
CAD FOR FIELD PROGRAMMABLE GATE ARRAYS 707

Logic module row IO module
Segmented

channel

Figure 1. Row-based architecture consists of rows of logic modules
separated by horizontal routing channels. The routing tracks in hori-
zontal routing channels are segmented. Vertical routing resources are
relatively limited compared with horizontal routing resources. IO
modules are at the boundary.

Conceptually, an FPGA device can be visualized as com-
posed of three types of basic components embedded in a two-
dimensional grid: logic modules, routing resources, and IO
modules. A logic module can be customized to realize various
logic functions for different circuit designs. IO modules are
located around the periphery of an FPGA device. Routing re-
sources consist of routing segments in both vertical and hori-
zontal directions. Usually, adjacent routing segments in the
same direction are grouped together to form routing channels.
Interconnections between logic modules are realized by rout-
ing nets through the routing channels. Row-based and sym-
metrical array architectures are two popular architectures
used in commercial FPGA products. In row-based architec-
ture (see Fig. 1), logic modules are grouped into rows sepa-
rated by horizontal channels. Compared to the horizontal
routing resources, vertical routing segments are much more
limited. In symmetrical array architecture (see Fig. 2), rout-
ing channels are distributed evenly in both horizontal and
vertical directions. Logic modules are surrounded by the adja-
cent routing channels.CAD FOR FIELD PROGRAMMABLE GATE ARRAYS

Customization of logic modules and routing segments for
implementing a particular circuit design is realized by pro-Field-programmable gate arrays (FPGA) are one of the most

popular electronic devices that circuit designers use. Because gramming a selected set of switches. A switch can be pro-
grammed into either a conductive state (on) or an insulativeof the high complexity of circuit designs, software tools have

become indispensable to the circuit designer in implementing state (off). Physically, a switch can be implemented using an
anti-fuse, or a pass transistor controlled by a static random-circuits on FPGAs. This article discusses the internal mecha-

nism of computer-aided design (CAD) software tools used by access memory (SRAM) cell, or other technologies. An FPGA
device is reprogrammable if the device can be programmedcircuit designers to implement circuits on FPGAs.

FPGAs were first introduced into the market in the mid- multiple times. SRAM-based FPGAs are an example of repro-
grammable FPGAs. Conversely, an FPGA device is one-time1980s to combine the field programmability of programmable

logic devices and the high density of gate arrays. Compared to programmable if the device can be programmed only once.
Anti-fuse-based FPGAs are one-time programmable. More de-the traditional application-specific integrated circuit (ASIC)

technology, FPGAs have the advantage of rapid customization scription on architectural and physical details of FPGAs can
be found in several references (1–3) (see PROGRAMMABLEwith negligible nonrecurring engineering cost. The advantage

of rapid turnaround with relatively low cost has led to in- LOGIC ARRAYS).
The density of a state-of-the-art FPGA device is over 100Kcreasing usage of FPGAs for a wide variety of applications,

including rapid system prototyping, small volume production, gates and continues to increase rapidly. It is practically not
feasible to design circuits on FPGAs without using sophisti-logic emulation, and special-purpose reconfigurable com-

puting. cated CAD software tools. While there are FPGAs of different

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



708 CAD FOR FIELD PROGRAMMABLE GATE ARRAYS

• Logic Optimization. Transform the circuit network into
another equivalent circuit network which is more suit-
able for the subsequent technology mapping step.

• Technology Mapping. Transform the technology-inde-
pendent circuit network into a network of library cells
of the target FPGA architecture so that the transformed
network is functionally equivalent to the original circuit
network.

• Partitioning. Partition the network of library cells into
several subcircuits so that each subcircuit can be fit into
a given set of resources of FPGAs.

• Placement. Assign cells of the circuit network to logic
and IO modules on an FPGA device.

• Routing. Assign nets of the circuit design to the routing
segments on an FPGA device. Select the set of switches
that need to be programmed into the on state.

