
DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING 221

DESIGN VERIFICATION AND FAULT DIAGNOSIS
IN MANUFACTURING

When designing and building digital systems, we must ensure
that the manufactured final product is exactly what was in-
tended. As shown in Fig. 1, there are two processes in creat-
ing digital systems: design process and manufacturing pro-
cess. Corresponding to these two processes, there are two key
issues for ensuring digital systems behave as originally in-
tended. The first is to make sure that what we are designing
is correct, that is, the design is exactly the same as what we
intend. The second is to make sure that what we are manu-
facturing is correct, that is, the product is exactly the same
as what we have designed. The former process is called design
verification and the latter is called manufacturing test and
diagnosis. In this article we will give an overview of design
verification and manufacturing fault diagnosis technology.

DESIGN VERIFICATION

As mentioned before, design verification is the process to en-
sure that what we are designing is exactly what is intended.

Specification

Design

Manufacturing

Design verification

Manufacturing
test and diagnosis

Digital system

Figure 1. Creating digital systems.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

222 DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING

This is one of the most important and sometimes the most the logic function EXCLUSIVE-OR of x and y. This can be
checked by manipulating the Boolean formulas generatedtime-consuming process in designing complicated systems.

The specifications describe what we want, and verification is from the circuit in the following way:
the process for checking whether the designs satisfy their
specifications. The first step for verification is to describe both z � b � c, b � x � a, Definitions from the circuit
specification and design in mathematical ways so that we can c � a � y, a � x � y
formally apply logic to them. In the case of digital systems, z � x � x � y � x � y � y Substitution
Boolean functions and mathematical logics such as first-order z � x � x � y � x � y � y DeMorgan’s law
predicate calculus are typically used, since behaviors of digi- z � x � (x � y) � (x � y) � y DeMorgan’s law
tal systems can be directly described by these types of logic. z � x � y � x � y Simplification
Once we have mathematical descriptions for specifications
and designs, the next step is to verify that designs satisfy The last formula is the definition of the EXCLUSIVE-OR
their specification via reasoning. function of x and y. Since manipulation of all preceding for-

Since verification ensures the correctness of designs with mulas is independent of the values of x and y, the circuit is
respect to specification, it is done by simulating designs and formally verified to be equivalent to the EXCLUSIVE-OR
checking the appropriateness of outputs from simulations. function of x and y.
However, this approach cannot be complete until we simulate Formal verification of logic circuits using transformations
all possible cases, which is impossible for large circuits with of logic formulas like those just given is sometimes called the-
many input signals (i.e., all possible values of n inputs or 2n

orem-proving-based verification, since it is trying to prove
combinations). Formal verification is a process that tries to mathematically the correctness of designs by manipulating
prove the correctness of designs mathematically. It implicitly logic formulas. As can be seen from the previous example, an
checks all possible cases and guarantees the correctness of appropriate ordering of the application of various transforma-
designs for all possible input combinations. Let us clarify the tions, such as substitution, De Morgan’s law, and simplifica-
difference between formal verification and simulation with tion, must be identified in order to obtain the goal formulas
an example. (i.e., formulas in the specification). Moreover, if the designs

Figure 2 is an example combinational circuit. It uses a gate are not correct, transformations do not work and the verifica-
called the NAND gate. NAND(x, y) gives a complement of the tion process may not terminate. Therefore appropriate user
conjunction of x and y. It generates a 0 at its output only guidance is essential, and so the verification process is inter-
when both inputs are 1. Otherwise, it generates 1. The speci- active, that is, each transformation of the formulas is guided
fication for the circuit is the EXCLUSIVE-OR function of x by users who are verifying the designs. There is a significant
and y, which must be realized at the output of the circuit. amount of research on the use of theorem-proving methods
Here EXCLUSIVE-OR is a logic function that gives the value for formal verification (1). Although there has been much suc-
1 if and only if the two input values are different; otherwise cess, this method is not yet widely used because it is not com-
it gives 0. The EXCLUSIVE-OR function of x and y is defined pletely automatic and needs human interaction.
as x � y � x � y. Formal verification is done to make sure that Automatic verification techniques perform an exhaustive
the circuit in Fig. 2 realizes the EXCLUSIVE-OR function at case analysis for all combinations of values of variables, simi-
the output. lar to the simulation of all possible cases. Typically, the tech-

