
BOOLEAN FUNCTIONS

INTRODUCTION

Boolean algebra is a part of discrete mathematics. The dis-
tinguishing feature of discrete mathematics is that value
domains have only a finite number of elements; that is,
continuous infinite domains such as the real numbers are
not present. This area of mathematics is appropriate for
modern computation, which is based on discrete-valued do-
mains and discrete approximations to real numbers when
required.

The direct coupling between the elegant, lean formal-
ism of Boolean algebra and its many uses in the form of
implementation tools and application products is a beauti-
ful example of the synergy possible between mathematics
and the engineering disciplines.

HISTORY OF MATHEMATICAL DEVELOPMENT

Boolean algebra began with the work of George Boole in
1854. Today, Boolean algebra has a general mathematical
definition based on the definition given by E. V. Hunting-
ton in 1904. A more specific, limited definition used in engi-
neering and computing applications is given in this article.
This engineering definition is based in part on the switch-
ing algebra work done in 1938 by C. E. Shannon. Switching
algebra is specific to two-valued switching elements that
correspond closely to practical electrical switching devices.

DEFINITION OF BOOLEAN ALGEBRA

Boolean algebra is defined as the set B, three operations
on the elements of B, and a set of axioms or postulates. B
contains two elements: B = {0, 1}. These elements are also
called the truth values where 0=False, and 1=True so B
is also equal to {False, True}. The primitive operations are
and, or, and not. These three functions are defined by both
their syntax (how they are written) and their semantics
(what they mean):

1. and is written as an infix ∧ and defined by the equa-
tions 0 ∧ 0 = 0, 0 ∧ 1 = 0, 1 ∧ 0 = 0, and 1 ∧ 1 = 1.

2. or is written as an infix and defined by the equations
0 ∨ 0 = 0, 0 ∨ 1 = 1, 1 ∨ 0 = 1, and 1 ∨ 1 = 1.

3. not is written as an overbar and defined by the equa-
tions 0 = 1 and 1 = 0.

LANGUAGE OF BOOLEAN ALGEBRA STATEMENTS

A language exists that consists of legal Boolean expres-
sions. The simplest forms of this language are written
as combinations of the primitive truth values, the prim-
itive operations, and parentheses. Occurrences of primi-
tive functions in Boolean expressions require one (not) or
two (and and or) truth values as arguments. When subex-
pressions are not simple truth values, they are enclosed

in parentheses to indicate the proper grouping of the over-
all expression. Examples of simple Boolean expressions are
1, 1 ∧ 0, (1 ∧ 0) ∨ 0 and (1 ∧ ((0 ∨ 1) ∧ 1)) ∨ 0. This concept of
language is made more formal by the statement that a le-
gal expression, ε, can be 0, 1, ε′ ∧ ε′′, ε′ ∨ ε′′, or ε′, where ε′
and ε′′ are also legal expressions.

Boolean expressions are made more general and useful
by adding variables. Boolean-valued variables can take on
(be bound to) either truth value. Variables are written as
lowercase letters; they can be used wherever a truth value
or a subexpression that reduces to a truth value could be
used in an expression. Examples of Boolean expressions
that contain variables are x, x ∨ y, and (a ∧ b).

Boolean expressions that include variables have multi-
ple readings. Each unique variable in an expression can
be interpreted as being either 0 or 1, consistently through-
out the expression. Each unique variable thereby gener-
ates two versions of the expression. Each expression with
n unique variables can be read as 2n separate forms. For
example, the expression (a ∧ b) ∨ (a ∧ b) has two variables
and therefore four readings: when a and b are both 0:
(0 ∧ 0) ∨ (0 ∧ 0); when a is 0 and b is 1: (0 ∧ 1) ∨ (0 ∧ 1); when
a is 1 and b is 0: (1 ∧ 0) ∨ (1 ∧ 0); and when a and b are both
1: (1 ∧ 1) ∨ (1 ∧ 1).

This concept of variables is made more formal
by the statement that a legal expression ε can be
ν, 0, 1, ε′ ∧ ε′, ε′ ∨ ε′, or ε′, where ν is any variable and ε′ and
ε′′ are also legal expressions.

AXIOMS AND THEOREMS

Boolean algebra has a set of axioms (or postulates) and the-
orems. Both axioms and theorems are given below as equa-
tions, which state that one Boolean expression is equal to
another Boolean expression. Equality (=), in these equa-
tions, is a meta-symbol (equality played the same meta-
role in the definitions of not, and, and or). Equality between
two Boolean algebra expressions means that both reduce
to the same truth value for all 2n readings generated by
the n variables appearing in either or both of the two ex-
pressions.

Axioms:

A1. Closure: The set B is closed under the operations ∧
and ∨ .