Logic module IO moduleRouting channel

• Delay Extraction. Compute the routing delay with the
physical routing information. Routing delay data will beFigure 2. Symmetrical-array architecture consists of islands of logic
used for post-layout circuit timing calculation and analy-modules surrounded by routing channels in both vertical and hori-

zontal directions. Because of silicon area limitation, the intersecting sis.
vertical and horizontal channels in general are not fully connected. • Device Programming. Program the selected switches into

on state.

architectures in both industry and academic research, the In the literature, logic optimization and technology map-
flows of the CAD software tool for any FPGA designs are simi- ping steps are also called logic synthesis and the software
lar and consist of several basic steps, as illustrated in Fig- types for performing these steps are normally called front-end
ure 3: tools. On the other hand, the tasks of partitioning, placement,

and routing are called physical design and programs for solv-
• Design Entry. Specify a circuit design by using schematic ing these problems are called back-end tools.

capture or hardware design languages (such as VHDL, This flow for FPGA designs is very similar to that used in
Verilog). traditional ASIC technologies. However, the algorithms used

for solving the problems encountered in the FPGA design flow
can be very different from the algorithms used in ASIC tech-
nologies. Very often, it is necessary to develop FPGA-specific
algorithms in order to obtain effective as well as efficient solu-
tions.

The reason for having FPGA-specific algorithms is mainly
because the resources in FPGAs are fixed and limited, and
the architectural details of logic modules and routing re-
sources vary significantly in different FPGA products. Strictly
limited and fixed resources in FPGA devices post many con-
straints on feasible solutions. In comparison with the CAD
problems in ASIC designs, the CAD problems in FPGA de-
signs are generally more constraint driven than optimization
driven. Finding a feasible solution for an FPGA CAD problem
is usually more difficult than finding a feasible solution for an
ASIC CAD problem. Practically, it is often acceptable to use
as many logic modules and IO pins as available in an FPGA
device as long as the utilization is under the resource limits
and the solution is routable.

Currently, FPGA architectures are still in constant evolu-
tion. There is not yet a universal architecture that is used for
different FPGA products. FPGA CAD algorithms, especially
physical design algorithms, strongly depend on the architec-
tural details. It is generally necessary to develop architecture-
specific algorithms for solving CAD problems in various

Design entry

Logic
synthesis

Physical
design

Logic optimization

Partitioning

Technology mapping

Placement

Routing

Delay extraction

Device programming

stages of FPGA design flow in order to fully take advantageFigure 3. A typical CAD flow for FPGAs goes through the following
of architectural features in different FPGA products.steps: design entry, logic synthesis, physical design, delay extraction,

In addition to these algorithmic differences, the primaryand device programming. Logic synthesis and physical design steps
advantage of quick turnaround of FPGAs dictates that CADeach can be divided into several substeps, as outlined by the dashed

lines. tools for FPGAs must run much faster than the CAD tools for



CAD FOR FIELD PROGRAMMABLE GATE ARRAYS 709

ASIC. Thus, more restrictions are imposed on the efficiency
of critical algorithms for solving FPGA CAD problems.

This article will focus on the discussion of major FPGA-
specific CAD problems in technology mapping, partitioning,
placement, and routing. To keep the article concise, algorith-
mic details for solving the FPGA-specific CAD problems are
omitted. In most cases, only the basic ideas of the algorithms
are described and the references to the literatures that con-
tain detailed descriptions are given.

General background information on logic synthesis and
physical layout can be found in the literature (see CAD FOR

MANUFACTURABILITY OF INTEGRATED CIRCUITS).

TECHNOLOGY MAPPING

Details of technology mapping algorithms vary for different
architectures. The basic strategy of most FPGA technology
mapping algorithms, however, consists of two basic steps: de-
composition and covering. In the decomposition step, logic
gates in the original circuit networks are decomposed into a
different set of logic gates so that the transformed network is
more suitable for achieving the optimization objectives such
as area or timing. In the subsequent covering step, logic gates
in the circuit are covered by cells in the library of the target
FPGA device where each cell can be implemented by using a
logic module.

