
ABSTRACT DATA TYPES

An abstract data type is a specified set of objects and op-
erations. A software module that implements an abstract
data type hides information about how its objects are rep-
resented. The module hides information by forcing the
type’s objects to be manipulated indirectly through the
operations. Since objects are only manipulated indirectly
through these operations, the information that the opera-
tions “know” is encapsulated in the module and can thus
be changed easily.

The ability to easily change software is important, be-
cause the cumulative cost of all changes to a program is
usually higher than the cost of writing it in the first place
(1). But why do programs need to change at all? Physical
processes, such as friction, do not affect software. However,
wear and tear is only one reason for fixing or replacing a
machine; machines also need fixing if they have design er-
rors, and they are sometimes improved or replaced by a ma-
chine that better fits their user’s needs. Programs need to
be maintained or enhanced for similar reasons. For exam-
ple, once a program is released, its users typically see the
need for correcting various design or coding errors, and of-
ten desire several improvements. Errors in programs that
support critical business or safety functions cannot be ig-
nored, and lives or the health of a business may depend on
the speed with which such errors can be corrected. But even
a user’s desires may become necessary requirements in a
competitive market, where the faster a company can re-
spond to such desires for change, the more profitable it can
be. Planning for such inevitable corrections and enhance-
ments is good practice, and will save much time, frustra-
tion, and money.

After examining the problems that abstract data types
solve, we will look at information hiding in general. Then
we will see how to design abstract data types. We will con-
clude with a look at some more advanced topics.

ABSTRACT DATA TYPES ENCAPSULATE DATA
STRUCTURES

Abstract data types, and encapsulation in general, help
ease changes in a program’s data structures. Such changes
are very common. Furthermore, if one does not use abstract
data types and encapsulation, such changes can be very
costly.

Data Structures

A data structure is a computer representation of informa-
tion. For, example, an array of 24 integers might be used to
represent a series of hourly temperature readings.

Data structures may be either primitive or compound.
Primitive (or atomic) data structures include the basic val-
ues found in a programming language, such as Charac-
ters and Integers. Composite data structures are built from
such primitive values and other composite data structures.
Arrays, records, lists, and sets are families of composite
data structures. A particular member of such a family, such
as an array of integers, is a composite data structure.

Details of Data Structures. To write code that uses a data
structure, one must know two important details. These are
its format and its abstraction mapping. The format of a
data structure is how it is laid out in a computer’s memory.
For example, an Integer data structure might be format-
ted as a string of 32 bits. An array of 24 integers might
be formatted as a consecutive sequence of 24 such 32-bit
strings.

A data structure’s abstraction mapping is a mapping
from its format to the abstract values that it represents.
For example, the abstraction mapping from an Integer
data structure’s format, a string of 32 bits, to an inte-
ger, in the abstract value space of mathematics, might
be based on binary notation. For example, the bit string
“00000000000000000000000000000101” represents the in-
teger 5.

Abstraction mappings for composite data structures are
usually built from the abstraction mappings of their ele-
ments. For example, consider how a sequence of 24 32-bit
strings might be used to represent a series of temperature
readings for a single day. It is easiest to describe this ab-
straction mapping in two stages: first use the abstraction
mapping for the integers to transform the sequence of 24
32-bit strings into a sequence of 24 integers, then state
how the 24 integers map to the sequence of temperature
readings. For this reason, the format and abstraction map-
ping of a composite data structure are usually stated at a
higher level of abstraction than those for a primitive data
structure are. For example, we would state the format of
the data structure for a day’s temperature readings as a se-
quence of 24 integers, each of which represents the reading
in degrees Celsius, with the first element of the sequence
representing the reading for midnight, then next for 1AM,
and so on. Similarly, one might regard the sequence of inte-
gers itself as a data structure, an array, and thus say that
the format of the data structure was an array of 24 inte-
gers, call it “A,” with each integer representing the reading
in degrees Celsius, and with A[0] representing the reading
for midnight, A[1] for 1AM, and so on up to A[23] repre-
senting the reading for 11PM.

Details and Changes. A program can extract information
from a data structure if it “knows”both kinds of detail about
the data structure. For example, to get the reading for 3AM
from the array “A” described above one would write an ex-
pression like “A[3]” (depending on the exact programming
language used). The programming language knows how to
use the name of the array and its format (and the format of
the integers) to extract the required information. However,
note that the correspondence between 3AM and the “3” in
“A[3]” is determined by the abstraction mapping for this
particular data structure. If this abstraction mapping were
changed, then even if the format (an array of 24 integers)
were unchanged, the expression for extracting the reading
for 3AM might have to change. For example, suppose that
the abstraction mapping were changed such that the last
reading of the day, the one taken at 11PM, was stored in
A[0], the 10PM reading in A[1], and the midnight reading
in A[23]. Then to extract the 3AM reading one would use
the expression A[20]. Similarly, if the abstraction function
maps an integer t to t degrees Celsius, then to extract the
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reading in degrees Kelvin requires adding 273 to t. But if
the abstraction function were changed to storing the tem-
perature readings in degrees Kelvin, then extracting the
reading in degrees Kelvin would not require this addition.

A desire for greater efficiency in the program’s use of
time or space is a common reason to change a program’s
data structures. For example, if requests for temperature
readings in degrees Kelvin were more common than re-
quests in degrees Celsius, then it would be more efficient
to change the abstraction mapping and to store the read-
ings in degrees Kelvin. As another example, the speed of
a search through a list of names can be made faster if the
data structure is changed from a list to a binary search
tree or a hash table. (Searching for a name in a list takes,
on the average, time proportional to half of the number of
the names in the list. On the other hand, searching for a
name in a binary search tree takes, on the average, time
proportional to the logarithm of the number of names.)