We can simulate the circuit and test for its correctness. niques are based on case analysis. They first analyze the case
Verification by simulation is sometimes called validation, for which the first chosen variable in the formula is 0 and
since it does not guarantee the correctness of the design com- then check the case for which that variable is 1, and so on.
pletely unless we can simulate all possible cases, which is This case pattern may have to continue for all variables in
mostly impossible for large circuits. What we can do is to test the formula. Fortunately, in most cases, we can reach special
some but not all, cases. Since digital systems are described in cases where we can decide the value of the formula immedi-
mathematical logic or its extensions, their behaviors can be ately. For example, suppose we analyze the formula, x1 � x2 �
simulated by repeatedly computing logic functions. By simu- x3. When the variable x1 is set to 0, the entire formula immedi-
lating the functions of NAND in the circuit, we can obtain the ately becomes 0 regardless of the values of the other vari-
values for the output of the circuit. We need to check all four ables. Further analysis is unnecessary for this case. Although
cases of possible input combinations for two variables. this case analysis technique performs much better than ex-

On the other hand, formal verification of the circuit in Fig. haustive simulation, it is still very time consuming as its exe-
2 is to prove that its output is mathematically equivalent to cution time grows exponentially in principle. Because of this,

the case analysis technique cannot be applied to large cir-
cuits. Situations have, however, changed completely since a
new data representation method for logic functions in com-
puters, called binary decision diagrams (BDDs) (2–4), and its
efficient manipulation algorithms were proposed in the 1980s.
By using BDDs, significantly larger circuits can be verified in
much less time.

Binary Decision Diagram

x

za

b

c
y

The binary decision diagram was proposed in the late 1980sFigure 2. An example circuit that realizes an EXCLUSIVE-OR
function. and since then it has been widely used for various problems in

DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING 223

1 0

x3 x3

x2 x2 x2

1 0 1 0

x1 x1 x1 x1 x1

1 1 1 0 1

Figure 3. Decision tree and its corresponding binary decision di-
agram.

computer science, especially in computer-aided-design areas.
Here we briefly introduce BDD.

BDDs are derived from binary decision trees. An example
of a binary decision tree is shown in the left side of Fig. 3. It
is basically an all-case analysis of the given logic function
based on the values of variables. x1, x2, x3 are variables and 0
and 1 are constants. Each left edge indicates that the value
of that variable is 0, whereas each right edge indicates that
the value is 1 (unless constant values are added to edges as
attributes). We first fix the ordering of variables. In this case

x1

x2

0 1

x3

0 1

x3

x1

x2

10

x1

x1 x1 x2 + x3

x1 x2

0 1

And
Or

x2

x1 x1

0 1
the ordering is x3, x2, x1. On all paths from the root node to

Figure 5. Using ‘‘apply’’ to manipulate logic operatons on BDDs.the leaves, all variables must appear only in this order. By
traversing the edges from the root node, we can determine
the value of the function. For example, the value of the func-
tion for x1 � x2 � x3 � 0 is 1 whereas the value for x1 � x2 � BDD to verification problems. Because of these advantages