The differences in FPGA technology mapping from the con-
ventional approach result from the fact that the number of
distinct logic functions that can be implemented with a logic
module in most FPGAs is much larger than the typical library
size for conventional ASIC technologies. It is therefore not
practical to follow the conventional approach of enumerating

d

e

g

h

c

f a b

(a)

(b) (c)

+

G

a

b

c

d
e

g

f

h

10 1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

00

0

0

0
0

0

0

0

y
z

x

all possible functions to determine the optimal selection of
Figure 4. A multiplexor-based logic module in (a) can be represented

library cells. Logic modules in FPGAs can be broadly classi- by a binary-decision diagram (BDD) shown in (b). The BDD for a
fied into two categories: lookup table (LUT) based and non- subcircuit represented by a BDD in (c) is isomorphic to a subgraph of
LUT based. Techniques used in technology mapping, espe- logic module BDD in (b), as indicated by the shaded nodes.
cially in the covering step, are different for these two types of
logic modules (4).

Another important optimization objective is circuit perfor-LUT-Based Logic Modules
mance. During logic synthesis steps, a commonly used perfor-

A K-input LUT-based logic module can implement a total of mance metric is the maximum circuit level, i.e., the maximum
22K

distinct logic functions each with no more than K inputs. number of cells on any path from a primary input to a pri-
Examples of commercial FPGAs that use LUTs for logic mod- mary output in a combinational circuit. It has been shown
ules include Actel’s ES6500, Altera’s Flex, Lucent’s ORCA, that the problem of minimizing the maximum circuit level for
and Xilinx’s XC4000 product families. For values of K greater combinational circuits in the covering step can be solved opti-
than 3, the size of the library for the library-based covering mally using the network flow technique (7). Furthermore, al-
approach becomes impractically large. Many specialized algo- gorithms have been developed to achieve often a practically
rithms have been developed to address the LUT-based FPGA desirable balance between area and performance (5).
technology mapping problem (5).

An important optimization objective for LUT-based tech-
Non-LUT-Based Logic Modules

nology mapping is to minimize the area, that is, the number
of LUTs used for covering a circuit network. One fast and A K-input non-LUT-based logic module cannot implement ev-

ery logic function with no more than K inputs. An example ofeffective approach for LUT area minimization is to formulate
the decomposition and covering problems as the bin-packing a non-LUT-based logic module is the multiplexer-based logic

module used in Actel’s ACT FPGA families (see Fig. 4).problem (6). The bin-packing problem is to pack a set of ob-
jects of given sizes into the minimum number of bins of fixed In the covering step for non-LUT-based FPGAs, an impor-

tant operation is to determine whether a cover of the logiccapacity. The bin packing problem is NP-hard, but simple,
fast, and effective heuristic algorithms for solving the prob- gate can be implemented by personalizing a non-LUT logic

module. This problem is also known as the Boolean matchinglem exist. The technology mapping results generated by using
this approach are significantly better than the conventional problem (8). For the logic module shown in Figure 4, the num-

ber of distinct logic functions implementable by a logic mod-approach in terms of both run time and area.



710 CAD FOR FIELD PROGRAMMABLE GATE ARRAYS

ule is more than 700, and thus makes it impractical to apply Two most essential constraints for both multiple-FPGA
and single-FPGA partitioning are IO constraint and capacitya conventional library enumeration approach.

A specialized technique for non-LUT-based logic module constraint. Capacity constraints for an FPGA device can be
very complex. Driven by the demand of supporting system-Boolean matching is based on a reduced ordered binary decision

diagram (BDD) technique (9). Given a subcircuit logic func- level circuit designs, the FPGA device is becoming larger in
terms of density as well as more heterogenous in terms of thetion F and a logic module function G, BDDs for F and G, de-

noted as BDDF and BDDG, respectively, are constructed. Bool- types of resources. It is not uncommon to find a commercial
FPGA device that contains different logic modules, complexean matching of F on G is performed by detecting whether