A2. Commutative: x ∧ y = y ∧ x and x ∨ y = y ∨ x.
A3. Distributive: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
A4. Identities: There are two identity elements in B, 0

and 1, such that 1 ∧ x = x and 0 ∨ x = x.
A5. Inverses:For each element in B,x, there is an inverse

element in B, x.

Theorems:

T1. Idempotent: x ∧ x = x and x ∨ x = x.
T2. Boundness: x ∧ 0 = 0 and x ∨ 1 = 1.
T3. Involution (or double-negation): (x) = x.
T4. Complementarity: x ∧ x = 0 and x ∨ x = 1.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Boolean Functions

T5. Associative: (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z =
x ∨ (y ∨ z).

T6. Logical Adjacency: (a ∧ b) ∨ (a ∧ b) = b and (a ∨ b) ∧
(a ∨ b) = b.

T7. Absorption: x ∧ (x ∨ y) = x and x ∧ (x ∧ y) = x.
T8. DeMorgan’s Law: (x ∧ y) = (x ∨ y)and (x ∨ y) =

(x ∧ y).

Boolean algebra exhibits a fundamental duality in its
axioms and theorems. Dual forms can be derived from each
other by replacing all instances of and by or, or by and, 1 by
0, and 0 by 1. Thus, either form of any of the above axioms
and theorems can be used to derive the other form.

PROOFS

Proofs exist for all of the theorems listed above. Three
proofs are given below as examples of different proof styles.
First we prove the or form of T2—the Boundness Theorem
(x ∨ 1 = 1). Each step is justified with a specific axiom:

x ∨ 1 {given}
= 1 ∧ (x ∨ 1) {by A4}
= (x ∨ x) ∧ (x ∨ 1) {A5}
= x ∨ (x ∧ 1) {A3}
= x ∨ x {A4}
= 1 {A5}

Thus, in a series of five transformations, each justified
by an axiom, we prove that x ∨ 1 = 1. Proofs can be less
formal. T3((x) = x) is proven in a more casual style: From
x ∨ x = 1 and x ∧ x = 0, and noting that the complement
of x is denoted by (x), we get x ∨ (x) = 1, x ∧ (x) = 0, and
therefore, (x) = x.

Theorems can be proven by exhaustive consideration
of cases over all combinations of argument values, as in
the following proof of the first form of T6—the Logical
Adjacency theorem, (a ∧ b) ∨ (a ∧ b) = b. The first two
columns of Table 1 present all combinations of the vari-
ables found in the equation to be proven: a and b. The re-
maining four columns of the table establish the values of
the various subexpressions of the theorem until the values
for (a ∧ b) ∨ (a ∧ b) are known. Then it can be observed that
the values for (a ∧ b) ∨ (a ∧ b) are the same as the values for
b, and consequently, (a ∧ b) ∨ (a ∧ b) = b. Exhaustive consid-
eration of cases is possible because the discrete-valued ar-
guments have only a finite number of combinations.

Many axioms and theorems can be generalized to n vari-
ables as in the following restatement of DeMorgan’s Law
for n variables: (x1 ∨ x2 ∨ . . . ∨ xn) = x1 ∧ x2 ∧ . . . ∧ xn and
(x1 ∧ x2 ∧ . . . ∧ xn) = x1 ∨ x2 ∨ . . . ∨ xn.

REDUCTION

Boolean expressions can be reduced to truth values. Reduc-
tion is carried out by replacing the inner-most expressions
with their equivalent truth values until the process termi-
nates with a single truth value. Reduction is denoted by the
symbol. For example, the expression on the left is reduced
to the truth value on the right in a series of five reductions:

(1 ∨ 0) ∧ (0 ∨ 1) ⇒ 1 ∧ (0 ∨ 1) ⇒ 1 ∧ (0 ∨ 0) ⇒ 1 ∧ 0 ⇒ 1 ∧ 1 ⇒ 1.
Other orders of reduction are possible; they all produce
the same result [for example, the first reduction could
have been (1 ∨ 0) ∧ (0 ∨ 1) ⇒ (1 ∨ 0) ∨ (0 ∨ 0)].

When variables are present in an expression, reduc-
tion can continue at least as long as a value is known
for each variable. Thus, each of the 2n readings of an
expression with n variables can be completely reduced
to a value in B. For example, when x = 0 and y =
1, the expression (x ∨ 1) ∧ y can be reduced as follows:
(x ∨ 1) ∧ y ⇒ (0 ∨ 1) ∧ y ⇒ 1 ∧ 1 ⇒ 1.

Whenever values remain unknown for one or more vari-
ables, the expression cannot always be reduced to a value
in B. In such cases, we say the expression has been simpli-
fied but not necessarily reduced. For example, when x = 0,
but we have no known value for y, y, (x ∨ 1) ∧ y can be sim-
plified: (x ∨ 1) ∧ y ⇒ (0 ∨ 1) ∧ y ⇒ 1 ∧ y.

