
ALGORITHM THEORY 415

ALGORITHM THEORY

An algorithm is a systematic method to solve computational
problems. The term itself comes from the name of a ninth
century Persian mathematician, al-Khowarizmi, who wrote a
book describing how to carry out addition, subtraction, multi-
plication, and division in the decimal number system, which
was new at the time. Although the word has come into more
widespread use after the advent of computers, the notion of a
step-by-step solution has always existed (e.g., Euclid’s method
to compute the greatest common divisor of two integers is an
algorithm). The inputs to the algorithm are called an instance
of the problem. The aim in algorithm design is to come up
with a procedure that is as efficient as possible in its use of
resources. The number of steps, or time, and memory space
needed by an algorithm are important measures of its effi-
ciency. Both these quantities are typically expressed as func-
tions of the input size, n.

The efficiency can greatly depend on, among other things,
the data structures used by the algorithm. These are the
means by which the algorithm stores and manipulates its
data. Arrays, linked lists, and trees are some of the most basic
data structures. Many sophisticated algorithms require data
structures more advanced than these. For a much more thor-
ough treatment of algorithms and data structures refer to
Refs. 1, 2, and 3.

An algorithm for a problem provides us with an upper
bound for its hardness. For example, if time is used as a mea-
sure of the hardness of a problem, an algorithm that takes
time T(n) on instances of size n tells us that this much time
is sufficient to solve the problem. An equally interesting ques-
tion is: How much time is necessary to solve the problem? The
discipline of Complexity Theory is concerned with such issues.

Even though algorithms capture notions of mechanical
processing of data, their design itself is essentially a creative
process. There are several general paradigms for algorithmic
design. We will describe three important ones here—divide-
and-conquer, greedy, and dynamic programming. This will be
followed by a section on a few important data structures. We
then touch on the basics of Complexity Theory and end with
an introduction to randomized and approximation algorithms,
two variations on the standard notion of an algorithm that
have gained in importance in recent years. First, we define
some terms and explain notation that might not be standard.

DEFINITIONS AND NOTATION

� stands for the field of real numbers. Let f ,g be functions
from the integers to �. Then, f � O(g) if there exist constants
c and n0 such that f (n) � cg(n) for all n � n0; f � �(g) if there
exist constants c and n0 such that f (n) � cg(n) for all n � n0;

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

416 ALGORITHM THEORY

f � �(g) if both f � O(g) and f � �(g). Clearly, f � O(g) if merge the two sorted subarrays. The recursion bottoms out
when the subarray to be sorted has only one element. Theand only if g � �(f).

An alphabet, �, is a finite set of symbols. A string over an merging process is done as follows. Let A and B be the two
n/2-element sorted subarrays to be merged. Let C be an n-alphabet is obtained by concatenating (zero, finitely many, or

infinitely many) symbols from the alphabet. In this article, element array that will store the output. It is initially empty.
Let pA and pB be two pointers that run through A and B, re-�* denotes the set of all finite strings (including the empty

string) over the alphabet �0, 1�. A language is a subset of �* spectively. Initially, they point at their first elements. At each
step, we look at the elements pointed to by pA and pB, writeand can be thought of as a function f : �* � �0, 1 �, where x

is in the language if and only if f (x) � 1. the smaller of the two in the next empty location of C, and
advance that pointer one location to the right. It is clear thatAn undirected graph G consists of a set of vertices V and a

set of edges E, where each edge connects a pair of vertices. in n steps the sorted output appears in C. The running time
of this algorithm is measured by the number of comparisonsAn edge connecting u and v is written (u, v). In a directed

graph, edges also have a direction, and an edge written (u, performed. Let T(n) be the number of comparisons required,
in the worst case, to sort an n-element array using mergesort.v) is directed from u to v. (Unless otherwise stated all graphs

in this article are undirected.) Another variation is a weighted We can write a recurrence for T(n) as follows:
graph where every edge is given a numerical weight. A (di-
rected) graph is said to be connected if any two vertices in it
are connected by a (directed) path. An acyclic graph is a graph

T(n) =
{

1 if n = 2

2T(n/2) + n otherwise
that has no cycles, i.e., no path from a node back to itself. A
connected, acyclic graph is called a tree. As in most divide-and-conquer algorithms, the second term

above is the sum of three quantities—the time required to
perform the divide (nothing), the time required to solve the

DIVIDE-AND-CONQUER ALGORITHMS subproblems [2T(n/2)], and the time required to combine their
solutions (n). Solving this recurrence, we can see that T(n) is

These algorithms exploit the recursive nature of some prob- �(nlogn).
lems. The problem is split into smaller subproblems whose
structures are identical or made similar to that of the original Quicksort
problem. These subproblems are recursively solved, and the

The quicksort algorithm was invented by Hoare (4). Unlikesolutions are combined (if needed). Most of the work is done
mergesort, which has a running time of �(nlogn) in the worstin either the splitting stage (as in quicksort) or the combining
case, quicksort has a worst-case running time of �(n2). How-stage (as in mergesort) but usually not in both. The recursion
ever, on the average, its running time is �(nlogn), and it sortsinvolved may be routine or intricate, but the subproblems
in place, that is, the amount of extra storage it requires doessolved recursively generally have size a constant fraction of
not depend on n. Good implementations of quicksort are oftenthe original. Some examples of divide-and-conquer algo-
significantly faster than mergesort. Let A[1..n] be the arrayrithms follow.
to be sorted. The elements of A are rearranged and an index
p computed so that all the elements of the subarray A[1..p]

Binary Search are smaller than all the elements of the subarray A[(p �
1)..n]. These two subarrays are then recursively sorted (inComputers need to manipulate massive amounts of data
place). An array with only one element is the base case of thequickly. Often the data are a collection of items, each identi-
recursion and is already sorted. The key step in this algo-fied by a particular key. A basic operation is to search for a
rithm is the partitioning. It is done by choosing an appro-particular item by searching for its key. When the data are
priate element (e.g., a random element) as the pivot and shuf-unorganized, we can do little better than look at half the
fling A so that elements smaller than the pivot lie in the leftitems on the average. Consequently, various ways to speed up
subarray and those larger than it lie in the right one.searching by organizing the data more effectively have been

invented. The simplest is to store the data in an array, sorted
Strassen’s Matrix Multiplication Algorithmaccording to the key. Sorting the data efficiently is another

problem altogether. We present a divide-and-conquer sorting This algorithm, due to Strassen (5), is a very famous applica-
algorithm later. Here is a simple divide-and-conquer algo- tion of the divide-and-conquer technique. The naive algorithm
rithm that can be used to do the search in sorted data. to multiply two n � n matrices requires time �(n3) because n

Let A be an array of n sorted items, and assume we want multiplications are required to compute each of the n2 entries
to search for a key k. By comparing k with the midpoint of in the product matrix. Strassen’s divide-and-conquer algo-
A, we can remove half of the array from further consideration. rithm uses seven recursive multiplications of n/2 � n/2 matri-
So, the size of the array to be searched is now reduced by ces and an additional �(n2) operations, yielding a total time
half. Repeating this process, we can find k, or determine that of �(nlog2 7)i � �(n2.81). We now describe how the algorithm
it is absent, in at most log2n comparisons. At every stage, the works.
size of the subproblem that needs to be solved is halved. Let A and B be two n � n matrices to be multiplied. As-

sume that n is a power of 2. Partition the matrices into four
(n/2) � (n/2) submatrices as follows:Mergesort

