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Evolutionary trees model the evolutionary histories of in-
put data such as a set of species or molecular sequences.
Evolutionary trees are useful for a variety of reasons, for ex-
ample, in homology modeling of (DNA and protein) sequences
for diagnostic or therapeutic design, as an aid for devising
classifications of organisms, in evaluating alternative hypoth-
eses of adaption, and ancient geographical relationships (5,6).
Quite a few methods are known to construct evolutionary
trees from the large volume of input data. We will discuss
some of these methods in this article. We will also discuss
methods for comparing and contrasting evolutionary trees
constructed by various methods to find their similarities or
dissimilarities, which is of vital importance in computational
biology.

Synthenic distance is a measure of distance between multi-
chromosome genomes (where each chromosome is viewed as
a set of genes). Applications of computing distances between
genomes can be traced back to the well-known Human Ge-
nome Project, whose objective is to decode this entire DNA
sequence and to find the location and ordering of genetic
markers along the length of the chromosome. These genetic
markers can be used, for example, to trace the inheritance of
chromosomes in families and thereby to find the location of
disease genes. Genetic markers can be found by finding DNA
polymorphisms—that is, locations where two DNA sequences
‘‘spell’’ differently. A key step in finding DNA polymorphisms

BIOLOGY COMPUTING is the calculation of the genetic distance, which is a measure
of the correlation (or similarity) between two genomes.

The modern era of molecular biology began with the discovery Multiple sequence alignment is an important tool for se-
of the double helical structure of DNA. Today, sequencing nu- quence analysis. It can help extracting and finding biologi-
cleic acids, the determination of genetic information at the cally important commonalities from a set of sequences. Many
most fundamental level, is a major tool of biological research versions have been proposed, and a huge number of papers
(1). This revolution in biology has created a huge amount of have been written on effective and efficient methods for con-
data at great speed by directly reading DNA sequences. The structing multiple sequence alignment. We will discuss some
growth rate of data volume is exponential. For instance, the of the important versions such as SP alignment, star align-
volume of DNA and protein sequence data is currently dou- ment, tree alignment, generalized tree alignment, and fixed to-
bling every 22 months (2). One important reason for this ex-

pology alignment with recombination. Recent results on these
ceptional growth rate of biological data is the medical use of

versions are given.such information in the design of diagnostics and therapeu-
We assume that the reader has a basic knowledge of algo-tics (3,4). For example, identification of genetic markers in

rithms and computational complexity, such as NP, P, andDNA sequences would provide important information regard-
MAX-SNP. Consult, for example, Refs. 7–9 otherwise.ing which portions of the DNA are significant, and would

The rest of this article is organized as follows. In the sec-allow the researchers to find many disease genes of interest
tion entitled ‘‘Construction and Comparison of Evolutionary(by recognizing them from the pattern of inheritance). Natu-
Trees,’’ we discuss construction and comparison methods forrally, the large amount of available data poses a serious chal-
evolutionary trees. In the section entitled ‘‘Computing Dis-lenge in storing, retrieving, and analyzing biological infor-
tances Between Genomes,’’ we discuss briefly various dis-mation.
tances for comparing sequences and explain in details theA rapidly developing area, computational biology, is emerg-
synthenic distance measure. In the section entitled ‘‘Multipleing to meet the rapidly increasing computational need. It con-
Sequence Alignment Problems,’’ we discuss multiple sequencesists of many important areas such as information storage,
alignment problems. We conclude with a few open problemssequence analysis, evolutionary tree construction, protein
in the section entitled ‘‘Conclusion.’’structure prediction, and so on (3,4). It is playing an impor-

tant role in some biological research. For example, sequence
comparison is one of the most important methodological is-

CONSTRUCTION AND COMPARISONsues and most active research areas in current biological se-
OF EVOLUTIONARY TREESquence analysis. Without the help of computers, it is almost

impossible to compare two or more biological sequences (typi-
The evolution history of organisms is often conveniently rep-cally, at least a few hundred characters long).
resented as trees, called phylogenetic trees or simply phyloge-In this article, we survey recent results on evolutionary
nies. Such a tree has uniquely labeled leaves and unlabeledtree construction and comparison, computing synthenic dis-
interior nodes, can be unrooted or rooted if the evolutionarytances between multichromosome genomes, and multiple se-

quence alignment problems. origin is known, and usually has internal nodes of degree 3.
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Maximum-likelihood methods (12,18,19) rely on the statis-
tical method of choosing a tree that maximizes the likeli-
hood—that is, maximizes the probability that the observed
data would have occurred. Although this method is quite gen-
eral and powerful, it is computationally intensive because of
the complexity of the likelihood function.