Another reason for changing a data structure is to allow
the program to store or manipulate additional information.
For example, to record the humidity during each hour of
a day as well, one would need to either change the data
structure for the temperature readings, or add a new data
structure to the program.

Why Changing Data Structures Can Be Costly. Making
changes to a program’s data structures can be costly be-
cause information about them tends to propagate through-
out the program. Of course, the information contained in
the data structures, the information being manipulated by
the program itself, needs to flow throughout the program;
that causes no maintenance problems. What causes prob-
lems is the use of a data structure’s format and abstrac-
tion mapping throughout the program. When every part
of the program uses these details, any change to these de-
tails could affect all parts of the program; hence any such
change requires examining the entire program.

For example, consider a calendar management program.
In this program, there will be a data structure used to rep-
resent dates. Suppose the format of a date is a record of
three fields, each itself an array of two characters, with
each character containing a digit. (This might be a rea-
sonable choice if the most common operation performed
on dates is to read or write them from or to some exter-
nal device.) The abstraction mapping is as follows. The two
digits in the “month” field’s array represent the number of
the month (with 1 for January), the two digits in the “day”
field represent the day of the month, and the two digits in
the “year” field represent the year within the current cen-
tury. Without any further conventions or language support,
these details will be used everywhere in the program.

Now suppose that, at some later time, we decide to
change the program to deal with dates in more than one
century. One way to make this change would be to change
the data structure for dates, so that 4 characters were used
to store the year (with the characters read left to right rep-
resenting a year in the Common Era). However, details of
the format and interpretation of dates might have been
used anywhere in the program. For example, at one spot
in the program, the year in a date, D, might be printed
by printing the characters “2”, “0”, and then the values of

the expressions “D.year[0]” and “D.year[1].” However, if the
year 2101 is stored with D.year[0] = “2”, D.year[1] = “1”,
D.year[2] = “0”, and D.year[3] = “1”, then this way of print-
ing the year is incorrect, as it would print 2101 as “2021”!
This kind of dependence on details might occur anywhere
in the program, hence changing the representation of dates
to use four characters for the year requires an expensive
reexamination of the entire program. Exactly this kind of
expensive reexamination of entire programs occurred at
the end of the last century for exactly this reason.

When the code that uses a data structure is found in
several programs, the problems caused by the propaga-
tion of the detailed information about the data structure
are essentially unlimited. For example, if a data structure
is present in an operating system or a commercial soft-
ware component, details about it may be written into so
many programs that it will be extraordinarily expensive
to change.

Information Hiding and Encapsulation

To avoid such difficulties, it is best to hide the detailed infor-
mation about each data structure in a small section of one’s
program (2). Such a small section of a program, which can
typically be separately compiled and which typically hides
the details of one data structure (or data type, see below),
is called a module.

A module hides or encapsulates the details of a data
structure if no other part of the program can directly de-
pend on these details. That is, the parts of the program
outside the module must manipulate the data structure
indirectly. This technique is called information hiding, be-
cause it hides information about the data structure’s de-
tails in a module. It is also called encapsulation, because
the module is a “capsule” containing the hidden informa-
tion in the sense that the details are protected from the
other parts of the program.

Operations (Methods). Program modules achieve infor-
mation hiding by restricting code outside the program mod-
ule itself to the use of a specified set of operations. In the jar-
gon of object-oriented programming these are called meth-
ods. These operations of a module “know” the details of the
data structures that they manipulate, in the sense that
they are coded using the details of the format of that data
and its abstraction mapping. The other parts of the pro-
gram manipulate the data structure indirectly, by calling
the operations.

These operations can also be looked on as the set of ser-
vices a module provides to the rest of a program. For exam-
ple, one might have a module that hides information about
the details of the data structure used for storing the ap-
pointments in a calendar manager program. This module
might provide operations to add an appointment to the set
of scheduled appointments, to cancel an appointment, and
to find all the appointments for a given date.

Specifying a Module’s Interface. The operations of a mod-
ule are critical, since they form the interface between the
data structures encapsulated by the module and the rest of
the program. That is, instead of depending on the details of
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the data structures, the rest of the program depends on the
operations of the module. This means that the operations
must be designed to be sufficiently high-level, or abstract,
so that the details of the data structures hidden in the
module did not leak through the interface. It also means
that the exact behavior of the operations must be carefully
specified.

A prime example of a set of operations that are too low-
level to effectively hide information would be a set that in-
cluded an operation that returned a pointer to the module’s
data structure to clients. With such an operation, clients
would be able to directly manipulate the data structure.
This would provide no information hiding at all. (In the jar-
gon, returning a pointer to a module’s internal data struc-
ture, or allowing a client to keep such a pointer to an data
structure that is later made internal to the module, is called
“exposing the representation” (3).

The specification of a module’s operations describes how
to call each operation and what happens when it is called.
Such a specification is best thought of as a contract (3, 4).
Like any contract, it gives benefits and obligations to each
party involved. The two parties are the code that uses the
operations (from outside of the module), called client code,
and the module’s own implementation code. The obligation
of the implementation code is to make the operations be-
have as specified in the contract. The implementation code
benefits by being able to use whatever algorithms or data
structures are desired. (Usually the algorithms and data
structures will be chosen to minimize costs.) The imple-
mentation also benefits by being able to change its algo-
rithms and data structures easily, as described above. The
obligation of the client code is to only use the operations
provided by the module, and to use them in the ways speci-
fied in the contract; that is, the client code must not use any
information about the details of the implementation’s data
structure. The benefit to the client code is that the client
code can be written more succinctly, because it is written at
a higher-level. In addition, since client code is written at a
higher level, it is easier to understand than it would be if it
were written in terms of the details of the data structures.
When, as is often the case, the client code makes up the
bulk of the program, the program, as a whole, may become
clearer. The program as a whole is also more easily im-
proved. This may include making it more efficient, because
efficiency problems with the program’s data structures or
algorithms may be more easily isolated and fixed, as they
are encapsulated in specific modules.