The mergesort algorithm is a typical application of the divide-
and-conquer paradigm. Let A be an n-element array to be
sorted. Recursively sort the left and right halves of A. Then,

A =
[

A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]

ALGORITHM THEORY 417

Strassen discovered the amazing fact that their product C can Single Source Shortest Path
be expressed as

Given a directed graph G with nonnegative weights on the
edges and a distinguished vertex v, find shortest (minimum-
weight) paths from v to every vertex of G. The following algo-
rithm, due to Dijkstra, solves this problem. It maintains a set

C =
[

M1 + M4 − M5 + M7 M3 + M5

M2 + M4 M1 + M3 − M2 + M6

]

F of vertices whose shortest paths have been found. At each
where step, it chooses an appropriate vertex outside F and adds it

to F. Each vertex is given a weight, which is updated as the
algorithm proceeds, as long as the vertex is outside F. This
weight is the cost of the best path found so far from v to the
vertex. After a vertex is in F, its weight is final and is the
cost of the shortest path from v to it. Initially, F is empty, v
is given a weight 0, and every other vertex of G has a weight
infinity. The vertex chosen at every step is the one with mini-
mum weight, a greedy choice. This vertex (call it u) is then
added to F and for every edge (u, w) leaving u, the weight of

M1 = (A11 + A22)(B11 + B22)

M2 = (A21 + A22)B11

M3 = A11(B12 − B22)

M4 = A22(B21 − B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)

M7 = (A12 − A22)(B21 + B22) w is updated to the value min[wt(w), wt(u) � edge_wt(u, w)],
where wt(w) is the weight of w and edge_wt(u, w) is the

The best matrix multiplication algorithm invented so far runs weight of the edge from u to w. The running time is O(V2),
in time n2.376 (6). Because the product matrix has n2 entries, where V is the number of vertices in G. This can be improved
no algorithm can do better than �(n2). for sparse graphs by using advanced data structures.

Polynomial Multiplication
Minimum Spanning Tree

Two linear polynomials ax � b and cx � d, where a, b, c, d
A spanning tree of a connected graph G is a subgraph that isare integers, can be multiplied using only three integer multi-
a tree that connects every vertex of G. The goal is to find aplications (instead of four). To see this, notice that (ax �
spanning tree of a weighted graph that minimizes the sum ofb)(cx � d) � acx2 � bd � [(a � b)(c � d) � ac � bd]x, and so
the weights of the edges in the tree. Let V be the number ofcomputing ac, bd, and (a � b)(c � d) suffices. The same idea
vertices and E, the number of edges in G. Two important algo-can be used to multiply two arbitrary polynomials. Let p(x)
rithms for this problem are those by Kruskal and Prim.� �n

i�0 pixi and q(x) � �n
i�0 qixi. We can assume that n is odd.

Kruskal’s algorithm maintains a forest (a collection of dis-Rewriting, p(x) � p1(x)x(n�1)/2 � p2(x) and q(x) � q1(x)x(n�1)/2 �
joint trees) initialized to the set of vertices of G. The edges ofq2(x), where p1, p2, q1, q2 are degree (n � 1)/2 polynomials.
G are sorted by weight and at every step, a minimum-weightThey play the role of a, b, c, d. Thus, two degree n polynomi-
edge connecting two trees in this forest is added to it. Theals can be multiplied in time �(nlog2 3) by a straightforward
algorithm ends when all the edges of G have been considered.divide-and-conquer approach. This, however, is not the best
A running time of O(ElogE) can be achieved by using suitablepossible algorithm. Using more advanced techniques (the
data structures.Fast Fourier Transform (FFT) algorithm), we can do the mul-

Prim’s algorithm ‘‘grows’’ a single tree starting from an ar-tiplication in �(nlogn) time. The FFT algorithm itself is a di-
bitrary vertex of G. At each step, an edge connecting a vertexvide-and-conquer algorithm.
in the tree to a vertex outside it is added. The edge chosen is
a least-weight edge with this property. The total running time

GREEDY ALGORITHMS is O(E � VlogV) with appropriate data structures.

Greedy algorithms are typically used for optimization prob-
Maximum Flow

lems, where one is interested in selecting the best solution
from among a large set. For example, consider the problem of A flow network is a directed graph with two distinguished

nodes, a source s and a sink t and capacities on the edges. Thecomputing a spanning tree of a weighted graph while min-
imizing the sum of the weights on the tree edges (see below). source has no edges entering it, and the sink has no edges

leaving it. The capacity of an edge is the maximum numberGreedy algorithms go through several stages. At each stage
they make the choice that seems best at a local level. Thus, of flow units that can be pushed along that edge. The law of

flow conservation holds at every node except s and t. Thisvery often these algorithms have a simple construction, but it
takes much greater effort to prove rigorously that the final means that the total flow coming into a node equals the total

flow leaving it. Flow networks model many real-life situa-solution produced is indeed optimal. Many problems amena-
ble to the greedy approach can be represented as a specific tions, like communication networks and electrical networks.

A key problem in this model is to determine how many unitsproblem on structures known as weighted matroids. A
weighted matroid is a pair (S, I) where S is the ground set of flow the network can support. A simple greedy algorithm

to accomplish this is the Ford–Fulkerson algorithm. It repeat-and I is a family of subsets of S, which obeys certain proper-
ties. Each element of S has a positive weight. The problem is edly finds a path from s to t (called an augmenting path) that

can admit more flow and increases the flow along this path toto find a member of I with maximum weight, where the
weight of a subset is the sum of the weights of its elements. the extent possible. It terminates when no augmenting path

can be found. It can be shown that this procedure can be inef-We now consider a few important examples of the greedy
method. ficient if the choice of the augmenting path is not done prop-

418 ALGORITHM THEORY

erly. A modified version of this algorithm, called the Ed- may have still smaller subproblems in common. This makes
a recursive implementation highly inefficient. So, in practice,monds–Karp algorithm, chooses the shortest (in length, not

by capacity) such path as the augmenting path. Such a choice these algorithms are written in a bottom-up fashion, smaller
problems being solved first, with their solutions being storedguarantees a running time of O(VE2), where V is the number

of vertices and E is the number of edges of G. to be used later. Here are some examples of dynamic pro-
gramming.An important result in this context is the max-flow min-

cut theorem. A cut is a partition of the vertex set into two
parts S and T � V�S such that s � S and t � T. The capacity Matrix Chain Multiplication
of a cut is the maximum amount that can flow from S to T

Given n matrices M1, . . ., Mn, such that Mi has dimension
across the cut (i.e., the sum of the capacities of all the directed

di � di�1 for 1 � i � n, it is required to find a parenthesization
edges going from S to T). The theorem states that the value

of the product M1 	 	 	 Mn that minimizes the number of ma-
of the maximum flow in the network equals the minimum

trix entries multiplied. Let pij be the least number of multipli-
value of any cut. This theorem is the key to proving the cor-

cations required to compute the product Mi 	 	 	 Mj. A re-
rectness of many maximum-flow algorithms.

cursive formula for pij is

Activity Selection

Assume that we are given a set a1, . . ., an of activities each
pij =

{
0 if i = j

min j−1
k=i (pik + pk+1, j + didk+1dj+1) otherwise

with a start time and a finish time, all competing for a single
resource. Our task is to select a maximum set S of activities The index k is the place where a parenthesization splits Mi
that can use the resource without conflict. This problem can 	 	 	 Mj. Because the implementation is bottom-up, i.e., the
be modeled as follows: a set of potentially overlapping inter- pij values are evaluated in increasing order of the difference
vals in � is given, and the goal is to select a maximum set S j � i, the values pik and pk�1, j have already been computed and
of mutually nonoverlapping intervals. stored when computing pij. Therefore, pij can be evaluated in