BDD is now widely used.0, x3 � 1 is 0. Please note that the sizes of binary decision
trees are exponential with respect to the numbers of vari- Although BDD can be obtained from binary decision trees

as shown in Fig. 4, this is not an efficient way to generateables. BDD is derived from this tree by removing redundant
nodes, as can be seen from the right side of the figure. BDDs, since sizes of binary decision trees are exponential

with respect to the numbers of variables. So we need moreFigure 4 shows ways to generate BDD from the binary de-
cision tree. First, isomorphic subgraphs are merged as can be efficient ways to generate BDD directly from logic circuit rep-

resentation. This can be done by the procedure ‘‘apply’’ thatseen from the first transformation in the figure. For example,
the left three nodes for x3 are isomorphic and are merged. computes logic operations directly on BDDs. Examples of

apply processes are shown in Fig. 5. The apply procedure ba-Then any nodes with two edges going to the same nodes are
deleted, as can be seen from the second transformation of the sically traverses the two given BDDs from the roots to the

leaves in a depth-first order. For each step in the depth-firstfigure. If the two edges go to the same nodes, the function
does not depend on the value of that variable for that particu- traversal of the two BDDs, it applies logic operations, such as

AND and OR, on the two current nodes and generates a newlar case, and hence those nodes can be deleted. After these
steps, binary decision trees become binary decision graphs, node that corresponds to the results of logic operations. The

amount of time for completion of this procedure is propor-since there is sharing of subgraphs. As can be seen from Fig.
4, BDD is a lot smaller than the binary decision tree in gen- tional to the product of the sizes of the BDDs that it traverses,

and hence it is very efficient as long as the BDD sizes can beeral. An important fact is that sizes of BDDs can be polyno-
mial for many useful logic functions, such as adders, parity kept small. By using the apply procedure, we can generate

BDD directly from logic circuits and do not have to generatefunctions, and most control circuits. Another key issue is that
BDD is a canonical representation for logic functions with re- binary decision trees.

Although BDD is a very efficient and also effective way tospect to the predetermined orderings of variables. That is, if
the two logic functions are equivalent, their corresponding manipulate logic functions, it surely has several drawbacks.

One of the most important is the fact that sizes of BDDs areBDDs will be isomorphic as long as they are using the same
ordering of variables. This is an important fact when we apply very sensitive to ordering of variables. Figure 6 shows an ex-

Figure 4. BDD is a canonical representation
0 1

x1

x2 x2

0 1 0 1

x3 x3 x3 x3

1 1

x1

x2

0 1

x3

x1

x2

0

Removal of
equivalent

nodes

Removal of
redundant

nodes

1

x3

x2

x3

for logic functions.

224 DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING

Figure 6. Ordering of variables is impor-
tant for BDD.

Worst

Best

1

1

1

1

1

0

0 1

0 0 1111

00

0

00

0

111
1

1
1

1

0

00

0 0 11

0

0
0

0
0

x6

x5

x4

x3

x2

x1

2

3

4

5

6

0 1

1

3 3

5 5 5 5

2 2 2 2

4 4

6

0 1

treme case. The two BDDs represent the same logic function plete set of useful routines for BDDs, and users can manipu-
late logic functions in BDDs by just using those routines ap-that corresponds to the output of the circuit diagram in the

figure. The left BDD uses the best ordering, x1, x2, x3, x4, x5, propriately.
x6, whereas the right BDD uses the worst ordering, x1, x3, x5,
x2, x4, x6. So, if we use bad ordering of variables, the resulting Practical Verification Technique For Combinational Circuits
BDDs can be too large to be manipulated. Variable ordering

In order to compare the equivalence among combinational cir-for BDD is one of the most important problems in BDD-re-
cuits, it is sufficient to generate BDDs from the circuits andlated research. It is known that to find the best ordering is
to check if they are isomorphic, since BDD is a canonical rep-NP-complete; so we have to use heuristic approaches for large
resentation for logic functions once ordering of variables islogic functions (5). There are several good heuristics for giving
fixed.good ordering (6–11). These heuristics are generally good for

So, given a circuit, first of all, ordering of variables is de-practical use, but sometimes BDDs cannot be built simply be-
termined by using appropriate heuristics. Then we generatecause of poor ordering. In that sense, the variable ordering
BDDs for each gate in the circuit individually using the applyproblem for BDD is still a good research topic.
procedure as shown in Fig. 7. After this process, we get theBecause BDDs are so widely used, several BDD packages

are available in the public domain (12). They include a com- BDD for the output of the circuit.