As a contract, the specification fulfills the usual roles fa-
miliar from contracts in the legal system. That is, as long as
both sides fulfill their obligations, either party may change
anything not specified in the contract. In particular, this in-
cludes the details of the implementation. In modern object-
oriented programming languages one can use a class as the
implementation module. If this is done, then the language
will automatically prohibit direct access by clients to data
structures in a class. This automatically ensures that the
client code fulfills some of its obligations. But even if the
contract is only enforced by convention, its use in hiding in-
formation about data structures is the key idea that allows
them to be easily changed.

The Benefits of Information Hiding. If the details of a data
structure’s format and abstraction mapping are hidden in a
module, then when the details need to be changed, one only
has to examine and change that module. Because the mod-
ule is a small part of a larger program, this makes the pro-
gram easier to change. For example, suppose the calendar
manager program has a module that encapsulates the data
structure used for storing its user’s appointments.Then the
details of this data structure can be changed without ex-
amining the entire program; only the module in question
needs to be examined.

From an economic standpoint, information hiding can
be thought of as purchasing an option (5). Recall that, in
economics, buying an option on X gives one a guarantee of
being able to buy X at a later date for a specified price. Why
not just wait until X is needed to buy it? Because either it
might not be available at that time or it might cost more
than the price specified in the option (plus the cost of the
option). In this sense the option purchased by hiding infor-
mation about the details of a data structure D is the ability
to change, at a later date, the details of D’s representation
without looking at every part of the program. The cost of
this option is the cost of writing a module that hides the
information about D plus the efficiency loss (if any) that
results from manipulating the data structures indirectly
through the operations. This cost is justified if the cost of
changing the data structure at a later date (i.e., the cost
of examining the entire program) is more than the cost of
just changing the module (plus the cost of creating and us-
ing the module). In a sufficiently large program, the cost
of examining the entire program easily outweighs the up-
front costs of creating and using a module to hide the data
structure’s details. Sophisticated compilers can also elimi-
nate much of the cost of manipulating the data structures
indirectly.

Other Applications of Information Hiding. This idea of in-
formation hiding is not limited to hiding data structure
details. For example, it is often used in operating systems
to hide information about the detailed management of de-
vices or other resources. In an operating system, a “de-
vice driver” provides an interface, with specified operations
such as “get” and “put,” through which users can manip-
ulate input/output devices. For example, a device driver
allows users to manipulate storage media (such as hard
disks) from many different manufacturers, without hav-
ing to rewrite their programs when different media are
installed.

The manual that describes the instruction set of a com-
puter can also be seen as a specified interface that allows
many different implementations, without requiring new
compilers to be written each time a processor’s detailed im-
plementation changes. In this case the operations in the in-
terface are the computer’s instructions. The assembly lan-
guage for a computer is a human-readable abstraction of
this interface.

Similarly, the reference manual of a programming lan-
guage also provides a specified interface that insulates the
programmer from changes in the computers that the pro-
gram may run on, and thus provides a degree of indepen-
dence from the details of these computers. The operations
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of this interface are the statements, expressions, and decla-
rations of the programming language, including the ways
in which these can be combined.

A programming language may also provide information
hiding for its built-in data structures, such as integers and
floating point numbers. It does this by specifying the syn-
tax and meaning of the operations that can be used to ma-
nipulate them. In this context, information hiding is called
representation independence, because programs are not de-
pendent on the formats for integers and floating point num-
bers found on different computers.

Abstract Data Types

Data Types. A family of similar data structures, each
with the same format and abstraction mapping, is called a
data type. The individual data structures in such a family
are called instances or objects of that data type.

Often a program will use many instances of a data type;
for example, the calendar manager program might have
many instances of the data type Appointment, each one a
data structure that represents a separate appointment. It
is inconvenient to define a module for each such instance of
a data type. Furthermore, if the objects of such a data type
are created as the program runs, then it is not possible
to define a program module for each object, because the
modules are created before run-time.

Because of these problems, it is common to define a mod-
ule for each data type in a program. In object-oriented pro-
gramming, this is often taken to an extreme; that is, mod-
ules are not created for individual data structures but are
only used for data types.

Definition. An abstract data type (ADT) is a specified
interface for modules that encapsulate a data type. This
definition can be seen from two points of view. From the
implementation side, such a specification permits many
different implementation modules. Thus, an ADT can be
viewed as an abstraction of all the modules that correctly
implement the specified interface. Each such module con-
sists of code that implements the operations; each of these
may use a different format and abstraction mapping for
the data structures of the objects of the data type that it
manipulates.

However, from the client’s side, internal differences in
the implementation modules do not matter. Since clients
can only depend on the operations in the module’s interface
and their specified behavior, all modules look the same to
the client. Hence, from the client’s side, an ADT can be
thought of as a set of objects and set of operations. This
agrees with the definition given earlier.

What connects these two points of view is the ADT’s
specification. The specification describes the operations in
terms of the abstract values of objects. For example, the ab-
stract value of an Appointment object might be a tuple of a
date,a time,and a string stating the purpose of the appoint-
ment. The operation that changes the length of an Appoint-
ment is specified in terms of how it affects the time part
of this tuple. On the implementation side, the data struc-
ture’s abstraction mapping connects the data format to the
abstract values; one can check the correctness of the code

that implements the operations with respect to the speci-
fication by comparing the abstract value at the end of the
operation with that specified. On the client side, to produce
a desired effect on the abstract value of an object, the client
invokes the ADT’s operations. An implementation can thus
be seen as translating such abstract requests into opera-
tions performed at the lower level of its data structure’s
format.