A simple greedy algorithm can be used to solve this prob- �(j � i) time. Because there are �(n2) such i,j pairs, the en-
lem. Initially, S is empty. At each stage, from among the ac- tire algorithm runs in time O(n3).
tivities that do not conflict with the current S, an activity
with the earliest finish time is picked. It is clear that this All-Pairs Shortest Paths
algorithm requires a running time of �(n) with an additional

Dijkstra’s algorithm solves the single-source shortest path�(n log n) time for initially sorting the activities in nonde-
problem for graphs with no negative weight edges in timecreasing order of finish time.
O(n2), where n is the number of vertices in the graph. The
simple dynamic programming algorithm in this section pro-Job Sequencing
duces the weight of the minimum-weight paths between all

Suppose that there are n jobs j1, . . ., jn, each requiring unit pairs of vertices even if the graph has negative weight edges.
time to complete on a single processor. Each job has a dead- However, it is assumed that the graph does not have any neg-
line di associated with it, and a penalty pi if it is not com- ative weight cycles; otherwise, the problem is not well de-
pleted by its deadline. We are required to sequence the jobs fined. The running time of this algorithm is O(n4). A small
starting at time t � 0, so that the total penalty incurred is modification improves this to O(n3 log n).
minimized. The algorithm picks a maximal subset of jobs that Let the vertices of the graph be labeled 1 	 	 	 n. Let wm

ij
can be scheduled in such a way that no job is late. This subset denote the weight of the min-weight path from vertex i to
is chosen in a greedy way, by picking jobs in nonincreasing vertex j with at most m edges, m � 1. Let w0

ii � 0 and w0
ij �

order of penalty as long as the jobs chosen can be sequenced � for i � j. For any vertex k � j, we can express the mini-
without incurring any penalty. To check that the current sub- mum-weight of a path from i to j with at most m edges (m �
set (that has k jobs, say) can be sequenced with no penalty, 1) and with k as j’s predecessor, as the sum wm�1

ik � edge-
check that for every i, 1 � i � k, there are at most i jobs with a wt(k, j), where edge-wt(k, j) is the weight of the edge (k, j)
deadline at time-step i or earlier. The final schedule is this (infinity if k and j are not connected by an edge). Therefore,
maximal subset ordered by nondecreasing deadlines followed to get the weight of a min-weight path of length at most m
by all the other jobs in any order. Because the checking proce- from i to j, we minimize this expression with respect to k,
dure can be done in time O(n), the total time required is O(n2). including k � j with the understanding that edge-wt(j, j) �

0. Writing it out as a formula, we get

DYNAMIC PROGRAMMING
wm

ij =
n

min
k=1

�
wm−1

ik + edge-wt(k, j)
�

Like greedy algorithms, dynamic programming algorithms
are also used to solve optimization problems. Like divide-and- Let P1 be the matrix whose (i, j)th entry is the weight of the

edge (i, j) if one exists and is infinity otherwise. Define anconquer algorithms, they too use solutions to smaller sub-
problems to compute a solution to the given problem. But un- operation � on matrices A, B as follows: A � B � C, where

C(i, j) � minn
k�1[A(i, k) � B(k, j)]. Define Pm � Pm�1 � P1, forlike divide-and-conquer algorithms, they solve many, though

carefully chosen, subproblems. For example, in the matrix m � 1. Then, Pm(i, j) is the weight of an optimal path from i
to j among those having at most m edges. Because any opti-chain multiplication problem that follows, only products of

matrices in a consecutive sequence are evaluated. Moreover, mal path from i to j has at most n � 1 edges, Pn�1(i, j) is the
weight of the optimal path from i to j. We can compute Pn�1these subproblems might not be independent, that is, they

ALGORITHM THEORY 419

by a matrix-multiplication-like procedure, by replacing the ses corresponding to the two possibilities. If the first term is
greater, S(i, W) � S(i � 1, W � wi) � �i�, else S(i, W) � S(i �usual 	 and � operations by � and min, respectively. This

gives us a O(n4) algorithm. We can do better by only comput- 1, W). Since 1 � i � n and 1 � W � M, this is an O(nM)
algorithm. It works well if M is relatively small (i.e., polyno-ing P2i for i � 0, 1, 2, . . ., t, where t is the least integer such

that 2t � n � 1. Clearly, P2t � Pn�1. This modified algorithm mially bounded in n). In general, because M is part of the
input, the input size is proportional to log �M�; therefore, theruns in time O(n3 log n). The actual paths can be constructed

by a simple extension of the algorithm. running time of this algorithm is exponential in terms of the
input size. Such algorithms are called pseudo-polynomial al-A more efficient algorithm for this problem is the Floyd–

Warshall algorithm (7), which also uses dynamic program- gorithms. In fact, the 0-1 knapsack problem with no restric-
tion on M is a well-known NP-hard problem and is not ex-ming, but only requires time O(n3). It ‘‘inducts’’ on the maxi-

mum-numbered vertex on a path from i to j. Let Sk
ij be the pected to be solvable in polynomial time (refer to the section

Complexity Theory).weight of a min-weight path from i to j that has no vertex
numbered higher than k as an intermediate vertex. Then, Sk

ij

� min(Sk�1
ij , Sk�1

ik � Sk�1
kj) if k � 1 and S0

ij � edge-wt(i, j). We
DATA STRUCTURESare interested in Sn

ij for all i, j. Because i, j, k are all bounded
by n, this is an O(n3) algorithm. For graphs with no negative

Arrays and Linked Listsweight edges, we could use Dijkstra’s algorithm n times, a
total time of O(n3). The array is one of the simplest and most fundamental data

structures, provided as a primitive in most programming lan-
Polygon Triangulation guages and used to build other data structures. An array A is

a set of items A[1], . . ., A[n] stored in successive memoryGiven an n-sided convex polygon �v1, . . ., vn� in the plane
locations. The element A[i] can be accessed in constant time,(the polygon edges are v1v2, v2v3, . . ., vn�1vn, vnv1 in counter-
knowing its index i. This property is known as direct ad-clockwise order), partition the polygon into triangles of the
dressing and is the primary benefit of using an array.form �vivkvj so as to minimize the sum of the perimeters of

The disadvantage of arrays is that, once their size is fixed,the triangles (called the weight of the triangulation).
it cannot grow during the execution of a program. InsertionsAgain, we consider the general problem of optimally trian-
and deletions are also inconvenient. To insert an item in posi-gulating the polygon �vi, . . ., vj�, j � i. Let Tij denote the
tion i, we must make space for it by moving one place to theweight of an optimal triangulation of this polygon. T1n is our
right, all the items currently in positions i and greater.final answer. We proceed in a bottom-up manner, in increas-
Linked lists provide a way out of these problems. Althoughing order of j � i. If j � i � 1, then Tij � 0. Otherwise, consider
not a primitive data structure in many languages, they canthe triangle vivkvj for some k. This divides the remaining part
be easily implemented using pointers. Linked lists are essen-of the polygon �vi, . . ., vj� into two subpolygons, �vi, . . ., vk�
tially chains of objects that can grow and shrink dynamically.and �vk, . . ., vj�. Thus, Tij � minj�1

k�i�1(Tik � Tkj � perimeter of
This ability saves memory because, unlike for arrays, we do�vivkvj). The quantities Tik and Tkj have already been com-
not need to reserve space in advance and so need not knowputed, so Tij can be evaluated in time �(j � i � 1). Therefore,
their maximum length beforehand. Operations like insertingthis is an O(n3)-time algorithm, but one that computes only
an element can be carried out much more efficiently with linkedthe weight of an optimal triangulation. However, the triangu-
lists by manipulating a constant number of pointers. However,lation itself can also be easily constructed by storing, for all
linked lists do not offer the facility of direct addressing. To lo-i, j, the value of k that minimizes the previous expression
cate a particular element, we must traverse the linked list, afor Tij.
process that takes time �(n) for an n-element list.

