
AUTOMATA THEORY 69

able function or that of an algorithm. A Turing machine can
also be regarded as an algorithm that computes a special
function.

Having defined the computable functions, it was possible
to give examples of functions that are easy to specify but prob-
ably not computable, as for example the decision as to
whether a given Turing machine will eventually halt for a
given argument (halting problem) or the famous tenth prob-
lem of David Hilbert (2). The same machine model also was
used to define the time and the space it takes for a given
algorithm to compute the values for the arguments. These
questions opened the wide new area of computational com-
plexity. As a result, algorithms could be classified according
to the amount of time and space they consume. It turned out
that there are many functions that only have algorithms that
need so much time (or space) that they are not feasible, that
is, not computable from a practical point of view. The most
famous unsolved problem in theoretical computer science is
concerned with the question of whether a large class of practi-
cally important functions (the NP-complete decision prob-
lems) can ever be computed within reasonable (polynomial)
time and space bounds on a deterministic machine (the P �

NP problem) (3).
A machine, or automaton, is an abstract mathematical ob-

ject that could in principle be built with mechanical, elec-
tronic, or other components of known technology. Thus au-
tomata constitute the mathematical basis for the construction
of electronic digital computers and many other modern infor-
mation-processing devices. An automaton is a system that
has discrete input, output, and state spaces and whose behav-
ior is not described by differential equations but with methods
of universal algebra and logic. An automaton manipulates a
finite set of symbols using a finite set of simple rules. The
theory investigates what automata can do if they are allowed
finite (or even countably infinite) sequences of single steps.

The Turing machine is an archetype of the models that are
encountered in the theory of automata. Many modifications
(restrictions and generalizations) have been investigated. In
this article we do not give a complete overview of all the dif-AUTOMATA THEORY
ferent types of automata that have been the subject of re-
search; for further reading refer to (4,5). Instead we concen-AUTOMATA AS MODELS FOR COMPUTATION
trate on a few models that play an important role in different
fields of electrical engineering. We introduce the main ques-The theory of automata is a fundamental theory in computer
tions and results of the theory as well as its practical applica-science. It originated mainly in the 1930s when A. M. Turing
tions in information technology.(1) developed his mathematical model for the precise defini-

For a more formal definition of automata and related con-tion of functions that can at least in principle be computed by
cepts we need a few mathematical notions. We assume thata mechanical device (machine). The idea of a machine that
the reader is familiar with the concepts and notations of sets,can perform arithmetical computations is much older and was
functions, and relations. An introductory textbook on discretemotivated not only by practical purposes but also by philo-
mathematics or computer science may be a useful supple-sophical questions concerned with the abilities of the human
ment. We will use the artificial word ‘‘iff ’’ as an abbreviationbrain.
for ‘‘if and only if.’’ By � � �0, 1, 2, . . .� we denote the set ofTuring analyzed the process of a computation that a hu-
natural numbers including zero and for m � � we defineman being performs. He regarded it as a purely symbol-ma-
m � �0, 1, . . ., m � 1� to be the set of the first m naturalnipulating task based on a few simple rules that are applied
numbers. An alphabet is a finite set � � ��1, . . ., �n� of sym-over and over again. This analysis led to a mathematical ma-
bols. A finite sequence x1x2 . . . xk of symbols (xi � �, k � �)chine model, the Turing machine, that is on one hand surpris-
is called a word of length k. We include the case k � 0 andingly simple and on the other hand very powerful. The thesis
say that there is a (unique) word of length 0, which will beof Church and Turing states that exactly those functions that
called the empty word and will be denoted by �. The set of allwe intuitively believe to be computable are the functions that
finite words that can be formed with symbols from � includ-can be computed on a Turing machine. Thus the model of the

Turing machine is one way to define the notion of a comput- ing the empty word � will be denoted by �*.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

70 AUTOMATA THEORY

The set �* allows for a very simple binary operation called
concatenation. If u � x1 . . . xk and v � y1 . . . ym are words
in �* of length k and m, respectively, then we define uv � x1

. . . xk y1 . . . ym as the word of length k � m that is simply
the juxtaposition of the two words. The empty word has no

K

2

In
Σ*

∆

Out

Final
Γ*

effect (is neutral) under concatenation: u� � u � �u. It is easy
to see that concatenation is an associative operation: u(vw) � Figure 2. Computation, configuration.
(uv)w.

A (formal) language is a subset L � �* of words over a
given alphabet. If L and N are subsets of �*, then we can
define the product LN � �* by LN � �uw � �* � u � L and computation with c � c0 and c� � cm. A finite computation
w � N�. LN contains all words that are composed of a first c0 c1 . . . cm is successful if cm is the first final configuration.
part taken from L and a second part taken from N. So we also An infinite sequence c0 c1 . . . cm . . . of configurations (ci �
can define Lk for k � � by L0 � ��� and Lk�1 � LkL. The itera- K) such that for all i we have (ci, ci�1) � � is an infinite compu-
tion (or Kleene star) L* of a language L � �* is defined as: tation (see Fig. 2).
L* � �k��Lk and consists of all finite sequences of words Given an input sequence u � �*, we get an initial configu-
taken from L and concatenated into one new word. If � and � ration c0 � in(u). If there exists a finite computation c0c1 . . .
are alphabets, then a relation R � �* � �* is called a word cm, then we apply the function out to get the output out(cm) �
relation, and if it is a partial or total function, it is called a �*. But it is also possible that, starting at c0, we never end up
word function, and we will denote it as usual by f : �* � �*. in a final configuration. In this case the automaton produces

An automaton A is a device that in the most general case an infinite computation and we say that the automaton does
computes a word relation RA � �* � �*, thus relating input not stop. So for any input sequence u � �* we get a (possibly
sequences to output sequences. The relation RA � �* � �* is empty) set of resulting output sequences, and in this way the
called the behavior of the automaton A (Fig. 1). A in general automaton A defines the input–output relation RA � �* � �*.
is also called a transducer. If the set of output sequences that Figure 1 shows first a very general structure of an automa-
A computes contains at most two elements, then A is called ton as a special case of general systems (6). The components
an acceptor. In the latter case we may regard RA as a relation of the internal structure and the way the global state or con-
RA � �* � 2, and then A defines the language LA � �u � �* figuration is defined depend on the type of automata and will
� (u, 1) � RA� (Fig. 1). In automata theory acceptors are used be described in more detail for the different machines in the
to define languages or analyze their structure and transduc- sequel.
ers more generally are used to define or realize input–
output relations.