CREATION AND DESIGN OF ADTS

This section discusses the creation and design of ADTs.
It begins with general considerations, and then describes
elaborations found in object-oriented programming.

What ADTs to Specify?

How does one decide what ADTs should be used in a pro-
gram? A basic strategy that is adequate for smaller appli-
cations is to consider the nouns one would use to describe
the workings of an application program (or a set of similar
programs) to be candidates for ADTs. Similarly, the verbs
used to describe what happens in such a program are can-
didates for the operations of such ADTs.

However, both the set of ADTs and the set of operations
often need to be expanded with some “internal” types and
operations. For example, it may be useful to use a Stack or
binary search tree for algorithmic or efficiency purposes,
even though these are not nouns used to describe the ap-
plication. Similarly, it may be useful to have copy or iter-
ation operations, even though these are not verbs used in
describing the application.

Finding ADTs in the Calendar Manager Example. For ex-
ample, consider again the calendar manager program.
Its requirements document (or brief overview) might in-
clude statements such the following. “The program can
record appointments for a person’s schedule, both recur-
ring appointments and one-time appointments. Recurring
appointments may be scheduled weekly on any given week-
day between any two dates, or monthly. Appointments can
be scheduled to start at any time of the day, and may last
for any length of time. The purpose of an appointment, and
additional annotations about it (such as the place where
it will occur) can also be noted. Appointments can be eas-
ily changed.” From such a description, one may note nouns
such as: appointment (both recurring and one-time), date,
time of day, purpose, and annotation. This may suggest de-
signing types for Appointment, Date, and Time. Perhaps a
type Purpose would also be appropriate, but “annotations”
might be left as Strings for the moment, as there is little
in the way of activities connected with them.

Checking a Design by Assigning Responsibilities. One way
to refine and check a planned set of ADTs is to look at how
the system’s “responsibilities” are partitioned among the
various ADTs (6).

A responsibility is a task found in the system’s require-
ments. For example, an Appointment object might take re-
sponsibility for remembering an appointment’s date, time,
length, purpose and other annotations. However, remem-
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bering a collection of Appointment objects, and organizing
them into a schedule might be the responsibility of a Sched-
ule object.

To double check that the set of ADTs is adequate, one can
see if each responsibility in the system’s requirements doc-
ument is assigned to some ADT. Each responsibility should
be assigned to a single type of object. Doing so helps keep
information about how that responsibility is managed hid-
den within a single ADT. For example, if changing an ap-
pointment’s purpose was the responsibility of both a Sched-
ule and an Appointment object, then information about
the purpose of appointments could not be hidden entirely
within an Appointment (or Schedule) object.

For example, in Figure 1, severalADTs and their respon-
sibilities for the calendar manager program are described.
One notable aspect of this list is that it highlighted the re-
sponsibility of remembering the place of an Appointment,
which I had previously forgotten. It also becomes clear from
this set of responsibilities that no ADT is responsible for
communicating with the user. Additional ADTs should be
designed to handle the user-interface.

Checking a Design by Use-case Scenarios. Another way
to check the suitability of a design is by tracing various
“use-case scenarios” (7) in the design. A use-case scenario
is a particular way in which the system will be used. For
example, for the calendar manager program, one use case
is that a user will check their appointments for the day.
Another use-case would be to create a new appointment
for a date other than the current date.

The way to use a use-case scenario to check a design is to
see how the ADTs in the design are used while playing out
the scenario. For example, consider the use-case in which
the user checks their appointments for the day. In this case
the user-interface (which is so far missing in our design)
gets the command to check appointments, it finds the cur-
rent date (also missing from our design), and then asks the
Schedule object for a list of appointments for that date. It
might also sort the appointments in order by their start-
ing time, which involves asking each appointment object
for its starting time. To display the appointments, it will
have to fetch the other information from each: the ending
time, the place, and the purpose. This process helps to find
missing ADTs, and ensure that all required responsibili-
ties are covered. It also tends to give one a good sense for
what operations will be useful for carrying out the required
tasks.

Designing Individual ADTs

Once the responsibilities of each ADT are decided, one can
think about the detailed design of each ADT. This involves
deciding on what information the ADT instances are re-
sponsible for holding, and what operations it is able to per-
form.

Designing Object States. Objects are usually responsible
for remembering some information. The client’s view of this
information is the object’s abstract state. Another name for
this is the object’s abstract value (8). The abstract value of
an object is a mathematical abstraction of its representa-

tion in the computer. Recall that the set of abstract values
is the target of a data structure’s abstraction mapping. In
designing an object’s state, it is best to focus on this ab-
stract, client-centered point of view, and not plunge into
details of the format of some particular data structure. Fo-
cusing on abstract values helps ensure that the objects can
be described adequately to clients and that the implemen-
tation can be changed easily.

As an example, consider designing the state of Time ob-
jects. A reasonable set of abstract values might be pairs of
integers, each representing the number of hours and min-
utes past midnight. One can also think of the parts of such a
pair as an object’s abstract fields or specification variables.
An abstract field does not have to be implemented; such
“fields” are only used for specification purposes. Since the
set of abstract values is a mathematical concept, the for-
mat of an implementation data structure does not need to
have two fields, despite the use of two abstract fields in the
specification. For example, an implementation might use a
single integer field, representing the number of minutes
past midnight. The only requirement is that the imple-
mentation’s data structure have an abstraction mapping
that maps the chosen format to the abstract value set in a
way that makes the operation implementations meet their
specifications (8).