BDDF is isomorphic to any subgraph of BDDG. Figure 4 illus- IO modules, various speed grade clocks, embedded memory
arrays, and dedicated resources designed for supporting spe-trates BDDs for a logic function F � xy � xz and the logic

module shown in Fig. 4, G � (a � b)(cd � ce) � (a � b)(fg � cial functions (e.g., wide input gates). Different types of re-
sources on an FPGA device have different upper limits, and afh). Function F can be implemented by G because BDDF is

isomorphic to a subgraph of BDDG as induced by the shaded feasible partitioning must satisfy the limitations for each of
the different resources. To further complicate the capacitynodes in BDDG. Technology mapping and fast Boolean match-

ing algorithms using the BDD isomorphism approach have constraint, a logic function can be implemented by using dif-
ferent resources in an FPGA device. For example, a 2-inputbeen developed for multiplexer-based logic modules (10,11).
gate can be implemented using either a 2-input LUT or a 3-
input LUT logic module. Consequently, the capacity con-
straint of an FPGA device cannot be accurately captured byPARTITIONING
simple measurements such as gate count upper bounds. In
addition to the limitation on each type of resource, capacityIn the partitioning step, a circuit is partitioned into a collec-

tion of subcircuits. Depending on the number of FPGA devices constraints for an FPGA device need to take into account mul-
tiple choices of logic function implementation.involved, FPGA partitioning could be either multiple-FPGA

partitioning or single-FPGA partitioning. FPGA partitioning algorithms implemented in commercial
CAD tools are usually based on traditional move-based ap-In multiple-FPGA partitioning, a circuit is partitioned be-

tween multiple FPGA devices so that each subcircuit can proaches, such as Fiduccia–Mattheyses algorithm (12), with
modification to incorporate FPGA-specific constraints into thefit into a single FPGA device. An example where multiple-

FPGA partitioning is necessary is a logic emulation system. algorithms. Starting with an initial feasible partitioning solu-
tion that satisfies the capacity constraints, the algorithmsA logic emulation system verifies the functionality of a circuit

design by implementing the circuit design on FPGAs running maintain the feasibility by allowing only the moves that do
not violate capacity constraints. Initial feasible partitioningat a slower clock speed. Typically, a system-level design is too

large for a single FPGA device and therefore must be imple- solution is usually not difficult to find if the device utilization
is not close to the limitation. However, for partitioning prob-mented using multiple FPGAs.

Single-FPGA partitioning partitions a circuit within a sin- lem where device utilization is approaching the resource limi-
tations, finding an initial feasible partitioning solution cangle FPGA device and is most commonly used for hierarchical

architecture FPGAs. In a hierarchical architecture FPGA de- be challenging.
vice, routing resources between logic modules are not uni-
formly distributed. Instead, logic modules are grouped into
clusters where each cluster contains a number of logic mod- PLACEMENT
ules. Routing resources between clusters are normally much
limited compared to the routing resources within a single In the placement step, each cell in the circuit netlist is as-

signed to a module on an FPGA device. The two most impor-cluster. Hierarchical architecture has the advantage of
smaller device die size than a flat architecture for the same tant issues for FPGA placement are routability and perfor-

mance. Because of the fixed routing resources available on andevice density, and therefore is most popular for supporting
high-density FPGA devices. In the physical design flow for a FPGA device, routability is usually treated as a constraint

in the placement process. Net length minimization, which ishierarchical architecture FPGA, a circuit is usually first parti-
tioned into subcircuits so that each subcircuit can fit into a usually the most important optimization objective for conven-

tional placement problems, is only of secondary importance insingle cluster. Then, subcircuits are placed and routed within
individual clusters. FPGA placement. Circuit performance in FPGA placement is

also typically treated as a set of timing constraints as speci-Similar to the conventional partitioning problems, the
most basic objective of FPGA partitioning is interconnection fied by the circuit designer. Placement algorithms that con-

sider timing constraints are called timing-driven placementminimization between subcircuits. However, compared to the
conventional partitioning problems, FPGA partitioning needs algorithms in the literature.