An automaton has a finite local state space Q and a global LANGUAGES, GRAMMARS, AND AUTOMATA
state space K that may be regarded as a model for the total
memory of the automaton. Global states are also called con- Closely related to the theory of automata is the theory of for-

mal languages. We have seen that a formal language is justfigurations. The dynamics of an automaton is a relation � �
K � K that specifies for each configuration a set of possible a subset L � �* of the set of all words (finite sequences) built

from a finite alphabet �. An acceptor is a machine that cansuccessors. The dynamics is based on a local rule that we will
explain later. If � is a partial function, then the automaton is define such a language as the set of all sequences that it ac-

cepts. The behavior of an acceptor is a formal language, butcalled deterministic; otherwise it is nondeterministic. Further,
we have functions in : �* � K, out : K � �*, and final : K � 2. not all formal languages can be defined by an acceptor with

finite local transition rules. We will see later that differentThe function in maps the input sequences into configurations,
out maps configurations to output sequences, and final is a types of automata accept different classes of languages and

these classes form a hierarchy.predicate that classifies certain configurations as final. A con-
figuration c � K is final iff final(c) � 1 (Fig. 2). The concept of a formal grammar yields another model for

the finite characterization of languages. A grammar is a finiteA finite computation of the automaton A is a finite se-
quence c0 c1 . . . cm of configurations (ci � K) such that for 0 � set of rules that generate certain words over an alphabet �

and thus also defines a formal language. We want to intro-i � m, ci�1 is a successor of ci—formally, (ci, ci�1) � �. Mathe-
matically �* is the reflexive and transitive closure of the rela- duce the concept of a formal grammar and the way a gram-

mar defines a language, because of the intimate relation oftion �, and (c, c�) � �* is equivalent to the existence of a finite
grammars and automata.

A grammar is a special case of the more general semi-Thue
system, which we describe first. The idea of a semi-Thue sys-
tem is to specify a finite set of rules that locally manipulate
sequences over an alphabet V. A rule is an ordered pair (u,
v) � V* � V*, and we say that a sequence x � V* is trans-
formed to y � V* in a single step by applying the rule (u, v)
iff x has a partition into three subsequences x � x�ux	 such
that y � x�vx	. So applying the rule (u, v) to x means finding
a subsequence u (i.e., the left-hand side of the rule) within x

Automaton A

Global transformation
RA

Internal (local) structure

• State space
• Transition function
• Halting predicate

Q

F
δΣ*

Output spaceInput space

Γ*

and then replacing u by the right-hand side of the rule,
namely v. This local manipulation is quite similar to theFigure 1. A general system.

AUTOMATA THEORY 71

search-and-replace operation of a word processor or text The language LG consists exactly of the well-formed bracket
structures with two different types of brackets. This languageeditor.

If P is a finite set of rules, then we define the one-step is also known as a Dyck language and is denoted by D2.
derivation relation that relates pairs of V* as follows: x ⇒ y
iff there is a rule (u, v) � P such that y is the result of For a context-free grammar a derivation may also be repre-

sented by a tree where the nodes are labeled with the symbolsapplying the rule (u, v) to x. We extend this relation to its so
called reflexive and transitive closure ⇒* � V* � V* by defin- of the grammar or the empty word. The root of the tree is

labeled with the initial symbol, and if a node is labeled withing x ⇒* y iff (1) there is a finite sequence of one-step deriva-
tions x ⇒ x(1) ⇒ x(2) ⇒ � � � ⇒ x(n) ⇒ y that transforms x into a nonterminal symbol X � N and in one step X is replaced by

the right-hand side of a rule X � v1v2 . . . vk, then the nodey or (2) x � y. The sequence x ⇒ x(1) ⇒ x(2) ⇒ � � � ⇒ x(n) ⇒ y
is called a derivation of y from x. A rule (u, v) � P is also has exactly k successor nodes labeled with v1, v2, . . ., vk. If

the right-hand side of a rule is � (empty word), then we usesimply denoted as u � v. Given a word w � V*, we denote
the set of all words x � V* that may be derived from the one successor node labeled with �. A node labeled with a ter-

minal symbol has no successor. Such a tree is called a deriva-initial word w by Lw � �x � V* � w ⇒* x� � V*. Thus P and
w together define a language over the alphabet V. tion tree. The derivation tree for the above example is given

in Fig. 3.A grammar is a semi-Thue system where the alphabet V
is subdivided into two disjoint alphabets N and T. The ele- A special case of context-free grammars are the right-lin-

ear grammars where the rules have the special form X � t1ments of N are called nonterminal and those of T are called
terminal symbols. So V � N � T is the set of all symbols of . . . t2Y or X � �, where X, Y are nonterminal symbols and

t1t2 . . . tk is a sequence of terminal symbols. So in a deriva-the grammar and N � T � 0�. The initial word is a fixed sym-
bol S � N. A grammar is a structure G � (N, T, S, P) where tion step we always replace the single nonterminal symbol

that is on the right edge of the given word. In this case theN and T are disjoint finite alphabets, S � N is the initial
symbol, and P � V* � V* is a finite set of rules. A word x � derivation tree degenerates to a linear structure (sequence).

A language L � T* is called right-linear if there exists a right-V* that can be derived from S is called a sentential form of
G, and if the sentential form only consists of terminal sym- linear grammar G that generates L. We will see that context-

free grammars can generate languages that cannot be gener-bols (x � T*), then x belongs to the language defined by G. So
G defines the language LG � �x � T* � S ⇒* x�. ated by any right-linear grammar. So the generative power of

context-free grammars is greater than that of right-linearA language that can be generated by a grammar in this
way is referred to as being of Chomsky type 0. It is important grammars.