All the above methods have been investigated by simula-
tion and theoretical analysis. None of the methods work well
under all evolutionary conditions, but each works well in par-
ticular situations. Hence, one must choose the appropriate
phylogeny construction method carefully for best results (6).
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Comparing Evolutionary TreesFigure 1. Examples of weighted and unweighted phylogenies.
As discussed in the previous section, over the past few de-
cades, many approaches for reconstructing evolutionary trees
have been developed, including (not exhaustively) parsimony,Figure 1 shows an example of a phylogeny. A phylogeny may
compatibility, distance, and maximum-likelihood methods. Asalso have weights on its edges, where an edge weight (more
a result, in practice they often lead to different trees on thepopularly known as branch length in genetics) could represent
same set of species (20). It is thus of interest to compare evo-the evolutionary distance along the edge. Many phylogeny re-
lutionary trees produced by different methods, or by the sameconstruction methods, including the distance and maximum
method on different data. Several distance models for evolu-likelihood methods, actually produce weighted phylogenies.
tionary trees have been proposed in the literature. AmongFigure 1 also shows a weighted phylogeny (the weights are
them, the best known is perhaps the nearest-neighbor inter-for illustrative purposes only).
change (NNI) distance introduced independently in Refs. 21
and 22. Other distances include (a) the subtree-transfer dis-

Phylogenetic Construction Methods tance introduced in Refs. 23 and 24, and (b) the linear-cost
subtree-transfer distance (25,26). Below, we discuss veryPhylogenetic construction methods use the knowledge of evo-
briefly a few of these distances.lution of molecules to infer the evolutionary history of the spe-

cies. The knowledge of evolution is usually in the form of two
Nearest-Neighbor Interchange Distancekinds of data commonly used in phylogeny inference—

namely, character matrices where each position (i, j) is base j An NNI operation swaps two subtrees that are separated by
in sequence i, and distance matrices where each position (i, an internal edge (u, v), as shown in Fig. 2. The NNI operation
j) contains the computed distance between sequence i and se- is said to operate on this internal edge. The NNI distance,
quence j. Three major types of phylogenetic construction DNNI(T1, T2), between two trees T1 and T2 is defined as the
methods are the parsimony and compatibility method, the dis- minimum number of NNI operations required to transform
tance method, and the maximum-likelihood method. Below we one tree into the other. Culik and Wood (27) [improved later
discuss each of them very briefly. See the excellent surveys in by Li et al. (28)] proved that n log n � O(n) NNI moves are
Refs. 10 and 11 for more details. sufficient to transform a tree of n leaves to any other tree

Parsimony methods construct phylogenetic trees for the with the same set of leaves. Sleator et al. (29) proved an �(n
given sequences such that, in some sense, the total number of log n) lower bound for most pair of trees. Although the dis-
changes (i.e., base substitutions) or some weighted sum of the tance has been studied extensively in the literature
changes is minimized. See Refs. 12–14 for some of the rele- (21,22,27–34), the computational complexity of computing it
vant papers. has puzzled the research community for nearly 25 years until

Distance methods (15–17) try to fit a tree to a matrix of recently when DasGupta et al. (25) showed this problem to be
pairwise distances between a set of n species. Entries in the NP-hard. An erroneous proof of the NP-hardness of the NNI
distance matrices are assumed to represent evolutionary dis- distance between unlabeled trees was published in Ref. 34.
tance between species represented by the sequences in the Since computing the NNI distance is shown to be NP-hard,
tree, that is, the total number of mutations in both lineages
since divergence from the common ancestor. If no tree fits the
distance matrix perfectly, then a measure of the discrepancy
of the distances in the distance matrix and those in the tree
is taken, and the tree with the minimum discrepancy is se-
lected as the best tree. An example of the measure of the dis-
crepancy, which has been used in the literature (15,16), is a
weighted least-square measure—that is, of the form

∑
1≤i, j≤n

wi j (Di j − di j )
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where Dij are the given distances and dij are the distances Figure 2. The two possible NNI operations on an internal edge (u,
v): exchange B } C or B } D.computed from the tree.
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Distances on Weighted Phylogenies

Comparison of weighted evolutionary trees has recently been
studied in Ref. 20. The distance measure adopted is based on
the difference in the partitions of the leaves induced by the
edges in both trees, and it has the drawback of being some-
what insensitive to the tree topologies. Both the linear-cost
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subtree-transfer and NNI models can be naturally extendedFigure 3. An example of subtree-transfer operation on a tree.
to weighted trees. The extension for NNI is straightforward:
An NNI is simply charged a cost equal to the weight of the
edge it operates on. In the case of linear-cost subtree transfer,the next obvious question is: Can we get a good approximation
although the idea is immediate—that is, a moving subtreeof the distance? Li et al. (28) show that the NNI distance can
should be charged for the weighted distance it travels—thebe approximated in polynomial time within a factor of log n
formal definition needs some care and can be found in Ref. 26.� O(1).