Similar to the placement algorithms for ASIC technology,to satisfy more constraints in order to obtain a feasible parti-
tioning solution. Finding a feasible partitioning solution is the placement steps in FPGAs consist of initial placement fol-

lowed by placement optimization. Initial placement normallymore difficult and important than in conventional parti-
tioning problems. This is because the resources in an FPGA concentrates on general objectives, such as net length minimi-

zation, and uses constructive algorithms such as min-cutdevice, especially logic modules and IO ports (or the routing
resources between clusters within a single FPGA device), are placement in order to achieve fast run time and reasonable

quality. During placement optimization, initial placement re-strictly limited. Consequently, FPGA partitioning problems
are more resource-constraint driven than conventional parti- sults are further improved to ensure that the routing resource

constraints are satisfied and other objectives, such as timing,tioning problems.



CAD FOR FIELD PROGRAMMABLE GATE ARRAYS 711

are optimized. Despite similarity to the ASIC placement ap-
proach, there exist several FPGA-specific issues that most
FPGA placement algorithms need to address, especially dur-
ing placement optimization, which is very often based on sim-
ulated annealing techniques.

Global Routing for Channel Density Computation

The numbers of routing tracks in routing channels are fixed
for an FPGA device. A necessary condition for any feasible

Logic
module

CLK

CLK1

CLK2

Normal
routing
tracksplacement solutions is that the channel density in every chan-

nel cannot exceed the number of routing tracks available in Figure 5. A clock pin on a logic module can be connected to one of
the channel. Minimization of net length will tend to cause two clock network tracks (CLK1, CLK2) in the adjacent routing chan-
local congestion and produce a placement solution that is very nels. The connection is established by turning on appropriate

switches, represented by the circles.difficult for subsequent global routing algorithm to generate
a feasible routing. In order to calculate the channel density
accurately, simulated annealing-based placement algorithms
need to perform global routing iteratively for every move.

tions on a clock network. Consequently, the clock skews onTherefore, in addition to producing high-quality routing solu-
clock networks may vary with different placements andtions, run time becomes a critical requirement for designing
FPGA-specific placement algorithms can take advantage ofFPGA global routing algorithms. Such closely interleaved
this fact to further reduce clock skew where desired (14).global routing and placement in FPGAs is different from the

placement algorithms used in standard cell architectures,
where channel heights can be adjusted and, therefore, global

ROUTINGrouting does not need to be embedded within the placement
process.

Because of the high complexity involved in the routing prob-
lem, FPGA routing normally is performed in two phases:

Fast Interconnection Delay Estimation global routing and detailed routing. Global routing assigns
each net a routing path by selecting a set of routing channels,Interconnection delay estimation for timing-driven placement
but does not choose specific routing tracks and switches forfor FPGAs is also very different from ASIC. Normally, an
each net. The goal of global routing is to create a problem thatFPGA device contains routing tracks of various lengths in or-
can facilitate the subsequent detailed router to select routingder to achieve delicate balance between routability and per-
segments. Since routability is the most important issue, mini-formance. Simple interconnection delay estimation models
mization of channel density is normally the optimization ob-based on net length or fanout are no longer accurate enough
jective in FPGA global routing. Similar to the approach forfor use within timing-driven placement algorithms. On the
conventional ASIC technologies, FPGA global routing prob-other hand, more accurate interconnection delay computation
lems are normally formulated as minimum steiner tree prob-methods, such as the distributed RC model, are too
lems and solved by using steiner tree minimization algo-computationally expensive for incorporating into simulated
rithms. However, there exist two FPGA-specific issues inannealing-based placement algorithms. Therefore, special
global routing. The first one is run time. As mentioned in thetechniques for fast and sufficiently accurate interconnection
previous placement section, since global routing is embeddeddelay estimation are essential for timing-driven FPGA place-
within the placement optimization process, run time of thement. Fast interconnection delay estimation techniques have
FPGA global router is more restricted than the global routersbeen successfully developed and used for channel-based
used for ASIC technologies. The second issue is routabilityFPGA architectures (13).
estimation. For an FPGA architecture where channel inter-
section areas are not fully populated with switches, routabil-Clock Skew
ity in the intersection areas cannot be accurately measured