This notion of reduction/simpification is strengthened
by using the axioms and theorems of Boolean algebra as
additional rules for reduction or simplification. Our ex-
ample expression, (x ∨ 1) ∧ y, can be simplified even when
both x and y remain unknown by use of T2 and then A4:
(x ∨ 1) ∧ y ⇒ T21 ∧ y ⇒ A4y.

A Boolean expression is a tautology (contradiction) if it
can be reduced to 1(0). (x ∨ 1) ∧ y is neither a tautology nor
a contradiction because its value depends on the value of
y. not b or ((not a and b) or (a and b)) is a tautology because
of the reduction: not b or ((not a and b) or (a and b)) ⇒/T6
not b or b ⇒/T4 1.

CLOSED AND COMPLETE

Boolean algebra is complete in the sense that every Boolean
function can be expressed in terms of the primitive oper-
ations: not, and, and or (this fact is demonstrated later
in this article in the material on canonical representa-
tions). Other choices for the primitive functions also pro-
duce functional completeness; for example, both {not, and}
and {not, or} are functionally complete. {nor} and {nand} are
minimal complete sets, where nor and nand are negated
versions of or and and, respectively [e.g., nand returns 0(1)
when returns 1(0)]. No other complete set is minimal.

Boolean algebra is also closed. Closure means that every
legal expression, when fully reduced, evaluates to a value
in the primitive domain. Closure is asserted in A1 and fol-
lows immediately from the definitions of and, or, and not:
All applications of these operations to values in B result in
some value in B. As all other functions can be expressed
as combinations the three primitives, they all must also
preserve closure.

ADDITIONAL SYNTAXES AND OMITTED PARENTHESES

To this point only, the overbar, ∧ , and ∨ have been used
to denote not, and, and or, respectively. However, sev-
eral parallel syntaxes have evolved for Boolean expres-
sions. not can be written in any of the following forms:
a, not(a), a′, and ∼ a. and can be written in any of the fol-
lowing forms: a ∧ b, a and b, a ∗ b, and ab. or can be written

Boolean Functions 3

Table 1.
a b a a ∧ b a ∧ b (a ∧ b) ∨ (a ∧ b)

0 0 1 0 0 0
0 1 1 1 0 1
1 0 0 0 0 0
1 1 0 0 1 1

Table 2. The 16 Functions of B2 → B

ab 0 ∧ a → b a b → a b xor ∨ ∨ xnor b b → a a a → b ∧ 1

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 3. An Example Function of Three Variables

Arguments: (a, b, c) Result: f(a,b,c)
000 0
001 1
010 1
011 1
100 0
101 1
110 1
111 0

Table 4. Behavior of Switching Logic

x y x ∨ y x ∧ y

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Table 5. Switching Algebra is Distributive

x y z y + z x ∗ (y + z) x ∗ y x ∗ z (x ∗ y) + (x ∗ z) x + y x + z y ∗ z x(y ∗ z) (x + y) ∗ (x ∗ z)

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 0 0 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 0 1 1
1 0 1 1 1 0 1 1 1 1 0 1 1
1 1 0 1 1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

in any of the following forms: a ∨ b a or b or a + b.
Also to this point, subexpressions have been fully

parenthesized. A less rigid syntax can be used in which
some parentheses can be omitted. Where parentheses
are omitted, it is necessary to define the order in
which operations are applied, as though full parenthe-
sization were present. For example, should the expres-
sion a ∧ b ∨ c ∧ d be interpreted as a ∧ ((b ∨ c) ∧ d) or some
other of the possible parenthesized interpretations? The
question is important, as different interpretations may
reduce to different truth values [consider 0 ∧ 0 ∨ 1 ∧ 1 :

(0 ∧ (0 ∨ 1)) ∧ 1 ⇒ 0, but ((0 ∧ 0) ∨ 1) ∧ 1 ⇒ 1]. Within the
context of any set of parentheses, this ambiguity is resolved
by applying all not’s first, then applying all instances of
and, then applying all instances of or, and then applying
any other defined functions. Within equal precedences (e.g.,
several and’s in a row with no parentheses), the left-most
operation is taken first. For the above example, the implied
parenthesization is (a ∧ b) ∨ ((c) ∧ d).

4 Boolean Functions

DEFINITION OF FUNCTIONS

New functions can be defined, based on the primitive func-
tions, variables, parentheses, and other defined functions.
For example, the standard exclusive or function (xor) is de-
fined as xor(x, y) = (x ∧ y) ∨ (x ∧ y). Equality (=) takes on a
second role here: It defines a new function with a new name
(e.g., xor), a specification of the number and name of argu-
ments (formal parameters) the new function takes (e.g.,
two arguments, named x and y), and a Boolean expression
that defines the new function in terms of the arguments
and other known entities [e.g., (x ∧ y) ∨ (x ∧ y)]. The defined
functions of two arguments can be written as infix func-
tions, for example, (x xor y) and z. Functions of one or more
than two arguments are written in prefix form with paren-
theses and commas, for example, foo(x, y, z).