Since computing the NNI distance on unweighted phyloge-
nies is NP-hard, it is obvious that computing this distance isSubtree-Transfer Distances
NP-hard for weighted phylogenies also. DasGupta et al. (26)

An NNI operation can also be viewed as moving a subtree give an approximation algorithm for the linear-cost subtree-
past a neighboring internal node. A more general operation is transfer distance on weighted phylogenies with performance
to transfer a subtree from one place to another arbitrary ratio 2. In Ref. 25, the authors give an approximation algo-
place. Figure 3 shows such a subtree-transfer operation. The rithm for the NNI distance on weighted phylogenies with per-
subtree-transfer distance, Dst(T1, T2), between two trees T1 formance ratio of O(log n). It is open whether the linear-cost
and T2 is the minimum number of subtrees we need to move subtree-transfer problem is NP-hard for weighted phyloge-
to transform T1 into T2 (23–25,35). nies. However, it has been shown that the problem is NP-

It is sometimes appropriate in practice to discriminate hard for weighted trees with nonuniquely labeled leaves (26).
among subtree-transfer operations as they occur with differ-
ent frequencies. In this case, we can charge each subtree-

COMPUTING DISTANCES BETWEEN GENOMEStransfer operation a cost equal to the distance (the number of
nodes passed) that the subtree has moved in the current tree.

The definition and study of appropriate measures of distanceThe linear-cost subtree-transfer distance, Dlcst(T1, T2), between
between pairs of species is of great importance in computa-two trees T1 and T2 is then the minimum total cost required
tional biology. Such measures of distance can be used, for ex-to transform T1 into T2 by subtree-transfer operations (25,26).
ample, in phylogeny construction, and in taxonomic analysis.Clearly, both subtree-transfer and linear-cost subtree-trans-

As more and more molecular data become available, meth-fer models can also be used as alternative measures for com-
ods for defining distances between species have focused onparing evolutionary trees generated by different tree recon-
such data. One of the most popular distance measures is thestruction methods. In fact, on unweighted phylogenies, the
edit distance between homologous DNA or amino acid se-linear-cost subtree-transfer distance is identical to the NNI
quences obtained from different species. Such measures focusdistance (26).
on point mutations and define the distance between two se-Hein et al. (35) show that computing the subtree-transfer
quences as the minimum number of these moves required todistance between two evolutionary trees is NP-hard and give
transform one sequence into another. It has been recognizedan approximation algorithm for this distance with perfor-
that the edit distance may underestimate the distance be-mance ratio 3.
tween two sequences because of the possibility that multiple
point mutations occurring at the same locus will be accountedRotation Distance
for simply as one mutation. The problem is that the probabil-

Rotation distance is a variant of the NNI distance for rooted, ity of a point mutation is not low enough to rule out this pos-
ordered trees. A rotation is an operation that changes one sibility.
rooted binary tree into another with the same size. Figure 4 Recently, there has been a spate of new definitions of dis-
shows the general rotation rule. An easy approximation algo- tance that try to treat rarer, macrolevel mutations as the ba-
rithm for computing distance with a performance ratio of 2 is sic moves. For example, if we know the order of genes on a
given in Ref. 36. However, it is not known if computing this chromosome for two different species, we can define the rever-
distance is NP-hard or not. sal distance between the two species to be the number of re-

versals of portions of the chromosome to transform the gene
order in one species to the gene order in the other species. The
question of finding the reversal distance was first explored in
the computer science context by Kececioglu and Sankoff and
by Bafna and Pevzner, and there has been significant prog-
ress made on this question by Bafna, Hannenhalli, Kececi-
oglu, Pevzner, Ravi, Sankoff, and others (37–41). Other
moves besides reversals have been considered as well. Break-
ing off a portion of the chromosome and inserting it elsewhere
in the chromosome is referred to as a transposition, and oneB B
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Figure 4. Left and right rotation operations on a rooted binary tree. can similarly define the transposition distance (42). Similarly,
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is minimized (where D is the syntenic distance). Without any
additional constraints, this problem is trivial, since we can
take G to be empty (and then �G � 0). In the context of syn-
tenic distance, any one of the following three constraints seem
relevant: (c1) G must contain all genes present in all the three

2 8 1 3  7 5 4 6 9 10 11 12

Gene Chromosome

Figure 5. A genome with 12 genes and 3 chromosomes. given genomes, (c2) G must contain all genes present in at
least two of the three given genomes, (c3) G must contain all
genes present in at least one of the three given genomes. Then,

allowing two chromosomes (viewed as strings of genes) to ex- computing the median genome is NP-hard with any one of the
change suffixes (or sometimes a suffix with a prefix) is known three constraints (c1), (c2), or (c3). Moreover, one can approxi-
as a translocation, and this move can also be used to define mate the median problem in polynomial time [under any one
an appropriate measure of distance between two species for of the constraints (c1), (c2), or (c3)] with a constant perfor-
which much of the genome has been mapped (43). mance ratio. See Ref. 45 for details.