Context-free grammars are very important for the syntac-to know that there exist many formal languages that cannot
be generated by a grammar. If we are given a grammar G tic definition of programming languages. They are often rep-

resented in the so-called Backus Naur Form (BNF) or Ex-and a word w � T*, it is in general a difficult task to find a
derivation for w and thus to prove that w � LG. An algorithm tended BNF (EBNF), which are often used for describing the

syntax of programming languages. [See Ref. (7).] The class ofthat can perform this task is called a syntax analysis algo-
rithm. Efficient algorithms for syntax analysis are only avail- right-linear languages is also called the class of regular lan-

guages. Regular languages play an important role not onlyable for special classes of grammars. This is the reason that
programming languages are defined by grammars of a special in programming languages but also in the definition of text

patterns for text-processing algorithms.form (context-free grammars).
In the theory of automata and formal languages it is

shown that for the special types of grammars there exist spe-
cial types of automata that accept exactly the languages thatHIERARCHIES OF LANGUAGES AND AUTOMATA
can be generated by the grammars of a given type. So the
theory establishes on one hand a hierarchy of classes of gram-When the form of the rules is restricted, we get special types
mars of different type and on the other hand a hierarchy ofof grammars. Here we only want to mention two such types.
classes of types of automata; both define the same hierarchyA grammar G � (N, T, S, P) is called context-free iff P � N �

V*. This means that the rules have just one nonterminal sym-
bol on the left-hand side. As a consequence it is very easy to
find the left-hand side of a rule within a word and then simply
replace it by the right-hand side of the rule. Given nontermi-
nal symbols may be replaced independently and in arbitrary
order. This makes it easier to find derivations for a given
word. A language L � T* is called context-free iff there exists
a context-free grammar G that generates L.

Example. Consider the context-free grammar G that con-
sists of N � �S�, T � �[, (,],)� (a set of two different kinds of
opening and closing brackets), and the rules S � (S); S �
[S]; S � SS; S � �. Here is a derivation for the correct
bracket structure [()]():

S

S S

S S

S()

[] ()

S ⇒ SS ⇒ S(S) ⇒ S ⇒ [(S)](S) ⇒ [()]() Figure 3. Derivation tree for the word [0]0.

72 AUTOMATA THEORY

of classes of languages. The most famous such hierarchy is
the Chomsky hierarchy, which defines four classes of lan-
guages in the order of nontrivial class inclusion: type 3 (regu-
lar languages), type 2 (context-free languages), type 1, and
type 0. We have defined the languages of the types 0, 2, and
3, and we will concentrate on the types of acceptors that ac-
cept just those languages. The languages of type 1 are defined
by so-called context-sensitive grammars or by linear bounded
automata (which we only mention here).

TURING MACHINES

The Model

Actual state

Turing
table

Turing tape

Control unit

q0 qi qe•

#a

Read/write head
moves left and right

• • • • • • • • • •

• • •

δ

Informally, a Turing machine consists of a control unit, a
Figure 4. Turing machine.read–write head, and an infinite tape; see Fig. 4. The tape is

divided up into cells, and each cell contains exactly one sym-
bol of a given alphabet. An empty cell is represented by the

that is, out(vqu) � vu and final(vqu) � 1 for v, u � �* iffspecial blank symbol #. Only a finite number of cells contains
q � F.symbols unequal #. A Turing machine can execute the follow-

The accepted language of a Turing acceptor M is defineding operation on the tape: reading the cell of the tape to which
as L(M) � �w � �* � there exists a successful computation ofthe read–write head points, replacing the content of this cell
M for input w�.by a symbol of the tape alphabet (including the blank), and

The model of deterministic Turing machines is exactly asmoving the read–write head one cell to the left or to the right.
powerful as the model of nondeterministic Turing machines;A Turing machine is defined as a structure M � (�, �, Q,
that is, for each nondeterministic Turing machine M one can�, #, q0, F) where � � � is the input alphabet, � is the tape
construct a deterministic Turing machine M� simulating M.alphabet including the blank symbol #, Q is the finite set of

The intuitively computable functions are exactly the samestates, q0 � Q is the initial state, F � Q is the set of final
as the functions that are computable by Turing machines. Westates, and � � Q � � � Q � � � �L, R� is the local transition
will only consider partial functions from natural numbers torelation. If � is a functional relation (partial function � : Q �
natural numbers. Each natural number can be represented� � Q � � � �L, R�), then the Turing machine M is called
over the alphabet �1� (unary representation), in which i � 0deterministic, and otherwise nondeterministic.
is represented by 1i�1. Now a Turing machine computes aA transition (q, a, p, b, d) � � with d � �L, R� has the
function f (m) � n iff the machine starts with a configurationfollowing interpretation: If M is in state q, the read–write
q0#1m�1. After reaching a final configuration, the tape contenthead reads a symbol a, then M replaces this symbol a by b
represents the computation result, i.e., 1n�1 is on the tape. Ifand moves the read–write head one cell to left (L) or right
a function has more than one argument, then the arguments(R). A configuration of M can be described as an element of
are separated by a special symbol (e.g., 0).�*Q�*. In more detail, let w1 . . . wiqwi�1 . . . wn be the cur-

rent configuration of M, that is, M is in state q, the read–
Example. The Turing machine M � (�, �, Q, �, #, q0, F)write head reads wi�1, and the tape contains w1 . . . wiwi�1
where � � �0, 1�, � � �0, 1, #�, Q � �q0, q1, q2, q3, q4�, F �. . . wn and is blank otherwise. The dynamics of M is defined
�q4�, and � consists of the following tuples:as follows:

1. If (q, wi�1, p, b, R) � � and i � n � 1, then w1 . . .
wibpwi�2 . . . wn � �(w1 . . . wiqwi�1 . . . wn). In the
case of i � n � 1 (i.e., the read–write head is at the
rightmost position), the tape will be enlarged at the

(q0, #,q0, #, R), (q0, 1, q0, 1, R), (q0, 0, q1, 0,R),

(q1, 1, q1, 1, R), (q1, #, q2, #, L),

(q2, 1, q3, #, L), (q2, 0, q4, #, L),

(q3, 1, q3, 1, L), (q3, 0, q4, 1,L)
right end by one cell containing the blank symbol, and
w1 . . . wnq# � �(w1 . . . wn�1qwn). computes the addition function �. The transition relation can

also be written in form of a so-called Turing table:2. If (q, wi�1, p, b, L) � � and i � 0, then w1 . . .
wi�1 pwibwi�2 . . . wn � �(w1 . . . wiqwi�1 . . . wn). In the
case of i � 0 (i.e., the read–write head is at the leftmost
position), the tape will be enlarged at the left end by
one cell containing the blank symbol, and q#w1 . . .
wn � �(qw1 . . . wn).