Controlling clock skew is a critical issue in synchronous cir- with channel densities. Instead, connectivity architectural de-
cuit designs, especially for high-speed system level designs. tails within the channel intersection areas need to be consid-
As long as other higher priority constraints are satisfied, it is ered in order to estimate the routability more accurately (15).
always desirable to reduce clock skew to further improve cir- The task of detailed routing is to assign each net to specific
cuit performance and fault-tolerant margin. FPGA architec- routing segments in the channels as restricted by the global
tures allow further clock skew reduction during placement. A router. Design of detailed routing algorithms depends heavily
typical FPGA device usually contains several clock networks. on FPGA routing architectures. Detailed routing algorithms
Clock pins on sequential elements such as flip flops are con- for row-based and symmetrical-array-based architectures are
nected to the selected clock networks through programmable significantly different.
switches. Figure 5 illustrates connections between clock pin
(CLK) and two clock networks (CLK1 and CLK2) in a row-

Detailed Routing for Row-Based Architectures
based FPGA architecture. The clock pin CLK can be con-
nected to either CLK1 or CLK2, depending on circuit designs. Routing channels in row-based architectures are segmented.

A routing track in the segmented channel is divided into sev-Different sets of logic modules chosen for circuit placement in
an FPGA device lead to different capacitance load distribu- eral routing segments with various lengths by placing



712 CAD FOR FIELD PROGRAMMABLE GATE ARRAYS

Table 1. FPGA Logic Synthesis Tools
Vendors and Their Products

CAD Tool Vendor CAD Tool Product Name

Cadence Designs Systems FPGA Designer
San Jose, CA

Exemplar Logic Galileo Logic Explorer
Alameda, CA

Synopsys FPGA Compiler
Mountain View, CA

Synplicity Synplify
Mountain View, CA

Row of logic modules An “off” switch

A connection
uses one segment

A connection
uses two segments
with an “on” switch

A routing track
with two routing

segments

within the routing channels specified by the global router by
Figure 6. Routing in segmented channels. Switches in ‘‘off ’’ and ‘‘on’’ using a search technique, such as maze router. The search
states are represented by open and solid circles, respectively. approach is practically feasible due to the coarse granularity
Switches can be turned on to connect adjacent routing wire segments of the architecture, where the number of tracks in each chan-
on the same track in order to route longer connections. nel is less than the number of tracks found in a segmented

channel in a row-based architecture. Moreover, the tracks in
symmetrical-array architectures are not as finely segmented
as the segmentation found in the row-based architectures.switches between the adjacent routing segments (Fig. 6).
The search space therefore is significantly limited. To improveRouting track segmentation is designed based on the net con-
the routability with the limited search space, the competitionnection distribution statistics collected from a large pool of
on the critical routing segments between different nets mustreal circuit designs to achieve a delicate balance between
be considered in the routing process. The critical routing seg-routability and performance. Where desirable, two adjacent
ments contended by different nets can be identified based onrouting segments on the same track can be connected by turn-
the number of distinct nets that may use the routing seg-ing on the switch in between to form a longer routing segment
ments for routing (17).that can be used to complete a longer net connection. Most of

the vertical routing segments are attached to the logic mod-
ules and provide routing resources similar to the feed COMMERCIAL CAD SOFTWARE
throughs found in the standard cell architecture. Intersecting
vertical and horizontal routing segments are fully populated Front-end logic optimization and technology mapping algo-
with switches so that any vertical routing segments can be rithms normally do not have strong dependence on FPGA ar-
connected to any intersecting horizontal routing segments as chitecture details. A small set of basic technology mapping
necessary. Therefore, the detailed routing problem in row- algorithms can be used to support different FPGA products
based architectures is reduced to solving segmented channel from different FPGA vendors. Consequently, front-end soft-
routing problems. ware tools used in FPGA designs are normally from indepen-