0-1 Knapsack
Stacks

The knapsack problem can be illustrated by the following hy-
pothetical scenario. A thief breaks into a house that has n This is a dynamic data structure that uses a LIFO (last in,

first out) mechanism for the data. It supports two operations,items of values v1, . . ., vn and integer weights w1, . . ., wn.
His knapsack, however, can carry only a total weight of M. push and pop. Push takes an item and inserts it at the top of

the stack, whereas pop returns the item that is at the top ofHow should he choose the items so that the value of his booty
is maximized? This is called the 0-1 knapsack problem to dis- the stack. It is clear that only the top of the stack can be

accessed by either operation and that the item returned bytinguish it from a variation where the thief is allowed to take
a fraction of an item. Of course, this problem is applicable in pop is the item that was last inserted by a push. There is also

a query operation that can be used to test whether the stackmany other situations, more important and wholesome.
There is an easy dynamic programming algorithm for this is empty.

A stack that is expected to have no more than n elementsproblem. Let P(i, W), for 1 � i � n and 1 � W � M, be the
optimal profit if the thief restricts himself to the first i items during its existence can be implemented using an array

S[1..n]. A variable top is used to store the index of the itemand a maximum weight of W, and let S(i, W) denote the set
of items he chooses. For the base case, we have, P(1, W) � v1 at the top of the stack. If top � 0, the stack is empty; other-

wise, it is represented by the elements S[1], S[2], . . .,and S(1, W) � �1� if w1 � W, and P(1, W) � 0 and S(1, W) �
� otherwise. For i � 1, if wi � W, item i cannot be taken. So S[top]. All the operations can be done in constant time in this

implementation. If we have no a priori knowledge of the maxi-P(i, W) � P(i � 1, W) and S(i, W) � S(i � 1, W). If wi � W,
item i may or may not be taken, so P(i, W) � max[P(i � 1, mum size of the stack, a linked list implementation can be

used to save memory.W � wi) � vi, P(i � 1, W)], the two terms inside the parenthe-

420 ALGORITHM THEORY

Queues keys don’t agree, go left if the root has the higher key and
right otherwise. Repeat this process at each node until either

A queue is a dynamic data structure that uses a FIFO (first
the key is located or the last node reached was a leaf. In the

in, first out) policy. Again there are two operations, here
latter case, the item being searched for is not present in the

called insert and delete. Insert adds an item to the tail of the
tree. Clearly this procedure takes O(h) time.

queue. Delete returns the item at the head of the queue. As
Inserting a given item with a key k is similar in spirit to

in a stack, a query operation that determines if the queue is
searching. Starting from the root, go down the tree, compar-

empty is also provided.
ing keys as before, until a leaf node is reached. Now insert

An n-element queue can be implemented using an array
the item in a new node to the left or right of the leaf node as

Q[0..n]. Two variables head and tail keep track of where the
appropriate. The time taken is again O(h).

queue begins and ends. Head stores the location of the first
Deleting an item from a binary search tree is slightly more

element in the queue, whereas tail stores the location of the
complicated. First, using the search procedure, we locate the

first empty spot in the queue. The array is circular, that is, it
item in the tree. Let v be the node where the item resides. If

wraps around. The queue is full if tail � 1 � head mod(n �
v is a leaf, we just delete it, that is the appropriate child

1), and it is empty if tail � head. To insert item into the
pointer of its parent is set to the special value NIL. If v has

queue, check whether it is full, and if not, store item in
only one child w, the child pointer of v’s parent that used to

Q[tail] and update tail to (tail � 1) mod(n � 1). A similar
point to v is now made to point to w. (If v is the root, the sole

procedure can do the deletion. Thus, both operations can be
child of v is made the new root.) Call a node s the successor

done in constant time.
of v if the key of s is the next key immediately following the
key of v in the sorted order of all the keys. It can be easily

Binary Rooted Trees
seen that when v has two children, s is the leftmost descen-
dant in the right subtree of v. To delete v in this case, s isTrees are connected, acyclic graphs. A rooted tree is a tree

with a distinguished node called the root. It is a leveled graph deleted and put in v’s place. Clearly, deletion can be done in
time O(h).with the root at level 0. Edges only connect nodes at adjacent

levels. If there is an edge connecting a node u at level i and v Because all these primitive operations require time O(h),
it is important that the height of the tree be kept small. Theat level i � 1, u is called the parent of v and v is called a child

of u. Two nodes with the same parent are called siblings. The minimum height a binary tree on n nodes can have is log n,
which is achieved in the case of a full binary tree. But in theheight of a tree is the maximum level at which there is a

node. A leaf is a node with no children. A nonleaf node is worst case, it could be as bad as n, for instance, if the items
are inserted in sorted order of keys. Variants of the basic bi-called an internal node. By acyclicity, every node has exactly

one parent, except the root, which has none. A binary tree is nary search tree schema are used to keep the height from
growing too much (e.g., red-black trees, AVL-trees, B-trees,a rooted tree where every node has at most two children. A

full binary tree is a binary tree in which every internal node and splay trees).
has exactly two children. A complete binary tree is a full bi-
nary tree with a block of rightmost leaves missing. Heaps

A heap can be visualized as a complete binary tree with the
Binary Search Trees. Data structures can be studied from

property that if v is the parent of u, key[v] � key[u]. Thus, the
at least two different perspectives. One is a low-level perspec-

node with the largest key value is the root of the heap. An n-
tive that deals with how the data structure is implemented.

node heap can be represented as an array H[1..n] with H[i]
In this section, we adopt a high-level approach where we are

storing the contents of the ith node in the tree. The root is
less concerned with implementation issues and more inter-

numbered 1 and the nodes at each level are numbered from
ested in the operations the structure can support.

left to right. With such a numbering the children of node i are
A binary search tree (BST) is a data structure organized as

numbered 2i and 2i � 1 and the parent of node i is numbered
a rooted binary tree, which allows efficient storage and re- i/2. A heap can be used to implement a priority queue, which
trieval of data. Among the operations it supports are inser-

is a data structure that maintains a set of items, each with
tion, deletion, search (commonly called dictionary operations),

an associated key. It supports the operations of inserting an
and finding the maximum or the minimum among the items

element into the set, finding (without deleting) the maximum
stored in it. Every node in a BST, stores a data item. It also

element in the set, and extracting the maximum element
has pointers left, right, and parent that point to its left child,

from the set, all of which can be performed on an n-element
right child, and parent, respectively. We use key[u] to denote

heap in time O(log n). In fact, the find operation takes only
the key value of the item stored in node u. The tree is set up

constant time, and this is perhaps the main advantage of a
in such a way that, if w is a node in the tree, all the nodes in

heap over a BST. Among the algorithms that require the use
the left subtree of w have a key smaller than key[w] and all

of a priority queue are Prim’s and Dijkstra’s algorithms.
the nodes in the right subtree of w have a key greater than
key[w]. This is called the BST-property. Alternatively, we