A start configuration is given if the Turing machine starts in
initial state q0, the read–write head is at the leftmost cell,

0 1 #

q0 q1, 0, R q0, 1, R q0, #, R
q1 q1, 1, R q2, #, L
q2 q4, #, L q3, #, L
q3 q4, 1, L q3, 1, L
q4

which contains a blank symbol, and the cells to the right con-
tain the input word, that is, in(u) � q0#u. A final configuration where each table entry shows the possible action with respect

to a state and a tape symbol. The Turing machine moves tohas been reached if the Turing machine is in a final state,

AUTOMATA THEORY 73

the rightmost 1, replaces it by #, then moves back to the left
and searches for the separation between the two arguments,
replaces the symbol 0 by 1, and halts.

TM M
H′

w

M halts on input w

M does not halt on input w

Loop
0

Universal Turing Machine Figure 6. Undecidability of the halting problem (step 2).

Turing designed a single fixed machine, a universal Turing
machine, to carry out the computations of any Turing ma-

additional transitions define an infinite loop as in Fig. 6.chine. The universal Turing machine is nothing but a pro-
Since each Turing machine can be suitably encoded, the Tu-grammable Turing machine that, depending on its input pro-
ring machine H� can be applied to its own description twice,gram, can simulate other Turing machines. A program of a
as program and as data; see Fig. 7. Now we have the situationTuring machine represents a description of the Turing ma-
that H� halts on input H� iff H� does not halt on input H�, achine to be simulated. Since every Turing-machine definition
contradiction. Therefore there does not exist any Turing ma-is finite, it is possible to encode the Turing table (e.g., in bi-
chine that solves the halting problem.nary code). The resulting coded Turing machine is put onto

the tape of the universal Turing machine together with the
Generalizations of the Turing Machineencoding of the concrete input word w of the Turing machine

M to be simulated. The initial configuration of the universal Many generalizations of the Turing-machine model have been
Turing machine is q0# coded M# coded w. Now the universal considered with respect to tapes infinite on only one side and
Turing machine simulates the activation of M on w on the to the numbers of tapes and read–write heads, dimensions of
basis of the coded Turing table of M. In a final configuration the tape(s), and so on. These extensions do not really increase

the power of the original model; see Ref. 7.the right part of the tape, initialized with w, contains the
computed result.

Complexity HierarchiesIn this sense the universal Turing machine is an idealized
conception of existing programmable computers. Surprisingly, Different Turing machines can compute the same function f .
only seven states and four symbols are sufficient to define a To compare and to classify different Turing machines comput-
universal Turing machine; see Ref. 8. ing f we need an appropriate measure. The amount of re-

sources needed to perform a valid computation of a Turing
machine is such a measure. In more detail, the number ofNoncomputable Functions
steps performed during a computation by a Turing machine

A famous result of theoretical computer science is that the is called the computation time, and the number of cells on the
above-mentioned halting problem for Turing machines is un- tape required for the computation is called the computation
decidable, that is, the question ‘‘Given a Turing machine M space. The time complexity T : � � � of a Turing machine M
and an input w, does M halt when started on w?’’ cannot be can be defined as follows: for each input word w of length n,
answered. More precisely, there does not exist a Turing ma- the number of transitions of M before halting is limited by
chine that always stops and answers the above question with T(n). In a similar way, the space complexity S : � � � of a
0 (no) or 1 (yes) for each input M, w. Turing machine M can be defined: for each input word w of

A rather unsatisfying argument to that effect is the consid- length n, the number of cells on the tape used by M before
eration that after each fixed number of steps of M, we can halting is limited by S(n). Both complexity measures can be
decide whether M is in a final configuration or not. But we applied to nondeterministic and deterministic Turing ma-
cannot conclude from a nonfinal configuration that M will chines and lead to various complexity hierarchies (3,7).

One famous unsolved problem is the P � NP problem,never halt, because we do not know what will happen in the
which asks: Is it possible to simulate each nondeterministicfuture. Is it possible to reach a final configuration or not?
Turing machine with polynomial time and space complexityTo show that the halting problem for Turing machines is
by a deterministic Turing machine with polynomial time andundecidable, we use a more complicated construction. Sup-
space complexity?pose that there exists a Turing machine H that solves the

Since the Turing machine model defines the subject algo-halting problem. Similarly to universal Turing machines, the
rithm, all results gained about complexity measures of Turingmachine H starts with an input consisting of the representa-
machines can be carried over to algorithms. This implies thattions (coding) of M and an input word w and outputs 1 if M
there are (theoretically) computable functions that are nothalts on w and outputs 0 otherwise. See Fig. 5.
practically realizable because of their high complexity. Today,Now we can construct a Turing machine H� from H by add-
problems of exponential complexity are regarded as practi-ing transitions before H enters a final configuration. These
cally unsolvable.

TM M
H

w

M halts on input w

M does not halt on input w

1
0

TM H′
H′

TM H′

H′ halts on input H′

H′ does not halt on input H′

Loop
0

Figure 7. Undecidability of the halting problem (step 3).Figure 5. Undecidability of the halting problem (step 1).

74 AUTOMATA THEORY

PUSHDOWN AUTOMATA tion, that is, in reversed order with respect to the transition
notation. The successor configuration is defined as follows:

The Model
1. If (q, ai, z1, p, w1 . . . wk) � � is a transition of M, thenIn this section we use the word automaton as a synonym for

zn . . . z2wk . . . w1 pai�1 . . . am � �(zn . . . z1qai . . .acceptor. Informally, a pushdown automaton consists of an
am).input tape, a pushdown, and a control unit with two pointers,

2. If (q, �, z1, p, w1 . . . wk) � � is a transition of M, thenone to the top cell of the input tape (read head) and one to a
zn . . . z2wk . . . w1 pai . . . am � �(zn . . . z1qai . . .cell of the pushdown (read–write head); see Fig. 8. One opera-
am).tion on the pushdown is allowed. The automaton can push a

new word on top of the pushdown, whereupon the top element
will be deleted. The read–write head points to the new top Note that in both cases, if n � 1 and k � 0, then the push-

down will be completely deleted and no further transition iscell of the pushdown. Furthermore, the read head moves one
cell from left to right or remains at the old position. It may defined.