Because switches can introduce significant delay to inter- dent CAD software vendors, instead of from FPGA companies.
connections due to the relatively high fuse resistance, the Table 1 lists several major CAD software companies that de-
number of switches allowed for completing a net connection velop and market FPGA synthesis tools that can support vari-
is usually restricted in order to achieve high circuit perfor- ous FPGA architectures (18). In addition to commercial tools,
mance. In a K-segment channel routing, the maximum num- a number of FPGA logic synthesis tools developed at universi-
ber of segments used for routing any net connection is limited ties are in the public domain. Table 2 lists several such logic
to K. For K equal to 1, the segmented channel routing prob- synthesis tools.
lem can be solved efficiently by using a bipartite matching Unlike synthesis and technology mapping algorithms,
technique. However, for K greater than 1, segmented channel FPGA place and route algorithms are strongly tied to the ar-
routing becomes an NP-complete problem (16), except for sev- chitecture details of the individual FPGA product. Interactive
eral special segmentations which, unfortunately, are not used evaluation between the physical design algorithms and archi-
in most commercial FPGA products. Efficient and effective tecture details during a new FPGA product development is
heuristic algorithms have been developed in the commercial
tools to solve the general segmented channel routing problem.

Detailed Routing for Symmetrical-Array Architectures

The intersecting vertical and horizontal routing tracks in a
symmetrical-array-based architecture usually are not fully
populated with switches. Consequently, the detailed routing
problem for symmetrical-array-based architectures cannot be
reduced to solving individual channel routing problems. A
commonly followed approach is to explore the connectivity

Table 2. FPGA Logic Synthesis Tools
Developed at Universities

Institute CAD Tool Name

UC Berkeley MIS-pga
UCLA FlowMAP/RASP
University of Toronto Chortle



CAD FOR FIELD PROGRAMMABLE GATE ARRAYS 713

critical to the success of product development. Currently, vices, in order to support system-level designs that require
both logic and memory. New CAD algorithms for logic synthe-most FPGA vendors develop physical design software tools in-

house, and provide proprietary place and route tools together sis and physical design may need to be developed in order to
effectively integrate different functionalities on a singlewith silicon products to their customers.
FPGA device.

Another example where new algorithms are desirable is
FUTURE TRENDS IN FPGA CAD

in hierarchical architectures. As FPGA capacity continues to
RESEARCH AND DEVELOPMENT

increase, hierarchical FPGA architectures are more efficient
compared with flattened architectures for achieving an appro-

The goal of CAD tools is to help circuit designers use FPGA
priate balance between area, performance, and routability.

devices efficiently and effectively, and to help FPGA device
Algorithms such as partitioning and clustering that were pre-

architects design new FPGA architectures. Research and de-
viously developed within other contexts will need to be modi-

velopment of FPGA CAD tools therefore must be driven by
fied in order to accommodate the special requirements of hier-

the needs of FPGA users and designers. In this section we
archical FPGA architectures.

discuss several areas that are important for future FPGA
CAD tool development.

BIBLIOGRAPHYRun Time Reduction

Currently, the capacity of an FPGA device can far exceed 1. S. D. Brown et al., Field-Programmable Gate Arrays, the Nether-
lands, Kluwer Academic Publishers, 1992.100K gates and is rapidly increasing. As FPGA devices be-

come larger, the run time of CAD tools for completing an 2. S. M. Trimberger, (ed.), Field-Programmable Gate Array Technol-
FPGA circuit design is getting longer, especially in the physi- ogy, the Netherlands, Kluwer Academic Publishers, 1994.
cal design stage. Making matters worse, the increase in run 3. A. El Gamal (ed.), Special section on field-programmable gate
time of current CAD tools is greater than the increase in sili- arrays, Proc. IEEE, 81 (7): 1993.
con gate capacity. It is no longer unusual to take more than 4. R. Murgai, R. Brayton, and A. Sangiovanni-Vincentelli, Logic
a day to complete a design of a 100K FPGA device with cur- Synthesis for Field-Programmable Gate Arrays, New York: Kluwer
rent CAD tools. If the run time of CAD tools continues to Academic Publishers, 1995.
increase at a faster rate than the increase in silicon capacity, 5. J. Cong and Y. Ding, Combinational logic synthesis for LUT
the competitive advantage of fast turnaround provided by based field programmable gate arrays, ACM Trans. Des. Autom.
FPGAs will diminish. In order to maintain the fast turn- Electron. Sys., 1 (2): 145–204, 1996.
around advantage, it is necessary to reduce CAD tool run 6. R. Francis, J. Rose, and Z. G. Vranesic, Chortle-crf: Fast technol-
time, especially in the physical design stage. ogy mapping for lookup table-based FPGAs, Proc. 28th Des. Au-