Why not use a single integer as the abstract value of a
Time object? That can certainly be done. However, since ab-
stract values are mathematical concepts, convenience and
clarity are their most important attributes. One should not
worry about “saving storage space” in the design of abstract
values. Space is cost-free in mathematics!

Compound objects may have other objects as part of
their abstract values. For example, consider Appointment
objects. A reasonable choice for their abstract values might
be a tuple of a Date object, a Time object, and two Strings
(for the appointment’s purpose and place). This is clearer
(more high level than) specifying the abstract values as a
tuple of 5 integers and two Strings, since the 5 integers
have to be separately interpreted as representing the year,
month, day, hour, and minutes.

To make such specifications of compound abstract val-
ues work, it is necessary to use the concept of object iden-
tity. We postulate that each object has a unique identity,
which can be thought of as its address in a computer’s
memory. Two objects with the same abstract value do not
necessarily have the same identity. For example, two ap-
pointments with the same date, time, and purpose, may
have different identities; one way this can arise is if a user
copies an appointment, perhaps to later change its date.
Having two separate objects (i.e., with different identities)
is important for making this scenario work. Thus, the ab-
stract values of our Appointment objects would be a tuple
containing a Date object’s identity, a Time object’s identity,
and the identities of two String objects.

It is sometimes useful to distinguish between a collec-
tion of object values and a collection of object identities, as
these have different kinds of abstract values. For example,
it might be reasonable for the abstract value of a Sched-
ule object to be a set of Appointment object identities. This
would allow one to store a copy of an existing Appointment
in a Schedule object. By contrast, if the abstract value of a
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Figure 1. Classes and responsibili-
ties for the calendar manager exam-
ple.

Schedule object were a set of values of Appointment objects
(i.e., tuples instead of object identities), it would be impos-
sible to store a separate copy of an Appointment object.

Designing Operations. The operations of an ADT corre-
spond to the actions that are required to carry out its re-
sponsibilities. We start by describing various kinds of oper-
ations, and then turn to the design of individual operations.

Kinds of Operations. When beginning to specify the op-
erations of an ADT, it is helpful to think of specifying op-
erations of several standard kinds. The first kind is one
that creates or initializes objects. Such an operation is com-
monly called a constructor. An operation that creates an
object of a type T without using any other objects of type T
is called a primitive constructor. Some programming lan-
guages, such as Smalltalk, allow primitive constructors to
create the new objects and return them to the caller. But
many languages, such as C++ and Java, take the responsi-
bility upon themselves to create objects, and only allow a
primitive constructor to initialize them once they are cre-
ated. In any case, unless one is specifying an abstract type
that is not supposed to have objects created for it, then
one wants some primitive constructor operations. (A data
type that is not supposed to have objects created for it is
sometimes is useful in object-oriented programming,where
it can be used as the supertype of some other type of ob-
jects. Classes that implement such types are called abstract
classes.)

Another kind of operation that is common in ADTs is
an observer. Observer operations are used to extract infor-
mation from objects. For example, an operation that would
extract the date of an Appointment object would be an ob-
server.

The opposite of an observer operation is an operation
to change an ADT’s objects. Such an operation is called a
mutator. A mutator changes an object’s abstract value. For
example, an operation to change the date of an Appoint-
ment would be a mutator.

It is also possible to have operations of mixed kinds.
Mixed constructors and observers are called non-primitive
constructors. For example, an operation that takes a Time
object and returns a new one that is for a time one hour
later would be a non-primitive constructor.

Mixes of observers and mutators are sometimes appro-
priate, but because observers are used in expressions, and
side effects in expressions make reasoning about programs
more difficult, such mixes should be approached cautiously.
However, if one is designing anADT for a programming lan-
guage that has expressions as its primary syntactic unit,
like Smalltalk, then such operations may be needed. For ex-
ample, in Smalltalk, every operation returns a value; hence
mutators are also, in a sense, observers. By convention, in
Smalltalk every mutator returns the implicit argument of
the operation (named “self”). As a more interesting exam-
ple, a mixed operation might change the ending time of an
Appointment object and return its length.

Operations that do a mutation and then return some
sort of “status code” may often be more appropriately de-
signed as mutators that may throw exceptions.

Errors and Exceptions. Another consideration in design-
ing the operations of an ADT, is how to handle errors or
exceptional cases. Errors arise from misuse of an opera-
tion, for example, changing the ending time of an appoint-
ment to be before its starting time. Exceptions are unusual
but not completely unexpected events, for example, read-
ing past the end of a file. There are two general strategies
for dealing with errors and exceptions:

1. Have the clients check for them, or
2. Have the implementation check for them.

However, for a givenADT,a firm choice between these alter-
natives should always be made and recorded in the ADT’s
specification. If a firm choice is not made then both the im-
plementation and client code will, for defensive purposes,
always check for such conditions. Such duplicate checks
can be a source of inefficiency; hence it is always a good
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idea to decide on one of these two strategies.
If clients must check for errors and exceptional situa-

tions, then the specification should use preconditions. A
precondition is a logical predicate that that says what
clients must make true when an operation is called. For
example, the operation that changes the ending time of
an Appointment object might have a precondition that re-
quires the ending time to be later than its starting time. If
this is done, then the operation’s implementation can as-
sume that the ending time given is later than the starting
time; hence it need not check for this error. (If the operation
is called with inputs that do not satisfy the precondition,
then the implementation is not obligated by the specifica-
tion to do anything useful; it might even go into an infi-
nite loop or abort the program.) Mathematically, one can
view an operation as a relation between its inputs and its
outputs. The precondition describes the domain of this re-
lation; that is, the precondition describes what inputs are
permitted.