Hash Tables
could store the data items in the leaf nodes and only the keys
in the internal nodes. We now describe how the operations of Hash tables are a simple generalization of the notion of an

array. The primary advantage of an array is that it providesinsertion, deletion, and search are performed on a binary
search tree. It will be seen that these operations can be done direct addressing. In constant time, we can access an array

element if we know its address (i.e., its index). A set of nin time O(h), where h is the height of the tree.
To search for a particular key, start at the root, and com- items with (distinct) keys from a set �1, . . ., m�, m � n, can

be stored in an array A of size m, with an item whose key ispare its key value with the key being searched. If the two

ALGORITHM THEORY 421

k stored in position A[k]. The basic operations—insert, delete, in polynomial time in one model can also be done in polyno-
mial time in any other model, although the polynomialsand search by key—can all be done in constant time. How-

ever, this method is too wasteful if m is very large. In such bounding the running times may be different.
Here, we describe a specific model in which the TM M is acases, we use a hash function h, which is a map from the

universe of keys to a smaller set S. An item with key k is now finite-state machine that consists of a semi-infinite tape, each
cell of which can hold one symbol of the machine’s tape alpha-stored in position A[h(k)]. This approach requires only �S�

storage. bet. A head moves over this tape. The machine has a finite
control that determines what action to take at every step.There is the possibility that two keys might hash to the

same value, creating a collision. A simple technique to handle This depends on the state M is in and the symbol being
scanned by the head. The action taken is to possibly overwritecollisions is chaining, where all items hashing to the same

index are put in a linked list (i.e., A[h(k)] is actually a list). the cell being scanned with another symbol and then to move
the tape head left or right or not at all. At any point, theThe time to search for an item is, on the average, about

O(1 � n/�S�), assuming h(k) can be computed in constant time. state, the contents of the tape, and the position of the head
together constitute the current configuration of M. The con-An approach that avoids collisions altogether, when n � �S�,

is probing. This involves examining all locations in the array, figuration M starts with, is called its initial configuration. A
computation can be visualized as a series of transitions fromone by one, until an empty location is found. The main idea

here is that the sequence of locations visited depends on the one configuration to another. M halts if and when it reaches
one of its several finish states. If it halts in an accepting statekey value being hashed.
(the corresponding configuration is called an accepting con-
figuration), it is said to have accepted its input but to have

COMPLEXITY THEORY
rejected it otherwise. Note that a computation could go on
forever. A Turing machine M accepts a language L, if M ac-

Broadly speaking, computational complexity theory is the
cepts exactly those inputs x that belong to L. If a language L

study of the hardness of problems. It tries to classify problems
is accepted by a machine that halts on all inputs, L is called

according to their intrinsic difficulty, which means how effi-
a recursive language. In complexity theory, we deal with re-

cient any algorithm for them can be. Efficiency of an algo-
cursive languages only, and so we can assume that a TM al-

rithm is usually measured in terms of the time and the space
ways halts. A detailed presentation on Turing machines can

that the algorithm uses. Time is the number of steps an algo-
be found in Refs. 8 and 9.

rithm takes, and space is the amount of memory it needs,
The Turing machine model is surprisingly powerful. Any

both as functions of the size of the input to the algorithm.
computation that can be done with a program in any pro-

Often, we are interested in only the worst-case complexity of
gramming language can be done in this model and vice versa.

problems, that is, the amount of resources (space and time)
This is the essential content of the Church–Turing Thesis. We

used by any algorithm in the worst case.
do not go further into this here because it belongs to the sub-

Complexity theory mainly deals with decision problems,
ject of computability theory.

which are functions f : �* � �0, 1�. They are also called lan-
The definition of the class P can now be made more precise

guages and commonly denoted by the letter L when looked
as follows. A language L belongs to P if and only if there is a

upon as subsets of �*. The function f defining L is then no-
positive integer k and a Turing machine M that runs for no

tated as �L. A string x � L iff �L(x) � 1. In this section, prob-
more than nk steps on any input of length n and accepts L.

lem means decision problem, unless explicitly stated oth-
All problems considered from an algorithmic viewpoint in ear-

erwise.
lier sections are solvable in polynomial time. Strictly speak-

An algorithm M is said to decide L if M when given input
ing, those problems are not decision problems, but suitable

x returns 1 [in symbols, M(x) � 1] if x � L and 0 [in symbols,
decision versions of them can be formulated and these lie

M(x) � 0) otherwise. The time complexity of a problem is said
in P.

to be T(n) if there is an algorithm to decide it that takes no
more than T(n) steps on any input of length n bits. Similarly,

Nondeterminism and NP-Completenessthe space complexity of a problem is S(n) if there is an algo-
rithm for the problem that uses no more than space S(n) for Turing machines defined previously are of the deterministic
any n-bit input. This enables us to define complexity classes variety. That is, at every step there is only one possible action
[e.g., TIME(n3) is the class of problems of time complexity that they can take. A very important extension of this is to
O(n3), SPACE(n2) is the class of problems of space complexity allow the machine to nondeterministically choose among a set
O(n2) and so on]. Traditionally, problems of time complexity of possible actions. Machines with this capability are called
O(nk) for some constant k [which also implies a space complex- nondeterministic Turing machines (NTMs). An NTM N ac-
ity of O(nk)] have been considered efficiently solvable. These cepts an input x if it can make the choices in such a way that
collectively form the well-known complexity class P (for ‘‘poly- it finally halts in an accepting state; it rejects x if no set of
nomial’’). choices causes it to halt in an accepting state. In the follow-

ing, we use NTIME and NSPACE for the time and space com-
Turing Machines plexity classes defined by nondeterministic machines and

DTIME and DSPACE for those defined by deterministic ones.The most important computation model used in complexity
The notation co-NSPACE [f (n)] is used for the set of lan-theory is the Turing machine (TM) proposed by A. M. Turing
guages whose complement belongs to NSPACE [f (n)].in 1936. Many variations on the basic model are equivalent

The class corresponding to P in the nondeterministic modelfor computability and are polynomially equivalent for com-
plexity measures. This means that anything that can be done is NP, the set of languages L such that there exists an NTM

422 ALGORITHM THEORY

that runs in polynomial time and accepts L. NP is potentially is the class of languages accepted by deterministic machines
that use space O(log n). NL is the class of languages accepteda much bigger class than P, but nobody knows this for sure.
by nondeterministic machines that use space O(log n) regard-The P � NP question is the most famous open problem in
less of the nondeterministic choices made. DSPACE [f (n)] andcomputer science today.
NSPACE [f (n)] are defined analogously.An important notion in the study of NP is NP-complete-

Somewhat more is known about the interaction of nonde-ness. An NP-complete problem L captures the complexity of
terministic and deterministic space. Savitch’s Theorem statesthe entire class NP, in that, it is the hardest problem in the
that for any ‘‘proper’’ function f (n) � log n, NSPACE[f (n)] isclass to solve in polynomial time. A polynomial-time algo-
contained in DSPACE[f 2(n)]. The properness of a function isrithm for any problem in NP can be constructed if a polyno-
a technical notion that we will omit here, but all functionsmial-time algorithm for L exists, and it follows that P � NP.
commonly encountered in complexity theory are proper.Because it is commonly believed that P � NP, this means