Ferretti et al. (44) proposed a distance measure that is at
an even higher level of abstraction. Here even the order of

MULTIPLE SEQUENCE ALIGNMENT PROBLEMSgenes on a particular chromosome of a species is ignored or
presumed to be unknown. It is assumed that the genome of a

Multiple sequence alignment is the most critical cutting-edgespecies is given as a collection of sets. Each set in the collec-
tool for sequence analysis. It can help extracting, finding, andtion corresponds to a set of genes that are on one chromo-
representing biologically important commonalities from a setsome, and different sets in the collection correspond to differ-
of sequences. These commonalities could represent someent chromosomes (see Fig. 5). In this scenario, one can define
highly conserved subregions, common functions, or commona move to be either an exchange of genes between two chro-
structures. Multiple sequence alignment is also very useful inmosomes, the fission of one chromosome into two, or the fu-
inferring the evolutionary history of a family of sequencession of two chromosomes into one (see Fig. 6). The syntenic
(46–49).distance between two species has been defined by Ferretti et

A multiple alignment A of k 	 2 sequences is obtained asal. (44) to be the number of such moves required to transform
follows: Spaces are inserted into each sequence so that thethe genome of one species to the genome of the other.
resulting sequences s
i (i � 1, 2, . . ., k) have the same lengthNotice that any recombination of two chromosomes is per-
l, and the sequences are arranged in k rows of l columns each.missible in this model. By contrast, the set of legal transloca-

The value of the multiple alignment A is defined astions (in the translocation distance model) is severely limited
by the order of genes on the chromosomes being translocated.
Furthermore, the transformation of the first genome into the
second genome does not have to produce a specified order of

l∑
i=1

µ(s′
1(i), s′

2(i), . . . s′
k(i))

genes in the second genome. The underlying justification of
this model is that the exchange of genes between chromo- where s
l (i) denotes the ith letter in the resulting sequence
somes is a much rarer event than the movement of genes s
l , and �(s
1(i), s
2(i), . . ., s
k(i)) denotes the score of the ith
within a chromosome and hence a distance function should column. The multiple sequence alignment problem is to con-
measure the minimum number of such exchanges needed. struct a multiple alignment minimizing its value.

In Ref. 45, the authors prove various results on the syn- Many versions have been proposed based on different ob-
tenic distance. For example, they show that computing the jective functions. We will discuss some of the important ones.
syntenic distance exactly is NP-hard, there is a simple polyno-
mial time approximation algorithm for the synteny problem

SP Alignment and Steiner Consensus Stringwith performance ratio 2, and computing the syntenic dis-
tance is fixed parameter tractable. For SP score (sum-of-the-pairs), the score of each column is

The median problem arises in connection with the phyloge- defined as
netic inference problem (44) and defined as follows. Given
three genomes G 1, G 2, and G 3, we are required to construct a
genome G such that the median distance �G � �3

i�1 D(G , G i)
µ(s′

1(i), s′
2(i), . . ., s′

k(i)) =
∑

1≤ j<l≤k

µ(s′
j (i), s′

l (i))

where �(s
j (i), s
l (i)) is the score of the two opposing letters
s
j (i) and s
l (i). The SP score is sensible and has previously
been studied extensively.

The SP-alignment problem is to find an alignment with the
smallest SP score. It is first studied in Ref. 52 and subse-
quently used in Refs. (50,51,53,54). SP alignment problem can
be solved exactly by using dynamic programming. However,
if there are k sequences and the length of sequences is n, it
takes O(nk) time. Thus, it works for only small numbers of
sequences. Some techniques to reduce the time and space
have been developed in Refs. 50,55–57. With these tech-
niques, it is possible to optimally align up to six sequences of
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Figure 6. Different mutation operations. 200 characters in practice.
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In fact, the SP-alignment problem is NP-hard (58). Thus, of T. Here, the cost of T is the sum of the edit distance of each
pair of (given or reconstructed) sequences associated with anit is impossible to have a polynomial time algorithm for this

problem. In the proof of NP-hardness, it is assumed that some edge. Observe that, once a sequence for each internal node
has been reconstructed, a multiple alignment can be obtainedpairs of identical characters have nonzero score. An interest-

ing open problem is, What if each pair of two identical charac- by optimally aligning the pair of sequences associated with
each edge of the tree. Moreover, the tree score of this inducedters is scored 0?

The first approximation algorithm was given by Gusfield multiple alignment equals the cost of T. In this sense, the two
formulations of tree alignment are equivalent.(53). He introduced the center star algorithm. Center star al-

gorithm is very simple and efficient. It selects a sequence Sankoff gave an exact algorithm for tree alignment that
runs in O(nk), where n is the length of the sequences and k is(called center string) sc in the set of k given sequences S such

that �k
i�1 dist(sc, si) is minimized. It then optimally aligns the the number of given sequences. Tree alignment was proved to

be NP-hard (58).sequences in S � �sc� to sc and gets k � 1 pairwise alignments.
These k � 1 pairwise alignments lead to a multiple alignment Therefore it is unlikely to have a polynomial time algo-

rithm for tree alignment. Some heuristic algorithms have alsofor the k sequences in S. If the score scheme for pairs of char-
acters satisfies the triangle inequality, the cost of the multiple been considered in the past. Altschul and Lipman (50) tried

to cut down the computation volume required by dynamic pro-alignment produced by the center star algorithm is at most
twice of the optimum (47,53). Some improved results were re- gramming. Sankoff, Cedergren, and Lapalme gave an itera-

tive improvement method to speed up the computationported in Refs. 54 and 59.
Another score called consensus score is defined as follows: (48,62). Waterman and Perlwitz devised a heuristic method

when the sequences are related by a binary tree (64). Hein
(65,66) proposed a heuristic method based on the concept of a
sequence graph. Ravi and Kececioglu (67) designed an approx-µ(s′