Figure 7. Creating BDDs from circuits.

x1

x1

x2

0 1

10

0 1
1 0

1 0

1 0 0

0 0

1

0 1 1 1

0 1

1 0

0 1 0 1 0 1 0 1 0 1

x2 x2

x1 x1

x2

x1

x2

x1

x2

x1

DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING 225

BDD for output
is 0?

Use relationships
(such as equivalence)
among internal points

Circuit 1

Circuit 2

Figure 10. Use relationship among internal signals to reduce the
size of BDD for output.

x1 x1
x2

x3

x1

x2
x3 z z

x2 x2

x3

1

1 1
0

0 1

0

0 1

0

Figure 8. Verification based on BDD.
large circuits, because the sizes of intermediate BDDs during
construction of the BDD for the output may become too large.

The approach just mentioned can, however, be signifi-
We repeat this process on the other circuit to be compared cantly improved by using information on the relationship

and then check if the two BDDs obtained are isomorphic (13). among values of internal signals in the two circuits. For the
An example verification based on this approach is shown in equivalence check of two combinational circuits, there are
Fig. 8. In this case, both circuits give the same isomorphic cases in which we can verify many larger circuits, for exam-
BDD and so they are logically equivalent. In this approach ple, circuits having 100,000 gates or larger. One such case
the most important part is how to obtain ordering of the vari- involves two similar circuits, for example, one circuit is a
ables of BDDs, since it will determine whether we can verify slight modification of the other. This occurs frequently in real
circuits. If we can have a good ordering, the BDD size can be designs, as designers try to improve the performance of cir-
relatively small and we may be able to finish BDD construc- cuits by modifying circuits partially or incrementally. If the
tion. But if we use a bad ordering, the BDD construction pro- two circuits are similar we can expect much signal value de-
cess may not finish because of the prohibitively large size. By pendency among internal signals in the two circuits. For ex-
using a good heuristic for variable ordering, the state-of-the- ample, if the circuit optimization performed by designers con-
art verifier based on this approach can verify circuits having sists of just inserting buffers to speed up a circuit, we will see
up to a couple of thousands of gates. much internal equivalence between the two circuits. By using

How can we proceed if the circuits to be verified are much internal equivalence we can partition circuits into smaller
larger than a couple of thousands of gates? One way is to ones and will only need to check the equivalence among those
construct a ‘‘miter’’ as shown in Fig. 9 (14,15). The two cir- partitioned circuits instead of the original large circuits.
cuits to be compared are connected by an EXCLUSIVE-OR Also, we can use relationships among internal signals in
gate. Then if the two circuits are equivalent, the output of the order to reduce sizes of intermediate BDDs when constructing
EXCLUSIVE-OR gate is always 0. So, we have only to build BDDs for the output of the EXCLUSIVE-OR gate from output
BDD for the output of the EXCLUSIVE-OR gate and check if to inputs (see Fig. 10). By appropriately using those relation-
it is a constant 0 or not. In so doing, we do not necessarily ships and reducing BDD sizes, we can verify circuits having
build a BDD for each circuit. Instead, we can construct a BDD more than 100,000 gates rather easily if the two circuits to be
for the output of the EXCLUSIVE-OR gate by traversing the compared are similar. Since this approach can treat circuits
circuit from output to input. Hence, even if the BDDs for the of real-life sizes, it is becoming widely used (16,17).
original two circuits are large, the BDD that we construct
may not become large. Although this is a better approach, it Formal Verification of Sequential Circuits
may still not be sufficient to solve verification problems for

So far we have discussed only combinational circuits. Now we
describe techniques on how to verify sequential circuits for-
mally. First we discuss comparison between two sequential
circuits. Since sequential circuits generate output sequences
of varying time units, we have to make sure that the outputs
have the same values at all times. That is, as shown in Fig.
11, two sequential circuits are connected and we check to see
if the values of the outputs are always same (18). Since there
are only finite number of flip-flops, the number of possible
states in the sequential circuits is finite. Therefore, when we
have checked the values of the outputs for all possible states
in the two circuits, we can finish verification. For each state,
essentially the same procedure as for combinational verifica-

Always 0,
if equal

Circuit 1

Circuit 2

tion is followed, using the method shown in the previous sec-
tions.Figure 9. Creating a miter to check the equivalence of two circuits.