The s-t connectivity problem is the problem of determining,that a polynomial-time algorithm for L is unlikely. A problem
given a directed graph G and two distinguished nodes s and tL is defined to be NP-complete if L � NP and L is NP-hard,
whether there is a directed path from s to t. If G has n nodes,which means that for any L� � NP, there is a polynomial-
this can be accomplished by a nondeterministic machine us-time computable function f , called a reduction, from �* to
ing space �(log n). The machine tries to incrementally guess�* so that, for every x � �*,
a path from s to t, at every step merely writing down a next
vertex and checking if it is connected to the current vertex byx ∈ L′ ↔ f (x) ∈ L
an edge. If at any time there is no edge connecting the two
vertices, it halts and rejects. If it succeeds in reaching t, itThus, if L has a polynomial-time algorithm A, then the mem-
accepts. Because it needs only two vertices at any time, andbership of x in L� can be determined by first computing f (x)
space can be reused, it uses �(log n) space. Savitch showedand then using A to decide if f (x) � L. More generally, the
that the s � t connectivity problem can be solved deterministi-term NP-hard can be used for any computational problem, cally in space O(log2 n).

such that a polynomial-time algorithm for it can produce a A computation of a nondeterministic machine M on an in-
polynomial-time algorithm for all problems in NP. put x can be viewed as a graph whose vertices are configura-

Hundreds of NP-complete problems are known today. The tions of M, there being an edge from u to v if M can go from
first language to be shown NP-complete (by Cook in Ref. 10) u to v in one step. M accepts x if and only if some accepting
was the language of all satisfiable formulas of propositional configuration is reachable from the initial configuration. This
logic in conjuctive normal form (CNF), commonly called SAT. means that to decide whether M accepts x is equivalent to
Each of the conjuncts is called a clause. To see that this is in solving the s � t connectivity problem on this graph and Sav-
NP, notice that an NTM running in polynomial-time could itch’s Theorem follows. Savitch’s theorem implies that NL �
nondeterministically guess an assignment to the variables of DSPACE(log2 n). However, it is still open whether L [�
the formula, and then verify that this assignment satisfies the DSPACE (log n)] equals NL.
formula. Some other well-known NP-complete problems are Another extremely significant result in space complexity is

the Immerman–Szelepcsényi Theorem, which proves that for
• Traveling Salesperson Problem (TSP)—Given a weighted, any proper complexity function f (n) � log n, NSPACE[f (n)] �

directed graph, and a positive number d, determine co-NSPACE[f (n)]. The heart of this theorem is a result that
whether there exists a cycle in the graph that involves given a graph G and a node x, the number of nodes reachable

from x in G can be computed by an NL machine. Let L �every vertex exactly once and such that the sum of the
NSPACE[f (n)]. Using the algorithm to count the number ofweights of the edges in it is at most d.
nodes reachable from a given node, it can be shown that there• Vertex Cover—Given a graph G and an integer n, deter-
exists an NSPACE[f (n)] machine M� that recognizes L, themine if there is a subset S of vertices of size at most n,
complement of L.such that every edge of G is incident on some vertex

A much bigger space complexity class is PSPACE, the classin S.
of languages that can be recognized by machines that use

• Graph Coloring—Given a graph G and integer k, deter- polynomial space. By Savitch’s theorem it follows that
mine if the vertices of the graph can be colored with k or PSPACE equals its nondeterministic version, i.e., PSPACE �
fewer colors so that any pair of vertices connected by an NPSPACE. From known results linking space and time com-
edge are colored differently. plexity classes, we get the tower of inclusions L � NL � P �

NP � PSPACE. It is also known that L is different from
For much more on NP-completeness, refer to the book by PSPACE, so at least one of these inclusions is proper. It is
Garey and Johnson (11). not known which of them are; it is quite possible that all are.

Beyond PSPACE lie EXP, deterministic exponential time and
Space Complexity NEXP, nondeterministic exponential time. Inside P, there are

a host of complexity classes defined by Boolean circuits. A de-So far we have seen two important time complexity classes, P tailed overview of all aspects of computational complexity is
and NP. To define space complexity precisely, we assume that provided in (12).
the Turing machine model has a read-write worktape sepa-
rate from the input tape, which is read-only. The space used

RANDOMIZATIONby a computation is defined as the number of cells used on
the worktape. This definition enables us to consider classes

Randomized Algorithmsof problems that require workspace less than n for inputs of
length n. The most important among these classes are Log- One of the most important developments in the fields of algo-

rithms and complexity theory is the use of randomization. Aspace, written L, and its nondeterministic counterpart NL. L

ALGORITHM THEORY 423

randomized algorithm can toss coins, figuratively speaking, a graph, that is to find a subset S of the vertex set V so that
the number of edges between vertices in S and V �S is max-and depending on the outcome of the coin tosses, decide its

next move. In reality, these algorithms use a source of imized. On the surface, this might look similar to Min-Cut,
but it is in fact NP-hard to solve optimally. The following sim-pseudo-randomness that approximates perfect randomness.

Some problems have randomized algorithms that are prov- ple randomized algorithm achieves a good approximation, in
that, the expected number of edges in the cut it finds is m/2.ably better than any deterministic algorithm for them, even

one not yet discovered (e.g., a version of network routing). A It starts with two empty sets A and B and, for each vertex in
turn, puts it into one of the two sets with equal probability.very good exposition on various aspects of randomized algo-

rithms is given in Ref. 13. Clearly, the expected number of edges in the cut defined by A
and B is m/2. We can then use standard tail inequalities likeWe have already seen an example of a randomized algo-

rithm, namely, randomized quicksort where the choice of the Markov’s inequality to prove that, with high probability, the
size of the cut produced is at least m/4, say. Because a maxi-pivot is made randomly. It can be shown, that with such a

choice, the expected number of comparisons quicksort per- mum cut can have at most m edges in it, this randomized
approximation algorithm achieves an approximation ratio offorms for any input is O(nlogn), whereas the worst-case run-

ning time of quicksort for any deterministic strategy of choos- 4 with high probability.
ing the pivot, e.g., picking the first element, is �(n2).

Another simple example of a randomized algorithm is the Randomized Complexity
one for the Min-Cut problem. Let G be a connected, undi-

To study randomization from a complexity point of view, anrected multigraph (i.e., a graph that may contain multiple
extension is made to the deterministic Turing machine model.edges between pairs of vertices). A cut (S, V �S) is a partition
Probabilistic Turing machines (PTMs) have an extra tapeof the vertices of G into two subsets, S and V �S, and the size
that has perfectly random bits written on it. The machine canof the cut is the number of edges that connect a vertex in S
read this tape when needed and use the bit read to determineto a vertex in V �S. Using the max-flow algorithm and the
its next move. Reading a bit from the tape is like tossing amax-flow min-cut theorem, we can deterministically compute
coin. Probabilistic machines have more than one definition ofa minimum cut in G. But there is a simple randomized way
acceptance and rejection, and this fact gives rise to three dif-to do this, with high probability. The algorithm repeatedly
ferent complexity classes corresponding to the class P of de-picks an edge uniformly at random and merges the two verti-
terministic computation. The class RP (Randomized Polyno-ces that are its end-points. To merge the end-points of edge
mial time) consists of those languages L for which there exists(x, y), replace vertices x and y by a single vertex w, replace all
a polynomial-time PTM M such thatedges (x, u) and (y, v) by (w, u) and (w, v) for u � y and v �

x. The contraction of an edge decreases the number of vertices
in the graph by 1. This process is repeated until only two
vertices, v1 and v2, remain. Let S be the set of vertices of G

x ∈ L ⇒ Pr(M accepts x) ≥ 1
2

and

x /∈ L ⇒ Pr(M accepts x) = 0that were involved in some contraction among those that
eventually produced v1. Then, (S, V �S) is the cut produced by