To finish the definition of the model of pushdown automatanever move to the left.
A pushdown automaton is defined as a structure M � (�, we define in(u) � #q0u, out(�q�) � final(�q�) � 1, where u �

�*, � � �* iff q � F, and otherwise both functions are 0. The�, Q, �, #, q0, F) where � is the input alphabet; � is the push-
down alphabet, including a particular pushdown symbol # pushdown automaton is in a final configuration if it has

reached a final state and there is no more input to read. Fi-called the start symbol; Q is the finite set of states, q0 � Q is
the initial state, F � Q is the set of final states, and � � Q � nally, the accepted language of a pushdown automaton M is

defined as L(M) � �u � �* � there exists a successful computa-(� � ���) � � � Q � �* is the local transition relation.
A transition (q, a, z, p, �) � � where a � �, has the follow- tion of M for input u�.

Considering in detail the definition of pushdown automata,ing meaning: If M is in state q � Q, reads the input symbol
a � �, and reads the pushdown symbol z � �, then the autom- we call a pushdown automaton M deterministic if (1) (q, �, z,

p, �) � �, then for all a � � (q, a, z, p, �) 	 �, (2) for allaton will transit to state p � Q, move its read head one cell
to the right, and replace the pushdown symbol z by the se- q � Q, z � �, and a � � � ��� there exists at most one transi-

tion (q, a, z, p, �) � �. Otherwise the pushdown automaton isquence � so that the leftmost symbol of � will be on top of the
pushdown. Transitions with � � �� are called push rules, be- called nondeterministic. In contrast to Turing machines and

finite automata, the introduction of nondeterminism in-cause the pushdown store will be enlarged, and transitions
with � � � are called pop rules, because the store will be re- creases the power of the deterministic pushdown automata

model.duced.
A transition (q, �, z, p, �) � � has the meaning that the Note that a pushdown automaton can be regarded as a re-

stricted Turing machine with two tapes such that each taperead head remains at the same position on the input tape.
Therefore the transition can be applied to each configuration has its own read–write head, but the usage of the tapes is

restricted. One tape is treated as the input tape, with accesswhere M is in state q and the top symbol of the pushdown is
z, independently of the current symbol of the input tape. restricted to reading from left to right. The access to the sec-

ond tape, the so-called pushdown, takes place in a LIFO (lastLet M be a pushdown automaton as defined above. A con-
figuration of M will be described as zn . . . z1qai . . . am � in,first out) manner, that is, only the last stored symbol can

be read and replaced by a word.�*Q�*, where z1 . . . zn is the content of the pushdown and
ai . . . am is the part of the input a1 . . . am that still can be Pushdown automata accept exactly the context-free (type

2) languages. But the following language cannot be acceptedread. Note that the element at the top of the pushdown is the
rightmost symbol z1, and the element at the bottom of the by any pushdown automaton: L � �0n1n2n � n � 0�. This sur-

prising result can be proved by using a pumping lemma forpushdown is the leftmost symbol zn in the configuration nota-

Figure 8. Pushdown acceptor.

Actual state

Table

Turing tape

Control unit

q0 qi qe•

Read head moves
left to right

Read – write
head

• • •

δ

Accessible

Pushdown tape

To be read

Bottom

Top

AUTOMATA THEORY 75

context-free languages. The pumping lemma states that if L have to be entered in postfix notation; for example, (1 � 2) �
(4 � 5) has to be entered as 1 2 � 4 5 � �. The principle ofis a context-free language, then there exists a number k, de-

pending on L, such that each word z in L with length greater a pushdown automaton can be used in a simple way to imple-
ment such a calculator. Numbers are pushed onto the push-than k can be written as z � uvwxy where (1) at least one of

v and x is nonempty, (2) the length of vwx is smaller than or down store until an operator (here �) is read. Then the opera-
tion is applied by using its arguments from the store. Nextequal to k, and (3) uvnwxny is in L for all n � 0. For more

details see Ref. (7). the arguments are replaced by the evaluated result (here 1
and 2 are replaced by 3). These actions are repeated until theIn contrast to finite automata, there are a lot of undecid-

able problems concerning pushdown automata and languages given expression is completely read. Finally the result can be
found on top of the pushdown. In the example, after readingthey accept. For example, it is not decidable whether two

pushdown automata are equivalent (i.e., accept the same lan- 4 and 5 and replacing it by 9, the application of � to 3 and 9
leads to the final result 27 stored in the pushdown.guage). For more details see Ref. 7.

Pushdown automata are of central importance in the area
of programming languages and their implementations. If aExamples
program is written in a certain programming language, then

We give two examples of languages accepted by pushdown au-
a so-called parser for that language analyzes the syntactical

tomata.
structure of the program. The parser tries to construct a deri-
vation tree from the input program text. In that case the pro-

Example. Let L � �anbn � n � 0�. Then the deterministic gram is syntactically correct. The syntax of programming lan-
pushdown automaton M � (�, �, Q, �, #, q0, F) accepts L, guages will be described by context-free grammars of
where � � �a, b�, � � �b, #�, Q � �q0, q1, q2, q3�, F � �q3�, and restricted form. One of the most important types of grammars
� consists of the following tuples: used to define the syntax are the LR grammars (7,9,10),

which exactly generate the deterministic context-free lan-
guages lying properly between the regular languages and the
context-free languages. On the automata side the determinis-
tic pushdown automata accept just the deterministic context-
free languages and can therefore serve as an implementation
basis for those languages. Since pushdown automata can ana-

(q0, a, #,q1, b#)

(q1, a, b, q1, bb)

(q1, b, b,q2, ε)

(q2, b, b,q2, ε)

(q2, ε, #,q3, #)
lyze the deterministic context-free languages in a simple and
highly efficient way, it is standard to use pushdown automataThe automaton M reads all symbols a on the input and
as the core of a parser. The parser itself is part of a compilerpushes for each a an associated symbol b onto the pushdown.
that translates a program into machine-executable code.After reading all a’s, the same number of b’s are in the push-

down. Now the automaton compares the b’s on the input with
the stored b’s. In a similar way, a pushdown automaton can FINITE AUTOMATA
be defined to accept the Dyck language D2. Note that M is de-
terministic. The Formal Model of Finite Acceptors