If the clients of anADT cannot be trusted to do the check-
ing themselves, then it is best to specify that the implemen-
tation must check for them. Such defensive specifications
are useful for general-purpose libraries of ADTs, whom the
clients are unknown. A defensive specification mandates
that the operation that changes the ending time of an Ap-
pointment checks that the ending time is later than the
starting time and that the operation must throw an excep-
tion if it is not. Client code that needs to validate its own
input could catch this exception.

If a type is to have both untrusted and trusted clients,
then it may be useful to specify a both kinds of ADT for the
same concept. Untrusted clients can use the ADT with the
defensive specification. Trusted clients can use the ADT
specified with preconditions. Furthermore, the defensive
specification can be implemented by simply performing
the necessary checks and calling an implementation of the
ADT specified with preconditions.

Immutable Objects. For some types, it is reasonable to
not have any mutator operations. Objects of such a type
are called immutable. Since there are no mutators in such a
type, an immutable object’s abstract value does not change
over time. As such, immutable objects often represent pure
values. For example, both Time and Date objects are im-
mutable, which matches one’s intuition that a specific time
or date is an unchanging measure. Such objects typically
have many non-primitive constructors. Compound objects,
however, are typically mutable.

Evaluating ADT Designs. The specification that forms the
contract between an ADT’s client code and its implementa-
tions is a key decision in design that affects future changes
and costs. This section considers various criteria for eval-
uating specifications.

It is most important that the specification hide informa-
tion by being sufficiently abstract. A specification could fail
to be sufficiently abstract by being too close to some par-
ticular implementation data structure. One specification,
A, is more abstract than another, C, if A has more correct
implementations than C does. An implementation is cor-
rect if its data structures and algorithms meet each oper-

ation’s specified contract. Implementations will be differ-
ent if they have different data structures and algorithms.
If A is more abstract than C, then A is also said to be a
higher-level specification than C. In this case, C is said to
be a refinement of A. Higher-level contracts, since they al-
low more implementations, allow the data structures and
algorithms used in a program to be more easily changed,
because any change from one correct implementation of a
given contract to another does not affect client code. A con-
tract that only allowed one implementation would thus not
allow any changes to the implementation data structures.
Such a low-level specification would be an extreme case of
implementation bias (9).

Intelligence. In designing the operations of an ADT, it
is important to try to make them “intelligent” (10). The
intelligence of the operations of an ADT can be estimated
by how easy it is for clients to make changes to objects that
seem common or likely. That is, the operations should not
just fetch and set the information stored in the objects, but
ideally should perform more complex services for the client
code. One can identify some of these by considering various
use-case scenarios. By having the operations do more than
simply fetch and set the information,part of the application
logic can be handled by the ADT, and the client code will be
simplified. However, equally to be avoided is putting all of
the application logic into an ADT. Instead, a middle ground
is ideal.

As an example, consider the Appointment type. A low-
level design might treat an Appointment as a record, with
operations to get and set the appointment’s date, time,
length, place, and purpose. A better design has operations
to fetch this information, but would also include operations
to: change the length of an existing appointment by some
specified amount of time, create hour-long or half-hour long
appointments, create a similar appointment for the same
time next week, next month, or next year, and compare a
given date and time to the appointment’s date and time.

Observability and Controllability. One can also think
about the design from the perspective of whether it allows
access to and control of the state of the objects of that type
(or other hidden resources). Good designs are both observ-
able and controllable (11, 12). An observable ADT allows
its clients to extract the intended information from each
object. For example, if the date or time of an appointment
object could not be obtained by using the operations of the
Appointment type, then the Appointment ADT would not
be observable. A controllable ADT allows its clients to make
the type’s objects change into any desired state; that is, the
object should be able to be put into a state where its observ-
able information has an arbitrary legal value. For exam-
ple, if the Appointment data type does not provide a way to
make an appointment on February 29 of a leap year, then
the type would not be controllable.

The notions of observability and controllability can be
made more formal by thinking about the abstract values
of a type’s objects. For example, the Time ADT will be ob-
servable if the number of hours and minutes past midnight
can be computed from its objects. It will be controllable if
objects can be made with any number of hours between 0



8 Abstract Data Types

and 23 and minutes between 0 and 59. A type with muta-
ble objects is controllable if each object can be mutated to
taking on any abstract state.

Cohesion and Coupling. Each ADT should have a well-
defined set of responsibilities. An ADT design is cohesive if
its responsibilities “hang together” because they are closely
related. For example, the Appointment ADT would not be
cohesive if, besides its responsibilities for manipulating
the date, time, place, and purpose of an appointment, it
was also responsible for the low-level details of playing a
sound file through a computer’s speakers. Although such
a responsibility might easily evolve from the ability of an
appointment to play an alarm, it has little to do with the
other responsibilities of the Appointment ADT. If it were
included, it would make the ADT less cohesive.

One can check cohesion more carefully when the ab-
stract values of objects are specified using abstract fields.
To do this, one checks whether each operation of an ADT
reads or writes either just one or every abstract field. There
should also be at least one operation that uses all the ab-
stract fields. Operations that use just one abstract field are
okay, as are operations that use all the fields. However, if
an object has three abstract fields and some operation only
deals with two of them, then the abstraction fails the cohe-
sion check. The solution is to either remove the offending
operation, or to split the abstraction into different ADTs.

Coupling is a measure of how much one module is de-
pendent on another module. Strong coupling between two
modules means that when one is changed, then the other
should also be changed, or at least checked to see if it needs
to be changed. Hence, it is best to avoid strong coupling.
Strong coupling may occur when two modules use the same
global variables. For example, if the Schedule ADT and the
Appointment ADT both used a global variable that holds
the current date, then this would provide unnecessarily
strong coupling between them. To avoid strong coupling, it
is best to pass such information to the relevant operations
as an argument, or to have both call some other operation,
instead of using global variables.