tom. Conf., San Francisco, CA, pp. 227–233, 1991.
Support of Different FPGA Architectures 7. J. Cong and Y. Ding, An optimal technology mapping algorithm

for delay optimization in look-up-table based FPGA designs. Proc.The demand for flexible CAD tools that are able to support
IEEE Int. Conf. Comput.-Aided Des., pp. 48–53, 1992.different FPGA architectures is driven by two issues. The first

8. B. Luca and G. De Micheli, A survey of Boolean matching tech-is that new FPGA architectures continue to emerge to accom-
niques for library binding, ACM Trans. Des. Autom. Electron. Syst.modate the requirements of new applications and technolo-
2 (3): 1996.gies, and designing new FPGA architectures requires CAD

9. R. E. Bryant, Graph-based algorithms for Boolean function ma-tool support for architectural evaluation. The second issue is
nipulation, IEEE Trans. Comput., C-35: 677–691, 1986.that developing new CAD tools is a time-consuming and hard

10. A. Bedarida, S. Ercolani, and G. De Micheli, A new technologyto predict process, and very often this process is the bottle-
mapping algorithm for the design and evaluation of fuse/anti-neck in the new FPGA product development.
fuse-based field-programmable gate arrays, 1st Int. ACM/SIGDAIn order to address these issues, CAD tools should consist
Workshop FPGAs, pp. 103–108, 1992.of a number of modular, independent point tools that can be

11. K. Zhu and D. F. Wong, Fast Boolean matching for field-program-easily modified and integrated to form a complete design flow
mable gate arrays, Proc. Eur. Des. Autom. Conf., pp. 352–357,to support new FPGA architecture development. The flexibil-
1993.

ity of integration of point tools is supported by carefully de-
12. C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic forsigned device and netlist databases that are used to transfer

improving network partitions, Proc. ACM/IEEE Des. Autom.data between individual point tools. Each of the point tools
Conf., pp. 175–181, 1982.

must be able to support common features in different FPGA
13. M. Chew and J. C. Lien, Fast delay estimation in segmentedarchitectures and be flexible enough to support new architec-

channel FPGAs, 2nd Int. ACM/SIGDA Workshop Field-Program-tural features.
mable Gate Arrays, Section 8, 1994.

14. K. Zhu and D. F. Wong, Clock skew minimization during FPGAInnovative Algorithms
placement, IEEE Trans. Comput.-Aided. Des. Integr. Circuits
Syst., CAD-16: 376–385, 1997.Innovative algorithms are always in demand as FPGA archi-

tectures continue to evolve. For example, a new trend in 15. Y.-W. Chang et al., A new global routing algorithm for FPGAs,
FPGA architecture design is to integrate specialized func- Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., San Jose, CA,

pp. 380–385, 1994.tional modules implemented in ASIC together with FPGA in
a single device. It is also becoming common to provide embed- 16. J. Greene et al., Segmented channel routing, Proc. 27th ACM/

IEEE Des. Autom. Conf., pp. 567–572, 1990.ded memory arrays, especially on large capacity FPGA de-



714 CAD FOR MANUFACTURABILITY OF INTEGRATED CIRCUITS

17. S. Brown, J. Ross, and Z. G. Vranesic, A detailed router for field-
programmable gate arrays, IEEE Trans. Comput.-Aided Des. In-
tegr. Circuits Syst., CAD-11: 620–627, 1992.

18. S. Schulz, Logic synthesis and silicon compilation tools, Integr.
Syst. Des., 1996.

KAI ZHU

Actel Corporation

D. F. WONG

University of Texas at Austin