A finite acceptor may be regarded as a pushdown acceptorExample. Let L � �uur � u � a1 . . . an, ur � an . . . a1, ai �
without a pushdown tape (Fig. 9). It only has its internal fi-�, 1� i � n� and � � �0, 1�. A pushdown automaton that
nite set of states as a memory. A finite acceptor is defined asaccepts L is M � (�, �, Q, �, #, q0, F), where � � �0, 1�, � �
a structure A � (�, Q, �, q0, F) where � is the input alphabet,�0, 1, #�, Q � �q0, q1, q2, q3�, F � �q3�, and � consists of the
Q a finite set of states, q0 � Q the initial state, F � Q the setfollowing tuples:
of final states, and the local transition is a relation � � Q �
� � Q. If this relation is a function � : Q � � � Q, then the(q0, 0, #,q1, 0#), (q0, 1, #,q1, 1#),

(q1, 0, 0,q1, 00), (q1, 0, 1, q1, 01),

(q1, 1, 0,q1, 10), (q1, 1, 1, q1, 11),

(q1, ε, 0,q2, 0), (q1, ε, 1, q2, 1),

(q2, 0, 0,q2, ε), (q2, 1, 1,q2, ε),

(q2, ε, #,q3, #)

The automaton M guesses the middle of the input word and
compares the left and the right input part. Since the left part
has been stored reversely in the pushdown, a simple compari-
son with the right part leads to an acceptance or rejection of
the input word.

Applications

As an application of the pushdown principle we consider a
Actual state

Table

Input tape

q0 q1 q2 qn

a

Read head moves
left to right

• • •

δ

To be read

pocket calculator that uses reverse Polish notation for arith-
metic expressions. In such calculators arithmetic expressions Figure 9. Finite acceptor.

76 AUTOMATA THEORY

acceptor is called deterministic, and otherwise nondeterminis- Regular Languages
tic. Here we will assume that in the deterministic case � is a We define the class of all languages that can be accepted by
total function, that is, it is defined for all pairs (q, x) � Q � �. a finite acceptor as the class of recognizable languages. There

The meaning of (q, x, q�) � � is that if the automaton A is is a characterization of the same class of languages by a quite
in state q and reads the input symbol x � �, then it may different instrument called regular expressions. Regular ex-
transit to state q�. For (q, x, q�) � � we also write q �x q�, pressions are similar to the well-known arithmetic expres-
regarding �x � Q � Q as a relation on Q for every x � �. For sions, but the meaning of a regular expression is a language
every word u � x1x2 . . . xk � �* we define the relation �u � and not a number. We want to explain the structure of regu-
Q � Q by letting q �u q� iff there exists a sequence of states lar expressions for two reasons. First, they play an important
q1q2 . . . qk such that q �x1

q1 �x2
q2 � � � � �xk

qk � q�. For role in a series of software tools for manipulating text (e.g.
the empty word � � �* we define q �� q� iff q � q�. grep, sed, and shells in Unix) and also for the specification of

The intuitive meaning of the relation �u is that starting programming languages (lexical structure). A regular expres-
in state q and reading the symbol x1 takes the automaton A sion defines a pattern that may be searched for in a given
to state q1, and then being in state q1 and reading x2 takes A text. Second, there is an important theoretical result, given
to state q2, and so on, until xk takes A from qk�1 to qk � q�. We by S. Kleene, that states that the class of recognizable lan-
then say that A accepts the sequence u � x1x2 . . . xk iff guages is exactly the class of languages that can be defined
q0 �u q and q � F, that is, iff the input sequence u may take by regular expressions; see (7).
A from the initial state to a final state. We define the lan- Let T be an alphabet, that is, a finite set of symbols. We
guage LA accepted by A as LA � �u � �* � q0 �u q and q � define the set of regular expressions RegT recursively as fol-
F�. We immediately conclude that � � LA iff q0 � F. For any lows:(1) 0 belongs to RegT; (2) for all t � T the symbol t be-
state q � Q we define the behavior of q as the language that longs to RegT; (3) if � and � are elements of RegT, then also
A accepts if started in q, that is, �q � �u � �* � q �u q� and the following three expressions belong to RegT: (� � �), (� � �),
q� � F�. and (�*); (4) only expressions that can be formed by rules (1)

If A is deterministic, there is no choice for the state transi- to (3) in a finite number of steps belong to RegT.
tion function. Thus if A is in state q and reads the input sym-
bol x, then it deterministically transits to q� � �(q, x). An Example. Let T � �a, b, c�. Then the following expressions
input word u � �* defines a unique q� as the state that is belong to RegT: a, (a � (a � c)), (0*), and ((c*) � ((b � c) � b)).
reached from q when the input sequence u is read. We can If we agree to the usual precedence rules that the binding
define this mathematically as an extension �* of the function of * is stronger than that of � , which again is stronger than
� to all of �* by induction: �*(q, �) � q, and �*(q, ux) � that of �, then we may omit a few brackets and the above
�(�*(q, u), x), where u � �* and x � �. examples may be simplified to a, a � ac, 0*, and c* � (b �

A finite acceptor is also intuitively represented by a di- c)b. Here we also have omitted the � symbol.
rected labeled graph with the set Q of states as vertices
(nodes) and with a labeled directed edge from q to q� iff (q, x, We now can explain how a regular expression � defines a
q�) � �. So actually � may be regarded as the set of labeled language L� � T*. We use a recursive definition based on the
edges. The initial state q0 and the final states q � F are also recursive structure of the expressions: (1) L0 � 0�, the empty
suitably marked in such a representation (Fig. 10). A finite language; (2) for all t � T let Lt � �t�, the trivial language
acceptor reads a word u changing from state q into state q� containing just one word t that in turn consists of the single
iff there exists a path in the state graph from q to q� and the letter t; (3) if � and � are regular expressions and the lan-
label sequence of the path equals u. guages L� and L� are already defined, then L��� � L� � L�;

In constrast to pushdown automata and similar to Turing L�� � L�L� and L�* � (L�)*. So for any regular expression there
machines the models of nondeterministic and deterministic is defined a unique language that it denotes or specifies. The
finite acceptor have the same recognition power. important property of regular expressions is that a finite ex-

pression can define an infinite language.

Example. Figure 10 shows the graph of a deterministic finite
Example. We take the same alphabet as above and the ex-acceptor with input alphabet � � �a, b� that accepts a se-
pression � � (c � ab)*. Then we find that L� � ��, c, cc, ab,quence u � �* iff u starts with aa and contains a sequence of
ccc, cab, abc, cccc, ccab, cabc, abcc, abab, . . .�, which is anthe word bab.
infinite language.