Parameterized (Generic) ADTs

Many ADTs can be generalized to be more reusable by pa-
rameterization. For example, consider an ADT for a se-
quence of 24 hourly temperature readings, HourlyRead-
ings. The operations of this type would include: getting a
reading for a given hour (“fetch”), setting a given hour’s
reading to a given temperature (“store”), and perhaps find-
ing the average, minimum, and maximum temperature in
that period. Thus far we have been treating the temper-
ature readings as integers. But suppose that for various
applications, we need different amounts of precision. One
application might need to keep readings to the nearest in-
teger degree,but others might need floating point numbers.
Clearly, the idea of the HourlyReadings ADT, which has ob-
jects with abstract values that are a sequence of 24 hourly
temperature readings, is applicable to both cases. Making
two separate ADTs for such closely related concepts would
cause duplication of implementation code, which would
cause maintenance problems.

Instead of duplicating code in such cases, it is better
to abstract from the family of related ADTs by making a
generic or parameterized ADT that, when instantiated, can
generate each member of the family. Such an ADT can be
thought of a function that takes a type and produces an
ADT, and so it is an ADT generator in the sense that when
the parameters are supplied it generates an ADT. In the
specification, the type parameters are thought of as a fixed
but arbitrary types. The usual notation in specifications
is talk about a generic instance of the generator, such as
HourlyReadings[T], where “T” is the name of the abstrac-
tion’s formal type parameter. Clients instantiate such a
type generator, making a type, by passing it an actual type
parameter. For example, HourlyReadings[int] would be an
ADT which keeps hourly temperature readings as integers,
while HourlyReadings[float] would keep them as floating
point numbers.

Often some operations are required of the types of
objects used as actual type parameters. For example,
HourlyReadings[T] might require that the type T have the
usual arithmetic operations of addition and division (by
an integer), which would allow the average of the readings
to be computed. The signatures and behavior of these op-
erations should be stated in the specification of the ADT
generator (13).

In programming languages that support parameterized
ADTs, such as C++ and Ada, the use of explicit type param-
eters extends to operations and subroutines. For example,
a parameterized function, such as sort[T], can be thought of
as a function generator. This style of programming leads to
parametric polymorphism, in which one piece of code can
operate on many different kinds of data. Object-oriented
programs exhibit a different kind of polymorphism, which
comes from message passing and subtyping.

Refinements for Object-Oriented Programs

Message Passing (Dynamic Dispatch). To explain the mes-
sage passing mechanism of object-oriented (OO) languages,
we first present the problem it solves.

In a non-OO language, one must know the ex-
act type of an object in order to apply operations to
its objects. For example, in Ada 83, one would write
“Appointment’get̄start(myAppt)” to get the starting time
from the appointment named “myAppt”. This uses the op-
eration get̄start, found in the program’s implementation of
Appointment.

The need to know the exact type of an object makes
it more difficult to change programs. For example, sup-
pose that, after writing the first version of the calendar
manager program, one adds a second type of appoint-
ment, RecurringAppt. In Ada 83 one would have to write
“RecurringAppt’get̄start(myRecAppt)” to extract the start-
ing time from an object, myRecAppt, of this type. Since
the program needs to manipulate both types of appoint-
ments at once, and since it cannot know which to expect, it
must use a variant record data structure, which can hold
either type. A variant record object has an abstract state
that consists of two abstract fields: a type tag and an ob-
ject whose type depends on the type tag. For example, we
might have a variant record type, Appt, with two possible
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type tags, “Appt̄tag” and “Recurrinḡtag.”When the type tag
is “Appt̄tag”, the object stored is an Appointment object;
when it is “Recurrinḡtag”, the object is a RecurringAppt
object.

Using a variant record, “appt”, one might write some-
thing like the code in Figure 2 to extract the start time of
appt. The code tests the type tag of appt, then extracts the
start time from the object by dispatching to the appropri-
ate type’s get̄start operation. Not only is this tedious, but
it makes the program difficult to change. Imagine what
happens if another type of appointment is added to the
program, then all such dispatching case statements must
be found and updated.

The message passing mechanism in OO languages is de-
signed to automate this kind of code. Thus it also makes
adding new types that are similar to existing types easier.
In essence, all objects in an OO language are like the vari-
ant record objects in non-OO languages. That is, objects
in an OO language allow one to find their exact type at
run-time. Each object contains a pointer to some language-
specific data structure that represents the class at run-
time; typically this includes the name of the class, and the
code for the instance methods of that class. An instance
method or instance operation is a method that takes an
existing object as an argument. The primitive construc-
tors, and other such operations that are still called directly,
instead of being dispatched to indirectly, are called class
methods or class operations. (Class methods need not be
stored in the class.)

Calls to instance methods are dispatched to the appro-
priate code based on the run-time type of the object in-
volved. Abstractly, the view presented to the programmer
is that objects contain the operations that work on them.
In a singly-dispatched language, like Smalltalk, C++, and
Java, instance methods are dispatched on what would oth-
erwise be the first argument of an operation. This argu-
ment is sometimes called the receiver, or the implicit or
default argument to an instance operation. For example,
instead of writing “Appointment’get̄start(myAppt)”, one
writes “myAppt.get̄start()”, and the object myAppt is the
implicit argument. Within the code for an instance method,
the default argument is named “self” (in Smalltalk) or
“this” (in C++ and Java). The syntax “myAppt.get̄start()”
embodies the idea that, to invoke a method, one first ex-
tracts the method from the object, and then calls it. This
mechanism is called dynamic dispatch or message passing.
When the term “message passing” is used, the name of the
method invoked (“get̄start”) and its arguments are thought
of as a message, which is sent to the object, to ask it to do
something. An invocation such as “myAppt.get̄start()” is
also thought of as sending the message “get̄start()” to the
object myAppt. (Note, however, that no concurrency or dis-
tribution is necessarily involved.)