Replacement of functions by their definitions, with
proper replacement of formal parameters by actual
parameters, provides additional rules for reduc-
tion/simplification. The following example uses the
definition of xor given above to simplify a given expres-
sion. Although the resultant expression is “larger,” it is
simpler in the sense that its continued simplification
requires only the use of the primitive operators.

xor(a, b) ∧ (c ∨ d) {given}
((a ∧ b) ∨ (a ∧ b)) ∧ (c ∨ d) definition of xor:

xor’s formal pa-
rameters, x and y,
are (consistently)
replaced by the
actual parameters
a and b

CARTESIAN PRODUCTS AND BOOLEAN CUBES

Boolean functions take one or more values from B and
produce a value, also in B. There are two useful ways to
think about the arguments of functions of more than one
argument: The arguments can be thought of as being sep-
arately taken or sampled from B, or one can think of a col-
lection of arguments being sampled from a more complex
domain, a Cartesian product on B, denoted Bn. A Cartesian
product Bn is an ordered set of all combinations of inde-
pendent samplings from B. Cartesian products are writ-
ten as ordered, comma-separated lists enclosed by angle
brackets. B2 is the set of ordered pairs taken from B or
B2 = {<0, 0 > , <0, 1 > , <1, 0 > , <1, 1 > }. A function such
as nor can be interpreted as taking two independent ar-
guments from the domain B or as taking one argument
from the Cartesian product domain B2. This second in-
terpretation is described by the following type definition
nor :: B2 → B, which means that “nor is a function of type
B2 to B” or that nor takes one argument from B2 and re-
turns a result in B.

B3 is the Cartesian product domain formed
by taking all combinations of three values from
B2 = {<0, 0 > , <0, 1 > , <1, 0 > , <1, 1 > }
B : B3 = {<0, 0, 0 > , <0, 0, 1 > , <0, 1, 0 > , <0, 1, 1 > ,

<1, 0, 0 > , <1, 0, 1 > , <1, 1, 0 > , <1, 1, 1 > }
.

For many purposes, B1 = {<0 > , <1 > } is taken to be the

Figure 1. B1, B2, and B3 and cubes.

same domain as B = {0, 1}. The size of bn (its cardinality,
written as |Bn|) is 2n. This exponential growth in the
size of the argument domains is a fundamental source of
difficulty in dealing with Boolean functions: It is generally
too difficult to individually reason about (or compute) all
possible inputs to a function.

The domains Bn are also called cubes, as they form bi-
nary hypercubes of degree n.They can be drawn as a labeled
node for each value in the domain and an edge connecting
all values, which differ in only one position in their labels,
i.e, a dimension of the cube. The cubes for B1, B2, and B3

are illustrated in Fig. 1 . A Bn cube has n variables; each
variable corresponds to a dimension or coordinate of the
cube and to a position in all of the node labels. Each edge
in a cube corresponds to a change in value of one variable.

Subcubes are k-cubes imbedded in n-cubes, where k ≤
n. Each node of the k-cube is mapped to a node of the n-
cube. The selected n-cube nodes for all k-cube nodes share a
common value for the n-k dimensions of address, which the
K-cube lacks. Each pair of n- and k-cube nodes share the
same value for the other k dimension. The choice of which
dimension is common is free, as is the value of the n − k

common variables. Thus, there are 2n−k(n

k
) embeddings of

a k-cube in an n-cube. In Fig. 2 , a 2-cube is embedded in a
3-cube with the right-most dimension of the 3-cube being
fixed at 1. The embedded 2-cube is in bold.

Boolean Functions 5

Figure 2. A 2-cube embedded in a 3-cube.

Figure 3. Cube-to-cube functional mapping of xor.

FUNCTIONS OF BN → B

There are four functions of type B1 → B: not (described
above), the identity function (identity 0 = 0, identity 1 = 1),
the everywhere zero function (zero 0 = 0, zero 1 = 0), and
the everywhere one function (one 0 = 1, one 1 = 1). There
are 16 functions of type B2 → B, as shown in Table 2 .

There are 2(2n) distinct functions from Bn → B: Bn has
2n unique combinations of argument values; each of the
2n unique inputs to a Bn → B function can result in either
truth value, so there are 2(2n) unique functions in Bn → B.
The population of functions grows exponentially with the
number of arguments (B3 → B has 256 functions; B4 → B

has 65,536 functions); this enormous population of func-
tions is a second fundamental source of difficulty in dealing
with Boolean functions in automated systems.

Functions are mappings from one domain to another.
Such mappings can be conceptualized and drawn as di-
rected arcs from one cube ((Bn)) to another ((B1)). The map-
ping for the exclusive or function (xor(x, y) = xy ∨ xy) is il-
lustrated in Fig. 3 .