Sometimes we call L� the pattern specified by the expres-
sion �. We call a language L � T* regular iff there exists a
regular expression � � RegT such that L � L�. Kleene’s theo-
rem states that the class of regular languages is exactly the
class of recognizable languages. And another theorem from
formal language theory states that the class of recognizable
languages is exactly the class of languages generated by
right-linear grammars (or grammars of Chomsky type 3),
which we have defined in the subsection ‘‘Hierarchies of Lan-

b

b

b
b b

b

b

q4
aa

Start

a

a

a

a

a

q3q1

q2

q0

q6q5

guages and Automata.’’ So we have different tools to specify
a regular language.Figure 10. DFA for example.

AUTOMATA THEORY 77

Because a finite acceptor has only a finite set of states as states to be equivalent iff they have the same behavior. It can
be shown that any two states that have the same behaviorits memory, the class of languages that are accepted by finite

acceptors is rather limited. Turing machines and pushdown can be merged into one state without changing the language
of the automaton. The resulting new automaton is called themachines have also a finite set of states, but their additional

storage capabilities (Turing tape, pushdown store) increases quotient automaton of the given automaton. The quotient au-
tomaton is equivalent to the given automaton, and in generaltheir class of accepted languages. When the acceptor reads a

word u � �*, it traverses its state graph. If the length of u is has fewer states than the latter, and no two of its states are
equivalent. It turns out that the quotient automaton isgreater than the number of states of the automaton, then at

least one state is visited at least twice. So the memory of the minimal.
Another result allows for the computation of the minimalautomaton is in the same situation as it was in at the first

visit to this state, and thus it cannot distinguish the two situ- number of states for a given regular language without using
acceptors explicitly. This is the theorem of Myhill and Nerode;ations. As a consequence, if the automaton accepts words of

length greater then its number of states, it also must accept see Ref. (11).
all those infinitely many words that are defined by repeating

Moore and Mealy Machinesa certain cycle in the state graph any number of times. This
is the content of the so-called pumping lemma for finite ac- Finite automata that also use an output tape are called finite
ceptors or for regular languages. It is closely related to the transducers. They use an extra output alphabet � and an out-
pumping lemma for context-free languages. put function �. In the literature two types of finite transducers

Using the pumping lemma, it can be shown that the follow- are known as Moore and Mealy machines. The two types differ
ing simple language cannot be accepted by a finite acceptor: in the way the input influences the output. For a Mealy ma-
L � �anbn � n � ��. Thus a finite acceptor is not able to recog- chine the output symbol depends on the actual state and on
nize even very simple bracket structures. To accept bracket the input symbol, so we have � : Q � � � �. For the Moore
structures we need (at least) a pushdown acceptor. machine � only depends on the actual state, so � : Q � �.

Transducers can also be represented by directed graphs, like
Minimal Automata acceptors, but now the output function � must also be in-

cluded. For a Moore machine we simply assign the outputFor an engineer it is always important to try to find an opti-
symbol �(q) to the node q, and for a Mealy machine an edgemal (or near-optimal) solution for a given problem. In this
q �x q� will additionally be labeled with the output symbolsection we want to show that for finite automata we are able
y � �(q, x), which will be denoted as q �x�y q� (Fig. 11). In thisto construct a minimal automaton with the same behavior.
section we will only regard the case of the Mealy machine.We explain this for finite acceptors, but the ideas carry over

Given a Mealy machine M � (�, Q, �, �, �, q0, F), we canalso to the finite transducers.
extend the output function � to input sequences by a recursiveIf A � (�, Q, �, q0, F) is a finite acceptor with behavior
definition: (1) �*(q, �) � �; (2) �*(q, ux) � �*(q, u) �(�*(q, u),L � LA � �*, then we want to know whether A is the only
x) for u � �* and x � �. So, given state q � Q, the emptyacceptor with this behavior or if there are further acceptors
input gives an empty output, and if the input sequence u pro-with the same behavior. If two acceptors have the same be-
duces the output sequence �*(q, u) and u transforms q tohavior, we say that they are equivalent. It is clear that if we
q� � �*(q, u) (i.e., q �u q�), then the output symbol �(q�, x) isrename every state q to a new symbol, say q�, define a new
appended to the sequence �*(q, u) that has been produced sotransition function �� such that ��(q�, x) � �(q, x), and also
far. With every state q � Q there is associated the functiondefine the new initial state and set of final states accordingly,
�q : �* � �* defined by �q(u) � �*(q, u). The function �q isthen the automaton has not changed substantially. It is said
called the behavior of q. The input–output behavior of theto be isomorphic to the original automaton. We expect that
machine is then defined as the behavior of the initial statethe behavior will not change in this case, and that is in fact
q0. Note that �* is just concatenating the outputs along atrue.
path. A function f : �* � �* that is the behavior of a MealyThere are many different but isomorphic automata with
machine is called a sequential function.the same behavior. They all have the same number of states.

This result is not very interesting. But it can be shown that
Applicationsthere may exist automata with a smaller number of states

accepting the same language or having the same behavior. The theory of finite automata is a very rich theory with many
If this is true, then we may well be interested in finding an important and interesting results. We only have given a short
automaton with the given behavior and a minimal number summary of a few of these results. We could not even give all
of states.

A general result in automata theory says that for any finite
acceptor there exists an equivalent acceptor with a minimal
number of states. All the minimal acceptors with the same
behavior are pairwise isomorphic. So for a given regular lan-
guage there exists, up to isomorphism, a unique minimal ac-
ceptor. This minimal acceptor can be effectively constructed,
that is, there is an algorithm that constructs for a given ac-
ceptor a minimal equivalent acceptor.

a/0
Start

b/0

a/0

a/0
a/1

b/1
b/1

q1

b/1

q0

q2 q3

We want to sketch the idea of this procedure. Having de-
fined the behavior of a state of an automaton, we define two Figure 11. Mealy automaton.

78 AUTOMATA THEORY

the necessary background to explain, for example, the theory Finite transducers are used to model information-pro-
of the decomposition of finite automata (13) or the theory of cessing devices, which then may be realized by electronic cir-
stochastic automata (14). cuits, as we already have discussed for switching networks.