1(i), s′
2(i), . . . s′

k(i)) = min
s∈�

k∑
j=1

µ(s′
j (i), s)

imation algorithm with performance ratio (deg � 1)/(deg � 1)
when the given tree is a regular deg-ary tree (i.e., each inter-where � is the set of characters that form the sequences.
nal node has exactly deg children).Here we reconstruct a character for each column and thus

The first approximation algorithm with a guaranteed per-obtain a string. This string is called a Steiner consensus string
formance ratio was devised by Wang, Jiang, and Lawler (63).and can be used as a representative for the set of given se-
A ratio 2 algorithm was given. The algorithm was then ex-quences. The problem is called the Steiner consensus string
tended to a polynomial time approximation scheme (PTAS);problem.
that is, the performance ratio could arbitrarily approach 1.The Steiner consensus string problem was proved to be
The PTAS requires computing exact solutions for depth-t sub-NP-complete (60) and MAX SNP-hard (58). In the proof of
trees. For a fixed t, the performance ratio was proved to beMAX SNP-hardness, it is assumed that there is a ‘‘wild card,’’
1 � 3/t, and the running time was proved to beand thus the triangle inequality does not hold. Combining
O((k/degt)degt�1

�2M(2, t � 1, n)), where deg is the degree of thewith the results in Ref. 61, it shows that there is no polyno-
given tree, and M(deg, t � 1, n) is the time needed to opti-mial time approximation scheme for this problem. Interest-
mally align a tree with degt�1 � 1 leaves, which is upper-ingly, the same center star algorithm also has performance
bounded by O(ndegt�1

�1). Based on the analysis, to obtain a per-ratio 2 for this problem (47).
formance ratio less than 2, exact solutions for depth-4
subtrees must be computed, and thus optimally aligning nine

Tree Alignment sequences at a time is required. This is impractical even for
sequences of length 100.Tree Score. In order to define the score �(s
1(i), s
2(i), . . .

An improved version was given in Ref. 68. They proposeds
k(i)) of the ith column, an evolutionary (or phylogenetic) tree
a new PTAS for the case where the given tree is a regularT � (V, E) with k leaves is assumed, with each leaf j corre-
deg-ary tree. The algorithm is much faster than the one insponding to a sequence sj. (Here V and E denote the sets of
Ref. 63. The algorithm also must do local optimizations fornodes and edges in T, respectively.) Let k � 1, k � 2, . . .,
depth-t subtrees. For a fixed t, the performance ratio of thek � m be the internal nodes of T. For each internal node j,
new PTAS is 1 � 2/t � 2/t2t and the running time isreconstruct a letter (possibly a space) s
j (i) such that
O(min�2t, k�kdM(deg, t � 1, n)), where d is the depth of the�(p,q)�E�(s
p(i), s
q(i)) is minimized. The score �(s
1(i), s
2(i), . . .,
tree. Presently, there are efficient programs (62) to do locals
k(i)) of the ith column is thus defined as
optimizations for three sequences (t � 2). In fact, we can ex-
pect to obtain optimal solutions for five sequences (t � 3) of
length 200 in practice since there is such a program (55,56)

µ(s′
1(i), s′

2(i), . . . s′
k(i)) =

∑
(p, q)∈E

µ(s′
p(i), s′

q(i))

for SP score, and similar techniques can be used to attack
tree alignment problem. Therefore, solutions with costs atThis measure has been discussed in Refs. 14, 48, 50, 59, and

62. Multiple sequence alignment with tree score is often re- most 1.583 times the optimum can be obtained in practice for
strings of length 200.ferred to as tree alignment in the literature.

Note that a tree alignment induces a set of reconstructed For tree alignment, the given tree is typically a binary
tree. Recently, Wang, Jiang, and Gusfield designed a PTASsequences, each corresponding to an internal node. Thus, it is

convenient to reformulate tree alignment as follows: Given a for binary trees. The new approximation scheme adopts a
more clever partitioning strategy and has a better time effi-set X of k sequences and an evolutionary tree T with k leaves,

where each leaf is associated with a given sequence, recon- ciency for the same performance ratio. For any fixed r, where
r � 2t�1 � 1 � q and 0 � q � 2t�2 � 1, the new PTAS runs instruct a sequence for each internal node to minimize the cost
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time O(kdnr) and achieves an approximation ratio of
2t�1/[2t�2(t � 1) � q]. Here the parameter r represents the
‘‘size’’ of local optimization. In particular, when r � 2t�1 � 1,
its approximation ratio is simply 2/(t � 1).