To this point, only functions that produce a single truth
value have been considered (functions in T n → T). It is
common, however, to group functions of this type to produce
one function that produces an m-bit vector. These bundled
functions are considered to be functions of type T n → T m.

TRUTH TABLES

There are numerous ways to encode the mapping repre-
sented by a Boolean function. The most straightforward
method is the truth table. A truth table is a tabular list of
all the arguments of a function in one column with the as-
sociated results of the function listed in a second column,

each row constituting of one argument and the associated
result of the function. An example of a truth table for an
arbitrary function in is given in Table 3 .

The truth table in Table 3 completely specifies the be-
havior or mapping of a particular B3 → B function, but it
does not indicate how the function is specified in Boolean
algebra. Although it is commonly convenient to work with
functions in various tabular and graphical forms, it is
sometimes necessary to translate such representations to
algebraic forms. This process is straightforward and leads
to two canonical representations of Boolean functions.

CANONICAL REPRESENTATIONS (SOP AND POS)

The first canonical representation is the canonical sum-of-
products (SOP) form: A literal is a variable (a) or its nega-
tion (a). Boolean expressions constructed with only and and
literals are called products-of-literals (or just products). Ex-
amples of products are a ∧ b and a ∧ c. Sums-of-products-of-
literals (or just sums-of-products) are Boolean expressions
constructed with only or and products. An example of an
SOP is (a ∧ b) ∨ (a ∧ c). A product that contains n distinct
literals (i.e., literals made from each n different argument)
for a function with n arguments is called a minterm. The
function in Table 3 has eight minterms (a ∧ b ∧ c through
a ∧ b ∧ c). The function returns True for only five of those
minterms (a ∧ b ∧ c,a ∧ b ∧ c,a ∧ b ∧ c,a ∧ b ∧ c and a ∧ b ∧ c).
We refer to these five points as the true minterms. The sum
of all true minterms must be true if the function is True
and must be False otherwise. Thus, the sum of all true
minterms is always a correct algebraic expression for the
function. The function in Table 3 can be written as

f (a, b, c) =
(a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c)

This SOP formulation gives a unique, canonical expres-
sion for each function, if the products are written in a stan-
dard order. The standard order uses the base-two represen-
tation of the natural numbers, where negative literals are
taken as 0s and positive literals are taken as 1s. Thus, in
the SOP form above, a ∧ b ∧ c(010) precedes a ∧ b ∧ c(011)
in the standard ordering of SOPs.

A dual representation of functions is called the product-
of-sums (-of-literals) (POS). Sums are formed from literals
and or, and products-of-sums are formed from sums and
and. Sums of n distinct literals are called maxterms. Each
maxterm is used to rule out the points of the function, for
which the function returns 0. If a zero of the function occurs
at maxterm x ∧ y ∧ z, then the sum x ∨ y ∨ z rules out that
zero-producing point (i.e., the sum x ∨ y ∨ z is True when
and only when the argument of the function does not occur
at x ∧ y ∧ z). If all zero points are ruled out for a given set
of arguments, then the result produced by the product is
True. A POS representation for the function in Table 3 is

f (a, b, c) = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)

6 Boolean Functions

MINIMIZATION

The SOP forms introduced above are canonical represen-
tations of Boolean functions, but they may not be minimal
representations. Boolean functions may have more than
one SOP representation. This multiplicity of SOP repre-
sentations is introduced in two ways: 1) trivially, by allow-
ing different orderings of the terms; and 2) substantially, by
using product terms with fewer than n literals. Each prod-
uct with m < n literals covers or replaces 2n−m minterms. Of
all possible SOP representations for a function, a minimal
SOP representation requires the fewest logic operations.
More than one minimal SOP form for a function may exist.
Consider the function in Table 3 . It has the canonical SOP
representation:

1. (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
but this function is also correctly expressed by other
forms, including:

2. (b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
3. (a ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
4. (b ∧ c) ∨ (b ∧ c) ∨ (a ∧ c)
5. (b ∧ c) ∨ (b ∧ c) ∨ (a ∧ b)

These five expressions have 14, 10, 10, 5, and 5 and or or
operators, respectively. Expressions 4 and 5 have the small-
est number of operators possible. Either one of them is a
suitable minimal SOP. Dual results apply to POS forms.

The reduced expressions for the function in Table 3 can
be derived systematically by repeated application of logi-
cal adjacency. If two minterms differ in only one literal (as
with a ∧ b ∧ c and a ∧ b ∧ c), then they can be removed and
replaced by the single product that has all the shared lit-
erals from the two minterms but drops the single literal at
which the minterms differ (resulting in a ∧ c for the exam-
ple). This algebraic manipulation can be applied as well to
products that are not minterms (i.e., that have fewer than
n literals). The process can be continued until more reduc-
tions are available. Depending on choices among several
simultaneously available logical adjacencies, this method
may or may not result in a minimal expression. With com-
plete backtracking at all choice points, the minimal expres-
sion can be found, but there are better algorithms for this
purpose.