Subtype Polymorphism. Message passing allows client
code to be written that is independent of the exact types of
objects. That is, client code that sends messages to objects
is polymorphic, since it can work on objects of different
types. This kind of polymorphism is called subtype poly-
morphism. Like parametric polymorphism, it helps make
code more general and resistant to change. It is related

to parametric polymorphism in that message passing code
uses operations of types that are passed to it. However, in
subtype polymorphism the types are passed to the code at
run-time, in the objects being manipulated, instead of be-
ing passed at compile-time, separately from the objects, as
in parametric polymorphism.

Message passing and subtype polymorphism focus at-
tention on the instance methods of objects and downplay
the role of class methods. Consider the set of all messages
that an object can be sent. This set forms the object’s in-
stance protocol (14), and is, in essence, a collection of sig-
nature information. It corresponds to a Java interface.

Suppose that objects of type S have an instance proto-
col that includes all the messages in the instance protocol
of type T. Then S objects can be manipulated as T objects
without encountering any type errors. This means that the
type S is a subtype of T. In OO languages, if S is a subtype of
T, then objects of type S can be assigned to variables of type
T, passed as parameters where T objects are expected, and
returned from functions and methods that are declared to
return T objects. This is safe because any message that is
sent to an object that is supposed to have type T is in the
protocol of S objects. For example, RecurringAppt is a sub-
type of Appointment if any message that can be sent to an
Appointment object can be sent to a RecurringAppt object
without encountering a type error.

Behavioral Subtyping. Client code does not just depend
on the absence of type errors; it also depends on the behav-
ior of objects that it manipulates. An ADT S is a behavioral
subtype of T if each S object behaves like some T object
when manipulated according to the specification of T’s in-
stance protocol (18). In essence, the objects of a behavioral
subtype have to obey the specifications of all the instance
methods of their supertypes (4–17).

With behavioral subtyping, message passing becomes
truly useful, because one can reason about, and test, the
correctness of client code in a modular fashion (19). For
example, if one can show that an operation that manip-
ulates an Appointment object must accomplish a certain
task, based on the specification of the type Appointment,
then this conclusion will be valid for all behavioral sub-
types of Appointment. Hence this client code will not only
be able to manipulate objects of behavioral subtypes—it
can do so predictably. It is this property that allows OO
programs to be developed in an evolutionary manner.

Inheritance (Subclassing). Strictly speaking, the inheri-
tance mechanism of OO languages has little to do with ab-
stract data types. Recall that a class is a program module
that can be used to implement an ADT in an OO language.
Inheritance is a mechanism that allows one to implement
a class by stating how it differs from some other class. A
class defined by inheritance is called a subclass or derived
class. A subclass may have (in some languages, like C++)
more than one superclass or base class from which it is de-
rived. A subclass will inherit fields (data structures) and
method code from its superclasses. However, code for class
methods such as primitive constructors is not inherited by
subclasses. A subclass can also add new fields and meth-
ods. It is also possible to add some behavior to a superclass’s
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Figure 2. Ada 83-like pseudo code for
dispatching based on the type code in a
variant record object.

method without rewriting it completely.
Because of these properties, it is often convenient to im-

plement a behavioral subtype by using inheritance to de-
rive a subclass of a class that implements the supertype.
For example, one way to implement RecurringAppt as a
behavioral subtype of Appointment, is to use a subclass of
a class that implements Appointment.

Inheritance Is Not Behavioral Subtyping. However, it is
important to realize that inheritance does not necessarily
produce classes that implement behavioral subtypes. For
example, if the RecurringAppt class redefines the get̄start()
method to go into an infinite loop, or to always return mid-
night, then RecurringAppt would not correctly implement
a behavioral subtype of Appointment. Indeed, in C++ one
can use “private inheritance” to make a subclass that does
not produce a subtype. When using C++ or a similar lan-
guage, one should either make subtypes that are behav-
ioral subtypes, or use private inheritance. Doing so ensures
that the type system’s checking enforces not only subtyping
but also behavioral subtyping. (Of course, the type system
will not prove that one type is a behavioral subtype of an-
other, but it will track the declarations given to it.)

RELATED TOPICS

Specifications can be written either formally, using some
mathematically well-defined notation, or informally, in En-
glish. Informal specifications suffer from ambiguity, al-
though they are useful for giving overviews and motivation
and in situations where the cost of ambiguity and misun-
derstanding is not high. However, even if you do not use
formal specifications, studying them will help you in be-
ing more precise in your use of informal techniques. See
Specification Languages.

Formal specifications can be used to formally verify the
correctness of an implementation of an ADT (8). See Pro-
gramming theory.

Some form of specification is needed for testing (validat-
ing) code. Black-box testing of implementations of an ADT
is entirely based on the ADT’s specification; the specifica-
tion is critical for telling what the results of a test should
be.

ADTs that are used in concurrent or distributed pro-
grams have to deal with issues such as locking, to prevent
race conditions such as two clients extracting the same job
from a queue. One way to do this is to specify that the ADT
makes some client operations wait for some condition to be
made true by other clients (20, 21). A sampling of formal
specification techniques for concurrent and real-time sys-
tems is found in the book Formal Methods for Industrial
Applications (22). See also Real-time systems.
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Reading List

Meyer’s book, Object-Oriented Software Construction (15) is a com-
prehensive discussion of object-oriented techniques with an ex-
tensive bibliography. This book also discusses more formal spec-
ification techniques for abstract data types.

A quick introduction to object-oriented design can be found in
the book Designing Object-Oriented Software (6). Programmers
should read the widely acclaimed Design Patterns book (14).
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