Here, the probabilities are over the coin tosses of the ma-the algorithm.
chine. The probability of acceptance when x � L can be madeNow we prove that, with nonnegligible probability, this is
1/p(n), for any polynomial p(n), without changing the defini-a min-cut for G. It can be seen that any cut of an intermediate
tion of the class. It can also be boosted to 1 � 2�n by repeatedgraph is also a cut of G but may not be a minimum cut for it.
tries. RP resembles NP in the sense that, if x � L, there areLet C be some minimum cut of G. We will compute the proba-
witnesses for this fact, namely the sequences of coin tosses inbility that this algorithm outputs C (which happens if and
the case of RP, and the nondeterministic choices in the caseonly if no edge of C is contracted at any stage). Clearly, this
of NP, that cause the machine to accept. However, RP de-is a lower bound on the probability of correctness of the algo-
mands that the witnesses be abundant. Trivially, P � RP �rithm. If C has k edges, then every vertex v of G has degree
NP. The complement of RP is called co-RP. The class ZPP,at least k [otherwise, (�v�, V��v�) would be a smaller cut], and
consisting of languages that can be recognized with zero errorso G has at least kn/2 edges. Let Gi be the graph produced
by a PTM running in expected polynomial time, is equal toafter i contractions. Gi has n � i vertices, and if no edge of C
RP � co-RP.has been contracted in the first i contractions, a minimum cut

A language L is in the class BPP (Bounded-error Probabi-has at least k edges in it. Therefore, Gi has at least [k(n �
listic Polynomial time) if there is a polynomial-time PTM Mi)]/2 edges. Thus, the probability that an edge of C is not con-
such thattracted in the (i � 1)st contraction, given that no edge of C

has been contracted in the first i contractions, is 1 � 1/(n �
i)/2 � 1 � 2/(n � i). Consequently, the probability that after
n � 2 contractions all edges of C remain intact is

x ∈ L ⇒ Pr(M accepts x) ≥ 3
4

and

x /∈ L ⇒ Pr(M accepts x) ≤ 1
4n−3∏

j=0

�
1 − 2

n − j

�
= 2

n(n − 1)
>

2
n2

These probabilities can be replaced with 1/2 � 1/[p(n)] and
1/2 � 1/[p(n)] for any polynomial p(n). Thus, a BPP machine

Therefore, the error probability of this algorithm is at most may err in both directions, but the error is bounded away
(1 � 2/n2). By doing sufficiently many independent tries, this from 1/2 by at least an inverse polynomial amount. The error
probability can be made exponentially small. probability can be reduced by doing many independent tries

and taking the majority outcome. By the symmetry of theSuppose now that we are asked to find a maximum cut in

424 ALGORITHM THEORY

definition, BPP � co-BPP. The relationship of NP and BPP is proven to be NP-hard and are often closely related to NP-
complete decision problems. For example, MAXSAT is thestill open.

A language L is in the class PP (Probabilistic Polynomial problem of finding, for a given logical formula in CNF, an
assignment to its variables that maximizes the number of sat-time) if there is a polynomial-time PTM M such that,
isfied clauses. Clearly, if this problem can be solved in polyno-
mial time, so can SAT. We also saw previously an approxima-
tion algorithm for the NP-hard problem Max-Cut. For more
on this subject see Ref. 14.

To analyze the performance of an approximation algorithm

x ∈ L ⇒ Pr(M accepts x) >
1
2

and

x /∈ L ⇒ Pr(M accepts x) ≤ 1
2

on an instance of an optimization problem, we associate a
The error probabilities in either direction may be exponen- value with each solution to that instance. Given an instance
tially close to 1/2, so polynomially many independent tries I, the task is to find a solution S that maximizes/minimizes
may fail to decrease the error substantially. It can be shown this value v(S). Let OPT(I) denote the optimal value of a solu-
that PP � co-PP and that NP � PP. Also, RP � BPP � PP. tion to instance I of a minimization (maximization) problem

and A(I) be the value of the solution produced by an approxi-
Derandomization mation algorithm A. The performance of A is measured, most

often, as the ratio [A(I)/OPT(I)][(OPT(I)/A(I))]. Clearly, thisConsider the hash function ha,b : �0, 1�n � �0, 1�m, m � n, com-
number, called the approximation ratio, is at least 1.puted by taking the first m bits of ax � b, where a, b � �0,

1�n, and the addition and multiplication are done in the field
GF[2n], the elements of which can be put in 1-1 correspon- Multiprocessor Scheduling. Earlier, we saw a greedy algo-
dence with �0, 1�n. Such a hash function can be randomly rithm that optimally scheduled unit-time jobs with deadlines
picked by picking a, b randomly from �0, 1�n, using 2n random on a single processor, so that the penalty incurred for jobs
bits. For any x1, x2 � �0, 1�n, y1, y2 � �0, 1�m, x1 � x2, finishing after their deadline was minimized. Here is a
Pra,b(ha,b(x1) � y1 and ha,b(x2) � y2) � 1/22m. Because of this slightly different version of this problem. There are n jobs
property, ha,b are called two-universal hash functions. Let Hx J1, . . ., Jn with runtimes t1, . . ., tn. These are to be assigned
be the random variable that takes the value ha,b(x) where a,b to m identical processors so that the total runtime of the sys-
are chosen randomly. Then, this property means that Hxi

and tem is minimized. This is defined as the maximum that any
Hxj

are independent random variables when xi � xj; that is, processor needs to run before all the jobs are completed. This
the collection �Hx�x � �0, 1�n� is a set of pairwise independent problem is known to be NP-hard even in the case of two pro-
random variables. cessors.

Hash functions can be used to make certain randomized There is a simple greedy approximation algorithm for this
algorithms deterministic, a process called derandomization. problem, due to Graham, that achieves an approximation ra-
Consider the randomized algorithm for the Max-Cut problem tio at most 2 � 1/m. This considers the jobs in turn, assigning
on an n-vertex graph. It uses a total of n random bits, one per the current job to the least-loaded processor. The load on a
vertex. Given an edge (x, y), the probability that it is in the processor is the total running time of the jobs scheduled on it
cut is 1/2 because x and y are uniformly and independently so far. Let A(I) � T be the total runtime of the system in the
put in one of the sets A and B. The only property of the ran- solution returned by the algorithm. Let P be a processor that
dom assignment used is that, for any distinct x and y, the has a total load of T, and let t be the running time of the last
assignment of a set is done independently. The same effect job scheduled on P. Because this job was given to P, each of
can be achieved by making the assignments only in a pairwise the other processors must have a load of at least T � t. Thus,
independent manner. As seen previously, a family of hash the sum of the runtimes of all the jobs is at least T � (m �
functions mapping �0, 1�log n to �0, 1� can be used for this pur- 1)(T � t). Because any solution, including the optimal, must
pose. A random assignment would be choosing a and b ran- have a value not less than the average running time of the
domly and mapping vertex x to ha,b(x) (where 0 means x is put jobs,
in A and 1 means it is put in B). However, because the total
number of hash functions in this family is only �(n2), we can
exhaustively try them all in polynomial time. Because the ex-
pected value of a cut is m/2, there exists one with at least so
many edges, and we are assured of finding it. This derandom-
izes the algorithm and yields a deterministic polynomial-time
algorithm, which gives a reasonably good approximate solu-

OPT(I) ≥ T + (m − 1)(T − t)
m

= T −
�

1 − 1
m

�
t

≥ A(I) −
�

1 − 1
m

�
OPT(I)

tion to an NP-hard problem.