The process of finding a minimal SOP form for any func-
tion is an important problem. For small functions, straight-
forward graphical techniques can be used (e.g., Karnaugh
Maps); for functions with more arguments, more sophis-
ticated algorithms are required. The worst-case time re-
quired to find a minimal expression for a function grows
exponentially with the number of arguments (O(2n)); con-
sequently, for large functions, it may be necessary to give
up on finding a truly minimal expression and be satisfied
with a relatively small expression, found in more modest
time.

All methods for finding minimal SOPs share four com-
mon concepts. These are concepts: implicants, prime impli-
cants, essential prime implicants, and minimal covers.

Implicants (I) are those products that are true only
where the function is true. The implicants of the function

in Table 3 are all five of the n-literal true minterms iden-
tified from Table 3 ’s true rows and from, b ∧ c, b ∧ c, a ∧ c,
and a ∧ b. No other products cover only true results in the
function.

Prime implicants (PI) are those implicants that are not
completely covered by a larger implicant. Among the im-
plicants of the example, it can be observed that a ∧ c covers
a ∧ b ∧ c. Therefore, a ∧ b ∧ c is not a PI. The PIs for the func-
tion given in Table 3 are b ∧ c, b ∧ c, a ∧ c, and a ∧ b.

Essential prime implicants (EPIs) are those PIs that
cover true minterms that are not covered by other PIs. In
the example, it can be observed that b ∧ c and b ∧ c are
essential, as only they cover the minterms a ∧ b ∧ c and
a ∧ b ∧ c, respectively.

The minimal cover is the set of EPIs combined with the
smallest number of nonessential prime implicants (N-EPIs
are those prime implicants that are not essential) required
to cover all true minterms of the function. In the case of
the function in Table 3 , the EPIs (b ∧ c and b ∧ c) are suf-
ficient to cover only four true minterms, so N-EPI(s) are
required to cover the remaining true minterm of the func-
tion a ∧ b ∧ c. We chose a ∧ c, but a ∧ b would have done as
well. Thus, a minimal (but not unique) SOP form for the
example function is (b ∧ c) ∨ (b ∧ c) ∨ (a ∧ c).

Minimization algorithms generally start from the truth
table or SOP form of a function, then build the set of all
implicants, then filter out the non-PIs, then divide the PIs
into EPIs and N-EPIs, and finally make the choices among
the N-EPIs to provide a complete minimal cover.

CYCLES OF CANONICAL REPRESENTATIONS

Any function can be written as an SOP; any function can be
written as a POS. Six other, related canonical forms can be
reached by the application of DeMorgan’s rule to the SOP
and POS forms.These forms are illustrated in Fig. 4 ,where
two rings of forms are shown, one including the SOP and
the other including the POS. Whereas SOP means “or’s
of and’s”, a form like SOS means “or’s of nor’s”. Transla-
tion from one form in a ring to another is accomplished
by application of DeMorgan’s Law: The dotted lines corre-
spond to the transformations accomplished by application
of DeMorgan’s Law to the inner expressions; the solid lines
correspond to the transformations accomplished by appli-
cation of DeMorgan’s Law to the outer expressions. The
ability to translate standard positive two-level logic (SOP)
to a doubly negative form (POS) is important, as most im-
plementation technologies naturally produce negated logic
forms.

For some new example function, the four SOP-related
forms are:

SOP : (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
SOS : (a ∨ b ∨ c) ∨ (a ∨ b ∨ c) ∨ (a ∨ b ∨ c)
POS : (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)
POP : (a ∧ b ∧ c) ∧ (a ∧ b ∧ c) ∧ (a ∧ b ∧ c)

Algebraic conversion between SOP and POS can be per-
formed by multiplying out the operations, but this process
takes O(2n) steps for n variables. An example SOP form is

Boolean Functions 7

Figure 4. SOP and POS rings of canonical forms.

transformed to its POS form in the following steps:

(a ∧ b) ∨ (a ∧ c)
⇒ (a ∨ (a ∧ c)) ∧ (b ∨ (a ∧ c))
⇒ (a ∨ a) ∧ (a ∧ c) ∧ (b ∨ a) ∧ (b ∨ c)
⇒ (a ∨ c) ∧ (a ∨ b) ∧ (b ∨ c)

NESTED LOGIC FORMS

SOP and POS are two-level logic forms in the sense that
the inner level of logic must produce a result for the outer
level of logic to consume but that no deeper nesting of
logic is required (the negations of the literals are not
counted). Often, more deeply nested logic is more efficient
in representing a function in terms of logic gate count. The
study of these nested forms of logic is less structured than
the study of two-level logics, but the area is important
in practice. Nested logic forms can be found by factoring
two-level forms. For the example in Table 3 (with SOP form
(a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c)),
a factor of a can be extracted from the first
three products and a factor of a can be ex-
tracted from the last two products, yielding
(a ∧ ((b ∧ c) ∨ (b ∧ c) ∨ (b ∧ c))) ∨ (a ∧ ((b ∧ c) ∨ (b ∧ c))). This
factored form requires three levels of logic but only 11
logic gates compared with 14 for the SOP form.