Generalized Tree Alignment

In practice, we often face a more difficult problem called gen-
eralized tree alignment. Suppose we are given a set of se-
quences. The problem is to construct an evolutionary tree as

Recombination

Crossover

(a) (b)

well as a set of sequences (called reconstructed sequences) Figure 7. (a) Recombination operation. (b) The topology. The dark
such that each leaf of the evolutionary tree is assigned a given edges are recombination edges. The circled node is a recombination
sequence, each internal node of the tree is assigned a recon- node.
structed sequence, and the cost of the tree is minimized over
all possible evolutionary trees and reconstructed sequences.

Intuitively, the problem is harder than tree alignment
have more than one root. The set of roots is called a protoset.since the tree is not given and we have to compute the tree
The edges incident to recombination nodes are called recombi-structure as well as the sequences assigned to internal nodes.
nation edges. See Fig. 7(b). A node/edge is normal if it is notIn fact, the problem was proved to be MAX SNP-hard (58)
a recombination node/edge.and a simplified proof was given in Ref. 69. It implies that it

The cost of a pair of recombination edges is the recombina-is impossible to have a PTAS for generalized tree alignment
tion distance to produce the sequence on the recombinationunless P � NP (61). This confirms the observation from ap-
node from the two sequences on its parents. The cost of otherproximation point of view.
normal edges is the edit distance between two sequences. AGeneralized tree alignment problem is in fact the Steiner
topology is fully labeled if every node in the topology is la-tree problem in sequence spaces. One might use the approxi-
beled. For a fully labeled topology, the cost of the topology ismation algorithms with guaranteed performance ratios (70)
the total cost of edges in the topology. Each node in the topol-for graph Steiner trees. However, this may lead to a tree
ogy with degree greater than 1 is an internal node. Each leaf/structure where a given sequence is an internal node. Thus,
terminal (degree 1 node) in the topology is labeled with ait is impossible to interpret the tree as a phylogeny. Schwi-
given sequence. The goal here is to construct a sequence forkowski and Vingron (71) give a method that combines cluster-
each internal node such that the cost of the topology is mini-ing algorithms and Hein’s sequence graph method. The pro-
mized. We call this problem fixed topology history with recom-duced solutions contain biologically reasonable trees and keep
bination (FTHB).the guaranteed performance ratio.

Obviously, this problem is a generalization of tree align-
ment. The difference is that the given topology is no longer aFixed Topology History/Alignment with Recombination
binary tree. Instead, there are some recombination nodes

Multigene families, viruses, and alleles from within popula- which have two parents instead of one. Moreover, there may
tions experience recombinations (23,24,72,73). When recombi- be more than one root in the topology.
nation happens, the ancestral material on the present se- A different version called fixed topology alignment with re-
quence s1 is located on two sequences s2 and s3. s2 and s3 can combination (FTAR) is also discussed (75). From an approxi-
be cut at k locations (break points) into k � 1 pieces, where mation point of view, FTHR and FTAR are much harder than
s2 � s2,1s2,2 . . . s2,l�1 and s3 � s3,1s3,2 . . . s3,l�1. s1 can be repre- tree alignment. It is shown that FTHR and FTAR cannot be
sented as s∧

2,1s∧
3,2s∧

2,3 . . . s∧
2,is∧

3�1 . . ., where subsequences s∧
2,i approximated within any constant performance ratio unless

and s∧
3�1 differ from the corresponding s2,i and s3,i�1 by inser- P � NP (75).

tion, deletion, and substitution of letters. k, the number of A more restricted case, where each internal node has at
times s1 switches between s2 and s3, is called the number of most one recombination child and there are at most six par-
crossovers. The cost of the recombination is ents of recombination nodes in any path from the root to a

leaf in the given topology, is also considered. It is shown that
the restricted version for both FTHR and FTAR is MAX-SNP-
hard. That is, there is no polynomial time approximation

dist(s1,1, s∧
1, 1) + dist(s2, 2, s∧

2, 2), . . . dist(s1, i, s∧
1, i)

+ dist(s2, i+1, s ∧
2, i+1) + · · · + kχ

scheme unless P � NP (75).
The above hardness results are disappointing. However,where dist(s2,i�1, s∧

2�1) is the edit distance between the two se-
recombination occurs infrequently. So, it is interesting toquences s2,i�1 and s∧

2�1, k is the number of crossovers and � is
study some restricted cases. A merge node of recombinationthe crossover penalty. The recombination distance to produce
node v is the lowest common ancestor of v’s two parents. Thes1 from s2 and s3 is the cost of a recombination that has the
two different paths from a recombination node to its mergesmallest cost among all possible recombinations. We use
node are called merge paths. We then study the case wherer_dist(s1, s2, s3) to denote the recombination distance. For

more details, see Refs. 72 and 74.
(C1) each internal node has at most one recombinationWhen recombination occurs, the given topology is no longer

child anda binary tree. Instead, some nodes, called recombination
nodes, in the given topology may have two parents (23,24). In (C2) any two merge paths for different recombination

nodes do not share any common node.a more general case as described in Ref. 72, the topology may
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Using a method similar to the lifting method for tree align- draft and gave valuable suggestions. The work of Lusheng
Wang was supported in part by Hong Kong Research Council.ment, one can get a ratio-3 approximation algorithm for both

FTHR and HTAR when the given topology satisfies (C1) and The work of Bhaskar DasGupta was supported in part by a
grant from Rutgers Research Council.(C2). The ratio-3 algorithm can be extended to a PTAS for

FTAR with bounded number of crossovers. (See Ref. 75.)