Moore and Mealy machines are very important abstract As an example of a recent application of the theory we
models for synchronous switching circuits. A switching circuit want to mention an algorithm for the compression of gray-
consists of a number of binary storage elements (flip–flops) scale pictures that is based on finite automata that have real
and function elements that realize Boolean functions. Thus a numbers as edge labels in their graphical representation (15).
state is the (stable) state of all the flip–flops and defines a This special form is called a weighted finite automaton. A
vector or list (s1, . . ., sk) � 2k of binary values. Also, the input weighted finite automaton with state set Q � �q1, q2, . . .,
of such a network is a binary vector, namely, the list of all qn� uses a set of n � n matrices with real entries, one for each
the binary values (i1, . . ., im) � 2m applied to the m input input symbol x � � � �0, 1, 2, 3�. The input symbols are cho-
connectors, and the output is a vector (o1, . . ., op) � 2p of the sen so that every word u � �* defines a subsquare f (u) of the
p output connectors, see Fig. 12. unit square I in the real plane �2. This mapping is known as

If a technical problem is given as a description of a sequen- the quadtree mapping (Fig. 13). The squares that are as-
tial input–output function for abstract input and output sets signed to the words u � �k of fixed length k all have length
� and �, then we may start by constructing a Mealy machine 2�k and define a partition of the unit square. If we assign a
M that has the given function as its behavior. In a second gray value to each of these 4k squares, then we have an image
step the state set Q and the input and output alphabets � of finite resolution 2k � 2k pixels. So we may define this image
and � must be represented (encoded) as suitable lists (vectors) by assigning a gray value to each of the words u � �k. Let
of binary values. After these encoding functions have been Mx be the n � n matrix defined for the symbol x � �, � � �n

defined, the state transition function � and the output func- an initial row vector, and � � �n a column vector of weights
tion � have to be realized as Boolean (logical) functions. The

for the final states.structure of these functions defines the combinatorial part of
For a sequence u � �* we can define the product matrixthe switching network. The state vector (s1, . . ., sk) � 2k is

Mu recursively: (1) M� � En, the n � n unit matrix; (2) Mux �represented by a set of flip–flop elements. Of course, the logi-
MuMx for u � �* and x � �. Mathematically this is a matrixcal functions depend on the choice of these elements. But it is
representation of the free semigroup �*. Now we can use thisa very interesting result of the theory of the realization of
representation to assign a real number to any u � �* by de-automata that the choice of the encoding functions also has a
fining �(u) � �Mu�, where � : �* � �. Such a function � issignificant influence on the complexity and structure of the
called average-preserving iff for all u � �* it holds thatcombinatorial part of the switching network. Hartmanis and
4�(u) � �x�� �(ux). This property guarantees that eachStearns have developed a rich theory for the realization of
square f (u) has a gray value �(u) that is the average of thefinite machines (12).
gray values of its four subsquares. If for a weighted automa-An important application of finite acceptors is the con-

struction of a compiler for a programming language. In this
case the input text is a computer program in a defined pro-
gramming language. In the first stage of processing, the com-
piler tries to split the input text into subsequences (lexemes)
that fall into a number of different syntactic classes or pat-
terns such as identifiers or numbers. These (linear) patterns
are specified by regular expressions or by right-linear gram-
mars and thus may be recognized and classified by a set of
finite acceptors, one for each different pattern. Such a system
of finite acceptors is then simulated by an algorithm,which is
known as a scanner. The scanner performs the lexical analy-
sis of the input text.

2

0

00 01 02 03 10 11 12 13 20 21 22 23 30

0 1 2 3

31 32 33

1

30

3
320 321

32
322 323

31

33

Switching circuit
implementing the
Boolean functions

and

Flip-flop
memory

Clock

(i1, ⋅⋅, im, q1, ⋅⋅, qk)

⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅

o1

oq

q1′

qk′qk

q1 λ δ

δ

(i1, ⋅⋅, im, q1, ⋅⋅, qk)λ

⋅⋅
⋅i1

im

Figure 13. Quadtree mapping from words to subsquares of the unit
square.Figure 12. Huffman model of sequential switching network.

AUTOMATED HIGHWAYS 79

ton the function � is average-preserving, then it defines an
image of arbitrarily high resolution.

For images of finite resolution the algorithm of Culik and
Kari finds a weighted automaton that approximates the im-
age with a given measure of distortion (15).

BIBLIOGRAPHY

1. A. M. Turing, On computable numbers, with an application to the
Entscheidungsproblem, Proc. London Math. Soc., Series 2 (42):
230–265, 1936–1937.

2. M. Davis, Hilbert’s tenth problem is unsolvable, Amemm 80 (3):
233–269, 1973.

3. G. Rozenberg and A. Salomaa, Handbook of Formal Languages,
Vol. 1, 2, 3, New York: Springer-Verlag, 1997.

4. J. van Leeuwen (ed.), Handbook of Theoretical Computer Science,
Vol. A, B, C, Amsterdam: Elsevier, 1990.

5. M. R. Garey and D. S. Johnson, Computers and Intractability,
New York: Freeman, 1979.

6. R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathemati-
cal System Theory, New York: McGraw-Hill, 1969.

7. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages and Computation, Reading, MA: Addison-Wesley,
1979.

8. M. L. Minsky, Computation: Finite and Infinite Machines, Engle-
wood Cliffs, NJ: Prentice-Hall, 1967.

9. A. Salomaa, Formal Languages, New York: Academic Press,
1973.

10. J. G. Brookshear, Formal Languages,Automata, and Complexity,
Menlo Park, CA: Benjamin Cummings, 1989.

11. D. I. A. Cohen, Introduction to Computer Theory, New York: Wi-
ley, 1986.

12. J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of
Sequential Machines. Englewood Cliffs, NJ: Prentice-Hall, 1966.

13. S. Eilenberg, Automata, Languages, and Machines, New York:
Academic Press, 1976.

14. A. Paz, Introduction to Probablistic Automata. New York: Aca-
demic Press, 1971.

15. K. Culik II and J. Kari, Inference algorithms for WFA and image
compression, in Y. Fisher (ed.), Fractal Image Compression, New
York: Springer-Verlag, 1995.

WOLFGANG GOLUBSKI

WOLFGANG MERZENICH

University of Siegen

AUTOMATED GUIDEWAY TRANSIT. See AUTOMATIC

GUIDED VEHICLES.