The last inequality uses the trivial fact that OPT(I) � t andAPPROXIMATION AND INAPPROXIMABILITY
the performance bound on the algorithm follows. It can also
be shown that this bound is tight, that is, there exists anApproximation Algorithms
instance for which this bound is actually achieved.

In the absence of a proof settling the P � NP question, re-
searchers have turned their attention to finding polynomial-

Polynomial-Time Approximation Schemes
time algorithms that provide approximate solutions for hard

For some problems, there is a family of algorithms �A��� � 0�problems. The problems to which such algorithms generally
apply are optimization problems. Many of these have been such that, A� achieves an approximation ratio � 1 � � but has

ALGORITHM THEORY 425

a running time that increases as � decreases but that is still accept (x, y) with a probability greater than 1/2. With this
model, it was proved by Arora et al. (18) that NP is exactlypolynomial in the input size (but not necessarily in 1/�). This

means we can achieve as good an approximation as we want, the class of languages that have a (c log n, q)-restricted veri-
fier for some constants c and q. As a corollary, they showedbut at the expense of running time. Such a family of algo-

rithms is called a polynomial-time approximation scheme that there is a constant � � 0 such that approximating MAX3-
SAT (which is a restriction of MAXSAT where each clause(PTAS). Such a scheme exists for the multiprocessor schedul-

ing problem [again due to Graham (15)], but the running time has at most three literals) within a factor 1 � � is NP-hard.
In other words, if MAX3SAT has a PTAS, then P � NP. Theof A� is exponential in 1/�. Thus, we cannot use it to get a

really good approximation. theorem characterizing NP in terms of the existence of a (c
log n, q)-restricted verifier is called the PCP theorem. It has
been instrumental in producing inapproximability results forFully Polynomial-Time Approximation Schemes
a wide variety of optimization problems.

A fully polynomial-time approximation scheme (FPTAS) is a
PTAS where the running time of A� is polynomial in both the
input size and 1/�. This is the best we can achieve, short of BIBLIOGRAPHY
solving the problem exactly in polynomial time. However, not
many NP-hard problems are known to have an FPTAS. Knap- 1. D. E. Knuth, The Art of Computer Programming, vols. 1–3, Read-
sack is one of the few exceptions. This shows that NP-hard ing, MA: Addison-Wesley, 1968.
problems may not behave alike when it comes to finding ap- 2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
proximate solutions. An instance of knapsack consists of n Analysis of Computer Algorithms, Reading, MA: Addison-Wes-
items with weights w1, . . ., wn and values p1, . . ., pn, respec- ley, 1974.
tively. Let the maximum capacity of the knapsack be M. The 3. T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algo-
FPTAS for knapsack (16) uses a pseudo-polynomial-time algo- rithms, Cambridge, MA: MIT Press, 1990.
rithm whose running time is polynomial in n, P � maxn

i�1 pi 4. C. A. R. Hoare, Quicksort, Comput. J., 5 (1): 10–15, 1962.
and log M. Note that this algorithm is different from the one 5. V. Strassen, Gaussian elimination is not optimal, Numerische
given in the section on Dynamic Programming whose running Mathematik, 14 (3): 354–356, 1969.
time was polynomial in n and M. 6. D. Coppersmith and S. Winograd, Matrix multiplication via

Now we define an algorithm Bk, where k is any number. It arithmetic progressions, J. Symbolic Comput., 9: 251–280,
first constructs a new input instance by scaling the values by 1990.
a factor 1/k (i.e., the new values are p1/k, . . ., pn/k, re- 7. R. W. Floyd, Algorithm 97 SHORTEST PATH, Commun. ACM, 5
spectively) and applies the pseudo-polynomial-time algorithm (6): 345, 1962.
to this instance. Then, A� � Bk, where k � P/[(1 � ��1)n]. 8. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Clearly, the running time of A� is polynomial both in the input Languages, and Computation, Reading, MA: Addison-Wesley,

1979.size and in 1/�. It can also be shown that the approximation
ratio of A� is at most 1 � �. 9. H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of

Computation, Upper Saddle River, NJ: Prentice-Hall, 1997.
The PCP Theorem and Inapproximability 10. S. Cook, The complexity of theorem-proving procedures, Proc. 3rd

ACM Symp. Theory of Computat., 1971, pp. 151–158.
Let L � NP. Then, there is a nondeterministic polynomial-

11. M. R. Garey and D. S. Johnson, Computers and Intractability: A
time machine M that accepts L. If x � L, there is a sequence Guide to the Theory of NP-completeness, San Francisco: Free-
of nondeterministic choices of M that results in x being ac- man, 1979.
cepted. These nondeterministic choices ‘‘prove’’ that x � L. 12. C. H. Papadimitriou, Computational Complexity, Reading, MA:
Given these choices, the membership of x in L can be checked Addison-Wesley, 1994.
in polynomial time. Call this sequence of choices an accepting 13. R. Motwani and P. Raghavan, Randomized Algorithms, Cam-
path of M on input x. Let V be a polynomial-time machine bridge: Cambridge Univ. Press, 1995.
that accepts the following language of pairs: 14. D. Hochbaum, ed., Approximation Algorithms for NP-hard Prob-

lems, Boston: PWS Publishing Company, 1997.
L′ = {(x, y)|y encodes an accepting path of M on input x}

15. R. L. Graham, Bounds for certain multiprocessing anomalies,
Bell Syst. Tech. J., 45: 1563–1581, 1966.

V is called a verifier for L. If x � L, there is a y such that V
16. O. Ibarra and C. E. Kim, Fast approximation algorithms for theaccepts (x, y), and if x � L, there is no such y. Clearly, L is in knapsack and sum of subset problems, J. ACM, 22 (4): 463–468,

NP if and only if it has a polynomial-time verifier. 1975.
A new restricted verifier model was defined by Arora and

17. S. Arora and S. Safra, Probabilistic checking of proofs; a new
Safra (17). In this definition, a [r(n), q(n)]-restricted verifier P characterization of NP, J. ACM, 45 (1): 70–122, 1998. Prelimi-
for a language L is given a pair (x, y) as input, where y is nary version appeared in Proc. 33rd IEEE Symp. Foundations
supposed to be a polynomial-length proof that x � L. The veri- Comput. Sci., FOCS, 1992, pp. 2–13.
fier has access to a random bit string R of r(n) bits. Using x 18. S. Arora et al., Proof verification and hardness of approximation
and R, it computes q(n) integers a1, . . ., aq(n), each at most problems, Proc. 33rd IEEE Symp. Foundations Comput. Sci.
�y�. The bits of y in positions ai, 1 � i � q(n), are then written FOCS, 1992, pp. 14–23.
on a tape of the verifier. In polynomial time, V then accepts
or rejects its input, without using the other bits of y. The fol- JIN-YI CAI

lowing holds : if x � L, then there is a y that causes V to ac- AJAY NERURKAR

SUNY Buffalocept (x, y) with probability 1, and if x � L, no y can make V

426 ALL-PASS FILTERS

ALIGNMENT CHART. See NOMOGRAMS.