In many applications of Boolean functions, there may
be combinations of input arguments that never occur or
for which the results of the function do not matter. These
input combinations are called don’t-cares. Truth table spec-
ifications of functions with don’t-cares include 0s, 1s, and
don’t-cares (which are commonly written as Xs). In the
minimization problem, don’t-cares can be treated as 0s or
1s, which are chosen such that the resultant expression is
maximally reduced.

LOGIC GATES

Boolean expressions can be drawn in a graphical circuit
form. Figure 5 illustrates the basic logic gate types and
a logic diagram for the function in Table 3 . Three input
nand/nor gates are equivalent to (x nand y) nand z or (x

Figure 5. Logic gate schematic diagrams.

Figure 6. A simple switch.

Figure 7. Positive and negative logic switches.

nor y) nor z. Negations on inputs of gates can be also be
drawn as small circles right at any input(s) of any gate
type.

SWITCHING CIRCUITS

Switching circuits are closely related to Boolean algebras.
A simple switch is shown in Fig. 6 . It has the fundamental
property that it is either on (closed) or off (open). When it
is on, A and B are connected together and current can flow.
This switch is a two-state logical device.

A single switch is denoted by a letter or variable. When
c = 1 (c = 0), the circuit is closed (open). The negation of
this circuit will be closed (open) when c = 0 (c = 1) (Fig. 7
).

If two switches d and e are connected in series, the cir-
cuit is closed if and only if both switches are closed. The
transmission function of two switches in series may there-
fore be written as f ∧ g. Similarly the parallel connection
of two switches (Fig. 8) is closed if and only if one or both of
them is closed. The transmission function for two switches
in parallel is f ∨ g.

In summary, the rules of the two binary operators ∨ and
∧ corresponding to the circuit operations described above
are shown in Table 4 .

We now show that the switching algebra is a Boolean al-
gebra. Closure for the three primitive operations on the set
B = {0, 1} is obvious, because the result of each operation is
either 0 or 1 and 0, 1 ∈ B. From Table 4 , the commutative
laws are obvious as well. The identity elements are verified
as 1 ∧ 1 = 1, 1 ∧ 0 = 0, 0 ∨ 0 = 0, and 0 ∨ 1 = 1. From 0 = 1
and 1 = 0, the inverse property is satisfied. Table 5 shows
that the distributive laws are satisfied (column 5 = column
8 and column 12 = column 13). Notice that Table 5 uses “*”

8 Boolean Functions

Figure 8. Series and parallel switches.

for and and “+” for or.
Therefore, the set B = {0, 1} with the defined switching

operations form a Boolean algebra.

COMPLEMENTS AND RESTRICTIONS

Given a Boolean function f :: Bn → B, its complement func-
tion, denoted by f ′(x) or f (x), is defined as f (x) = 0, iff
f (x) = 1, and f (x) = 1 iff f (x) = 0.

For an n-dimensional Boolean space Bn with variable
set {x1, . . . , xn}, the function restriction (also called cofac-
tor) of a Boolean function {x1, . . . , xn} with respect to a
variable xi is defined to be f i(x1, . . . , xi+1, xi+1, . . . , xn) =
f (x1, . . . , xi−1, xi+1, . . . , xn). Similarly, we can define
f i(x1, . . . , xi−1, xi+1, . . . , xn) = f (x1, . . . , xi−1, xi+1, . . . , xn).
Of course fi and f i are of type Bn−1 → B. Similarly
we recursively define f xix j

= (f xi
)x j

. For the function
f = x1x2 ∨ x3x4, we have f x1 = x2 ∨ x3x4 f

x
1 = x3x4,

f
x

1
x3 = x4.

A variable xi is a supporting variable of the function f
if f xi

= xxi
. The supporting variable set, denoted by sub(f),

consists of all supporting variables of f. The dimension of
a function f is the number of supporting variables.

DATA STRUCTURES FOR BOOLEAN FUNCTIONS

Automated algorithmic processing of Boolean functions is
challenging in large part because of the exponential size of
the domains (Bn) and the number of functions (22n). Truth
tables quickly become impractical for many common prob-
lems. Considerable research has been undertaken to find
more efficient data structures to represent and manipu-
late Boolean functions. In general, all such representa-
tions have bad cases that suffer exponential growth. But
for many practical problems, significantly more efficient
representations have been identified. Chief among these
new representations are the ordered binary decision dia-
gram (OBDD) and its many close relatives reported in the
literature, for example, factored forms such as the Shan-
non expansion and forms based on exclusive or such as
Reed–Muller expansions.