BIBLIOGRAPHYRemarks. Hein may have been the first to study the
method to reconstruct the history of sequences subject to re-

1. M. S. Waterman, Sequence alignments, in M. S. Waterman (ed.),combination (23,24). Hein observed that the evolution of a se-
Mathematical Methods for DNA Sequences, Boca Raton, FL: CRCquence with k recombinations could be described by k recom-
Press, 1989, pp. 53–92.bination points and k � 1 trees describing the evolution of

2. W. Miller, S. Scbwartz, and R. C. Hardison, A point of contactthe k � 1 intervals, where two neighboring trees were either
between computer science and molecular biology, IEEE Compu-identical or differed by one subtree transfer operation (23–
tat. Sci. Eng., 1 (1): 69–78, 1994.26,35). A heuristic method was proposed to find the most par-

3. K. A. Frenkel, The human genome project and informatics, Com-simonious history of the sequences in terms of mutation and
mun. ACM, 34 (11): 41–51, 1991.recombination operations.

4. E. S. Lander, R. Langridge, and D. M. Saccocio, Mapping andAnother strike was given by Kececioglu and Gusfield (72).
interpreting biological information, Commun. ACM, 34 (11): 33–They introduced two new problems, namely, recombination
39, 1991.distance and bottleneck recombination history. They tried to

5. V. A. Funk and D. R. Brooks, Phylogenetic Systematics as theinclude higher-order evolutionary events such as block inser-
Basis of Comparative Biology, Washington, DC: Smithsonian In-tions and deletions (76) and tandem repeats (77,78).
stitution Press, 1990.

6. D. M. Hillis, B. K. Mable, and C. Moritz, Applications of Molecu-
CONCLUSION lar Systematics, in D. M. Hillis et al. (eds.), Molecular Systemat-

ics, 2nd ed., Sunderland, MA: Sinauer Associates, 1996, pp.
515–543.In this article we have discussed some important topics in

the field of computational biology such as the phylogenetic 7. M. R. Garey and D. S. Johnson, Computers and Intractability: A
construction and comparsion methods, synthenic distance be- Guide to the Theory of NP-Completeness, San Francisco: Free-

man, 1979.tween genomes, and the multiple sequence alignment prob-
lems. Given the vast majority of topics in computational biol- 8. D. Hochbaum, Approximation Algorithms for NP-Hard Problems,

PWS Publishers, 1996.ogy, these discussed topics constitute only a part of them.
Some of the important topics which were not covered in this 9. C. H. Papadimitriou, Computational Complexity, Reading, MA:

Addison-Wesley, 1994.chapter are:
10. J. Felsenstein, Phylogenies from molecular sequences: Inferences

• Protein structure prediction and reliability, Annu. Rev. Genet., 22: 521–565, 1988.
• DNA physical mapping problems 11. D. L. Swofford et al., Phylogenetic Inference, in D. M. Hillis et al.,

(eds.), Molecular Systematics, 2nd ed., Sunderland, MA: Sinauer• Metabolic modeling
Associates, 1996, pp. 407–514.

• String/database search problems, etc.
12. A. W. F. Edwards and L. L. Cavalli-Sforza, The reconstruction of

evolution, Ann. Hum. Genet., 27: 105, 1964 (also in Heredity 18:We hope that this survey article will inspire the readers for
553, 1964.further study and research of these and other related topics.

13. W. M. Fitch, Toward defining the course of evolution: MinimumPapers on computational molecular biology have started to
change for a specified tree topology, Syst. Zool., 20: 406–416,appear in many different books, journals, and conferences.
1971.Below we list some sources which could serve as excellent

14. D. Sankoff, Minimal mutation trees of sequences, SIAM J. Appl.starting points for various problems that arise in computa-
Math., 28: 35–42, 1975.tional biology:

15. L. L. Cavalli-Sforza and A. W. F. Edwards, Phylogenetic analysis:
Models and estimation procedures, Evolution, 32: 550–570, 1967;Books: References 49, 53, 79–83.
also published in Am. J. Hum. Genet., 19: 233–257, 1967.

Journals: Computer Applications in the Biosciences (re-
16. W. M. Fitch and E. Margoliash, Construction of phylogeneticcently renamed as Bioinformatics), Journal of Computa-

trees, Science, 155: 279–284, 1967.tional Biology, Bulletin of Mathematical Biology, Journal
17. N. Saitou and M. Nei, The neighbor-joining method: A newof Theoretical Biology.

method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4:
Conferences: Annual Symposium on Combinatorial Pat- 406–425, 1987.

tern Matching (CPM), Pacific Symposium on Biocomput- 18. J. Felsenstein, Evolutionary trees for DNA sequences: A maxi-
ing (PSB), Annual International Conference on Computa- mum likelihood approach, J. Mol. Evol., 17: 368–376, 1981.
tional Molecular Biology (RECOMB), Annual Conference 19. D. Barry and J. A. Hartigan, Statistical analysis of hominoid mo-
on Intelligent Systems in Molecular Biology (ISMB). lecular evolution, Stat. Sci., 2: 191–210, 1987.

