a
by their location to minimize disk movement.different track requires the movement of the disk arm. Mov-

ing the disk arm a long distance requires considerably more • Prefetch nearby file blocks when performing a file read
time than moving it a short distance. However, moving the (prefetching is often implemented by the disk drive con-
disk arm a single track requires a substantial fraction of the troller also).
time to perform a full platter seek because of start up and
calibration delays. After a long series of file allocations and deallocations, file

Obtaining high performance from magnetic disk drives re- blocks of most files tend to be scattered across the disk and
quires a careful data layout that minimizes the movement of distant from the file metadata. Such a file system is frag-
disk drive components to read a file. This requires that a file’s mented. Most file systems provide defragmentation utilities to
metadata are stored close together, that the metadata are restore spatial locality to the files on the disk.
stored close to the data, and that contiguous data blocks are
stored close together (because files are usually accessed se- Crash Recovery
quentially).

If the computer system fails while file update operations are
pending, then the file system is likely to be inconsistent when

Metadata
the computer system is restarted. If write-back caching is
used, then some user-level writes might not have been propa-The secondary storage media typically contains the metadata,

which allows data blocks to be stored and accessed. One part gated to secondary storage. If the crash occurs while a file
update is in progress, then the metadata might be inconsis-of the metadata are the directories which contain file names

and pointers to the corresponding file metadata. By making tent (e.g., a block might have been allocated to a file but not
yet removed from the free list).directories a special type of file, directories can be hierar-

chical. To detect possible inconsistencies, a file system can store a
sequence number in two different disk blocks. Before any up-The metadata for a file contains information about the file,

for example, the nature of the file, the creation time, and se- dates are performed on the file system, the sequence number
in one of the blocks is updated. When the file system is shutcurity information. A significant part of the file metadata is a

mapping between addresses in the file space and physical sec- down, all pending update operations are performed and then
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the sequence number in the other block is incremented. If the can lead to difficult-to-trace program errors, such as money
vanishing (or suddenly appearing) in bank accounts.computer initializes the file system and discovers that the

blocks contain different sequence numbers, the file system Ensuring atomicity and durability for a transaction that
writes data is a seeming contradiction. Atomicity means thatmetadata might be in an inconsistent state. In this case the

computer will attempt to repair the file system before dirty buffers cannot be written to secondary storage before
the transaction commit, but durability requires that they beallowing any further access. For example, the computer will

ensure that each block on the disk drive is either on the free written to secondary storage before the commit. The solution
is to use a log file. If a dirty buffer is written to secondarylist or is allocated to exactly one file.

To reduce file system repair time, some file systems use a storage before a commit point, a log record describing the pre-
vious contents of the disk block must first be written to thelog of all updates. Before any write (to file data or metadata)

is performed, a description of the action is first written to the log (an undo log record). If a transaction has written to a
buffer and its contents has not been written to secondary stor-log, and the update propagated to secondary storage. For re-

covery, the computer only needs to ensure that all updates age at the commit time, then a log record containing the dirty
buffer must first be written to the log (a redo log record).described in the log have been propagated to secondary stor-

age. Log-structured file systems perform updates (almost) en- When a transaction commits, a commit record is written to
the log. If a failure occurs, a database recovery program scanstirely in the log and (mostly) avoid the additional step of writ-

ing data in the areas pointed to by the I-node. the log and performs writes for all redo log records of commit-
ted transactions and for all undo records of uncommitted
transactions.Tertiary Storage

If two transactions overlap in the data that they access,
Because a tertiary storage system uses removable media, the then a commit dependency can occur. For example, suppose
metadata for a tertiary storage system is typically stored in that transaction T1 writes to buffer x, and then transaction
a database on secondary storage. A tertiary storage system T2 reads from buffer x and writes to buffer y. Suppose further
typically uses a portion of secondary storage to improve per- that transaction T2 commits while T1 is still executing. If a
formance. A staging area is used to store files pending migra- failure occurs before T1 can commit, or if the execution of T1

tion to tertiary storage. Staging serves the same purpose as a is aborted (terminated before the commit for reasons of con-
write-back cache for secondary storage. A cache area is used sistency, system resources, or user action), then consistency
for files accessed by user applications (and serves the same is violated. In user applications this problem can cause
purpose as a regular cache). Often the staging area and the difficult-to-trace bugs. Therefore, transaction T1 must commit
cache area are merged and treated uniformly. before T2 can commit, and a commit dependency exists be-

Cache and staging space is managed in largely the same tween them.
way as for secondary storage. One exception is that variable- A full discussion of transaction processing is beyond the
size block cache management is used. Another exception is scope of this article. However, we can outline a simple buffer
that purging buffers from the (secondary-storage) cache is an management policy that ensures ACID properties:
expensive, and writes to tertiary storage must make use of
spatial locality in writes whenever possible. Here, a water- 1. Before a transaction T can access a data item, it must
mark algorithm is often used. When the free space in the place a lock on the data item. If the data are locked
cache reaches a low watermark, files are selected for purging by another transaction, T is blocked until the lock is
from the cache. Dirty or staged files are written to tertiary released.
storage. The purging stops when the free space reaches a 2. If a transaction updates a data buffer, the data buffer
high watermark. cannot be written to secondary storage until after the

Tertiary storage media is often append-only (WORM opti- transaction commits.
cal disks or tapes). If a file is fetched, modified, and migrated 3. A transaction cannot commit until a redo record is writ-
back to tertiary storage, the old version cannot be overwrit- ten to the log for every buffer it has written to.
ten. Instead it is marked as deleted. If an excessive amount

4. A transaction commits by writing a commit record toof tertiary storage space is consumed by deleted files, a com-
the log. After the commit, the transaction releases allpaction process is run to reclaim the space.
locks.

This transaction processing technique is two-phase locking,TRANSACTIONS
using exclusive locks and redo-only logging. Most database
systems use more sophisticated techniques to improve con-A transaction is a program that has ACID properties. Imple-
currency, allow the execution of very large transactions, re-menting ACID properties imposes restrictions on when buff-
duce logging overhead, and reduce database recovery time.ers can be read, when buffers can be written to secondary

storage, and when a transaction can be allowed to commit.
Transactions that access the same buffers must have their FURTHER INFORMATION
entire executions ordered with respect to each other, logically
if not physically (i.e., the transaction executions must be seri- For more information on buffer management in centralized

and distributed operating systems, see Refs. 7 and 8. An in-alized). For example, consider an execution in which transac-
tion T1 writes to buffer x before transaction T2 reads x, and depth discussion of the implementation of the 4.4 BSD vari-

ant of UNIX is given in Ref. 9. An in-depth discussion oftransaction T2 writes to buffer y before transaction T1 reads
y. This execution violates atomicity; in user applications it serializability theory is given in Ref. 10. The details of imple-
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menting a transaction processing system are discussed in
Ref. 11.
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