ALGORITHMS FOR BOOLEAN FUNCTIONS

The most commonly studied algorithms for Boolean func-
tions are for the minimization problem, which accept a
truth table, SOP, or other representation of a function and
compute either a minimal or some nearly minimal expres-
sion for that function. Practical solutions to this problems
have been important, as the cost of implementation has
been dependent on progress on this research front. Other

important algorithmic problems are complementation, tau-
tology checking, computing restrictions of functions, and
solving Boolean equations. Algorithms for conversion of
data from one Boolean-based representation to another are
also of practical importance.

CLASSIFICATION OF BOOLEAN FUNCTIONS

The classification of Boolean functions by various proper-
ties inherent in their mappings has been important in a
variety of advanced research topics. Several forms of sym-
metry can be used to classify functions and can lead to
practical advantages. A concept of threshold functions can
serve as primitive functions for the implementation of all
other functions. In some possible technologies, an advan-
tage exist to implementation in these threshold functions
and, hence, to in understanding the cost of implementation
of other functions in one or more threshold functions.

STANDARD BOOLEAN FUNCTIONS

Many standard applications of digitial logic (such as pro-
cessors, memories, and telecommunications gear) can be
largely described as being composed of customized ver-
sions of a fairly modest set of higher level components. Key
examples of these higher level constructs are multiplex-
ers, demultiplexers, adders, decoders, encoders, and priority
chains. Each of these higher level constructs has one or
several straightforward implementations in terms of the
standard Boolean gates. These constructs allow the level of
abstraction of design to be raised without any compromise
to the formal basis of Boolean algebra or to the practicality
of the resultant designs.

IMPLEMENTATIONS OF BOOLEAN FUNCTIONS

The primitive Boolean functions can be implemented in a
remarkably wide range of technologies from the obvious
electronic technologies to pneumatic solutions. The sim-
ple rules of composition of the logical primitives are mir-
rored by equally simple “wiring” rules in any implemen-
tation technology. As a consequence, it is straightforward
to design and often practical to implement quite compli-
cated designs in a wide variety of technologies. By far the
most common basis for implementation of digital systems
today is CMOS. CMOS is capable of implementing systems
consisting of millions of interconnected logic gates.

Boolean Functions 9

COMPUTER AIDED DESIGN

It is now commonplace to develop systems—based on these
foundations of Boolean algebra—that are far too compli-
cated for “hand” or “paper” design. It is necessary to build
and use computer aided design (CAD) tools to allow correct
completion of most practical systems. Many approaches to
CAD and the design of CAD tools exist, but the two most
important characteristics of these systems are that 1) they
should allow the production of provably correct systems,
and 2) they should allow the designers to work at higher
levels of abstraction than logic gates, with mostly auto-
matic generation (synthesis) of the lower layer represen-
tations of the system until a realizable implementation in
the primitive gates is obtained.

STATE MACHINES

This short article has left most of the literature and ap-
plications of Boolean algebra and the switching algebra
undiscussed. However, perhaps the most important single
omission is the idea of state machines. State machines have
internal memory that represents the current state of some
computational process. Logic, based on Boolean algebra, is
used to compute a next state and some set of outputs from
the state machine, based on the current state and/or the
current inputs. The idea of internal state that is preserved
from one time period until the next is an entirely new ele-
ment to the discussion thus far in this article. The internal
state corresponds to a feedback mechanism, or to recur-
sive equations that track the state-by-state course of these
machines over computational time. This seemingly simple
addition to the ideas of Boolean algebra is essential for
most practical applications. Although state (and the mem-
ory mechanisms that record this changing state) is essen-
tial to most practical applications, it introduces semantics
and mathematics that go far beyond this introductory ar-
ticle.

BIBLIOGRAPHY

Reading List

The following textbooks contain a variety of levels of useful
overviews of, and introductions to, Boolean functions and their
applications:

Friedman, A. D., Menon, P. R. Theory and Design of Switching
Circuits, Computer Science Press: Woodland Hills, CA, 1975.

Gajski, D. D. Principles of Digital Design, Prentice-Hall: Upper
Saddle River, NJ, 1997.

Katz,R. H. Contemporary Logic Design Benjamin Cummings:Red-
wood City, CA, 1994.

Mano, M. M. Computer Engineering: Hardware Design, Prentice-
Hall: Englewood Cliffs, NJ, 1988.

Roth, C. H. Fundamentals of Logic Design, 4th ed., West: St. Paul,
MN, 1994.

Wakerly, J. F. Digital Design: Principles and Practices, 2nd ed.,
Prentice-Hall: Englewood Cliffs, 1994.

CARL D. McCROSKY

YUKE WANG

Department of Electrical and
Computer Engineering,
University of Saskatchewan

Department of Computer
Science, University of Texas
at Dallas