20. M. Kuhner and J. Felsenstein, A simulation comparison of phy-
ACKNOWLEDGMENTS logeny algorithms under equal and unequal evolutionary rates,

Mol. Biol. Evol., 11 (3): 459–468, 1994.
We thank Prof. Tao Jiang for bringing the authors together. 21. D. F. Robinson, Comparison of labeled trees with valency three,

J. Comb. Theory Ser. B, 11: 105–119, 1971.Thanks also go to Dr. Todd Wareham, who carefully read the



BIOLOGY COMPUTING 393

22. G. W. Moore, M. Goodman, and J. Barnabas, An iterative ap- 44. V. Ferretti, J. H. Nadeau, and D. Sankoff, Original synteny, Proc.
7th Annu. Symp. Comb. Pattern Matching, 1996, pp. 159–167.proach from the standpoint of the additive hypothesis to the den-

drogram problem posed by molecular data sets, J. Theor. Biol., 45. B. DasGupta et al., On the complexity and approximation of syn-
38: 423–457, 1973. tenic distance, 1st Annu. Int. Conf. Comput. Mol. Biol., 1997,

pp. 99–108.23. J. Hein, Reconstructing evolution of sequences subject to recom-
bination using parsimony, Math. Biosci., 98: 185–200, 1990. 46. S. C. Chan, A. K. C. Wong, and D. K. T. Chiu, A survey of multi-

ple sequence comparison methods, Bull. Math. Biol., 54 (4): 563–24. J. Hein, A heuristic method to reconstruct the history of se-
598, 1992.quences subject to recombination, J. Mol. Evol., 36: 396–405,

1993. 47. D. Gusfield, Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology, Cambridge: Cambridge25. B. DasGupta et al., On distances between phylogenetic trees,
Univ. Press, 1997.Proc. 8th Annu. ACM-SIAM Symp. Discrete Algorithms, 1997,

pp. 427–436. 48. D. Sankoff and R. Cedergren, Simultaneous Comparisons of
Three or More Sequences Related by a Tree, in D. Sankoff and J.26. B. DasGupta et al., On the linear-cost subtree-transfer distance,
Kruskal (eds.), Time Warps, String Edits, and Macromolecules:Algorithmica, special issue computational biology, 1998, in press.
The Theory and Practice of Sequence Comparison, Reading, MA:27. K. Culik II and D. Wood, A note on some tree similarity mea-
Addison-Wesley, 1983, pp. 253–264.sures, Inf. Process. Lett., 15: 39–42, 1982.

49. M. S. Waterman, Introduction to Computational Biology: Maps,28. M. Li, J. Tromp, and L. X. Zhang, On the nearest neighbor inter-
Sequences, and Genomes, London: Chapman & Hall, 1995.change distance between evolutionary trees, J. Theor. Biol., 182:

50. S. Altschul and D. Lipman, Trees, stars, and multiple sequence463–467, 1996.
alignment, SIAM J. Appl. Math., 49: 197–209, 1989.29. D. Sleator, R. Tarjan, and W. Thurston, Short encodings of evolv-

51. D. Baconn and W. Anderson, Multiple sequence alignment,ing structures, SIAM J. Discrete Math., 5: 428–450, 1992.
J. Mol. Biol., 191: 153–161, 1986.30. M. S. Waterman and T. F. Smith, On the similarity of dendro-

52. H. Carrillo and D. Lipman, The multiple sequence alignmentgrams, J. Theor. Biol., 73: 789–800, 1978.
problem in biology, SIAM J. Appl. Math., 48: 1073–1082, 1988.31. W. H. E. Day, Properties of the nearest neighbor interchange

53. D. Gusfield, Efficient methods for multiple sequence alignmentmetric for trees of small size, J. Theor. Biol., 101: 275–288, 1983.
with guaranteed error bounds, Bull. Math. Biol., 55: 141–154,32. J. P. Jarvis, J. K. Luedeman, and D. R. Shier, Counterexamples
1993.in measuring the distance between binary trees, Math. Soc. Sci.,

54. P. Pevzner, Multiple alignment, communication cost, and graph4: 271–274, 1983.
matching, SIAM J. Appl. Math., 56 (6): 1763–1779, 1992.33. J. P. Jarvis, J. K. Luedeman, and D. R. Shier, Comments on com-

55. S. Gupta, J. Kececioglu, and A. Schaffer, Making the shortest-puting the similarity of binary trees, J. Theor. Biol., 100: 427–
paths approach to sum-of-pairs multiple sequence alignment433, 1983.
more space efficient in practice, Proc. 6th Symp. Comb. Pattern34. M. Křvánek, Computing the nearest neighbor interchange metric
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