226 DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING

Combinational
circuit 1

Flip-flops

Combinational
circuit 2

Flip-flops

Outputs

= ?

Inputs

Figure 11. Verification of sequential circuits.

A state-transition graph can be extracted from the sequen-

s0

s1 s2 s3

s2 s3 s1 s2

s1 s2 s2 s3

tial circuit. An example state transition graph is shown in the
Figure 13. Breadth-first search of state transitions.left side of Fig. 12. s0 is the initial state, which corresponds to

the reset state of the original circuit. In this case, there are
three additional states and state transitions that interconnect

Basically we need log2(numbers of states) new variables. Thenthem. All possible behaviors are represented as are all possi-
we assign values of those variables so that each state hasble state transitions starting from the initial state s0, as
different values. This is a type of state assignment for theshown on the right side of the figure. This is also called a
given state-transition graph. Then a set of states can be rep-computation tree, because it represents all possible computa-
resented as a disjunction of values of the variables for thosetions that can be done by the state-transition graph on the
states.left side.

Let us see an example, shown in Fig. 14. Since there areThus the goal of sequential verification is to ensure that
four states, we need two variables for encoding of states. Sup-the values of the outputs are equal to the specified values at
pose they are x and y, and we use the following state en-each node of the computation tree. This can be checked by
coding:traversing the state-transition graph features one by one un-

til a state that has been already traversed is reached. This is
basically a depth-first search on computation trees. The time A (x, y) � (0, 0)
to complete this process, however, is exponential in the num- B (x, y) � (0, 1)
ber of flip-flops, since there are 2n states in n flip-flop circuits. C (x, y) � (1, 0)
Hence this approach does not work for large circuits (19,20). D (x, y) � (1, 1)

Another method for traversing state-transition graphs is
based on a width-first traversal on computation trees, as From this, we can get the corresponding state-transition table
shown in Fig. 13. It maintains a set of states that have al- as shown in Fig. 15. In the table, x and y are encoding vari-
ready been checked. First the set has just the initial state s0 ables corresponding to the present states and x and y are
in the case of Fig. 13. In the next step, it will have s1, s2, and those corresponding to the next states. From this table, we
s3 as well. Those are the states that can be reached directly can compute transition relations for the state transition
by a single state transition from the state s0. Then, in the graph as follows:
next step, we see that no more states can be added to the set,
and therefore the search terminates and we have traversed
everything. The key idea here is to process sets of states in-

TR(x, y, x′, y′) = x · y · x′ · y′ + x · y · x′ · y′ + x · y · x′ · y′

+ x · y · x′ · y′ + x · y · x′ · y′
stead of each state individually.

The next question is how to represent sets of states effi- TR(x, y, x, y) is 1 if and only if there is a state transition
ciently. One commonly used approach is to represent sets from the state (x, y) to the state (x, y).
with their characteristic logic functions. We introduce new Now we can traverse the state transition graph in Fig. 14
variables to encode each state in the state-transition graph. in a breadth-first order. Let us assume the initial state to be

�A�. In the next step we get the set of states �A, B�. Then we
get �A, B, C, D� in the following step. This can be computed

B C

A D

s1

s3s2

s0

s0

s1 s2 s3

s2 s3 s1 s2

s1 s2 s2 s3

Figure 14. Symbolic manipulation of breadth-first traversal of the
state-transition graph.Figure 12. State-transition graph and its trace of transitions.

DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING 227

Diagnosis Strategies

Diagnostic techniques can be broadly classified into three
groups. The first group, called static (cause–effect) fault diag-
nosis, uses precomputed information in the form of fault dic-
tionaries for matching with the faulty responses produced by
defective circuits (25–33). Fault dictionaries store output in-

Present x y
0 0

0 1

0 1

1 0

1 0

A
B
B
C
C

Next x’ y’
0 0

0 1

0 1

1 0

1 0

B
C
D
B
D

formation, produced by the circuit under consideration, on ap-
plication of the given set of test vectors and under the influ-Figure 15. State-transition table corresponding to the state transi-
ence of the set of modeled faults. In contrast, dynamiction graph.
(effect–cause) diagnosis techniques detect the faulty behavior
of the circuit while the test set is applied (34–40). Recent
trends show the increasing popularity of integrated diagnosis
techniques in which the focus is on using small amounts ofusing the transition relation and the state-encoding variables
precomputed information and coupling this with efficient dy-x, y. For example, in order to get the set of states �A, B, C,
namic algorithms to perform fault location (31,41).D� from the set of states �A, B�, we compute as follows. �A,

The main advantage of static fault diagnosis techniquesB� can be represented as x � y � x � y � x and so we compute
occurs when multiple copies of the same design are being di-
agnosed (as in an integrated-circuit manufacturing process).
Another significant advantage of the fault dictionary ap-
proach is that it is relatively simple to use. However, a com-

x · TR(x, y, x′, y′) = x · x · y · x′ · y′ + x · y · x′ · y′ + x · y · x′ · y′

+ x · y · x′ · y′ + x · y · x′ · y′ = x + y
mon problem associated with these techniques is that it is
typically infeasible to store all the precomputed information.x � y � x � y � x � y � x � y corresponds to the set �B, C, D�. By
(Typical full fault dictionaries can require several gigabytes ofadding the original set �A, B�, the result is �A, B, C, D�. Since
storage for even moderately large circuits containing 20,000computing state transitions is now formalized as the manipu-
gates.) Hence, research in this direction has concentrated onlation of logic functions, this process can be efficiently auto-
providing compact fault dictionaries. The main motivation formated by using BDDs. It is called the symbolic traversal of
dynamic diagnosis algorithms is that they do not require anystate-transition graphs and is now widely used. State-of-the-
precomputed information. This eliminates the storage prob-art implementation of this approach can verify circuits having
lem with fault dictionaries and also relies to a lesser extentup to around 200 flip-flops, which may have 2200 states
on the type of defects being diagnosed. However, this results(21–24).
in the fact that the time spent for diagnosing each single
faulty unit is typically much larger than that required by
static techniques. Hence, research in this area has concen-

MANUFACTURING FAULT DIAGNOSIS trated on reducing the run times. Integrated techniques have
been proposed to incorporate the advantages of both the static

Fault location for digital logic circuits is studied here. After and dynamic techniques. The main advantage of integrated
testing is performed to determine whether a circuit is faulty, fault diagnosis is the flexibility provided in choosing the kind
fault location or diagnosis is performed to locate the failure. and amount of precomputed information. This, in turn, has
Diagnosis may be performed with a view to improving the an effect on the time required for performing diagnosis at
manufacturing process or may be intended for the identifica- run time.
tion and replacement of a faulty subcircuit. Efficient diagnosis

Static Fault Diagnosis. An example of a fault dictionary ishas been known to yield rapid improvement. Given a defec-
shown in Fig. 16(a) for a circuit with six modeled faults, twotive chip and good design criteria, the aim of the diagnostic
vectors, and two primary outputs. A typical use of the infor-process is to identify a subset of faults that can explain all
mation in this dictionary could be in the following manner: Ifthe errors observed while testing the chip. Techniques de-
the faulty response produced by a defective chip on the appli-scribed in this article are typically used to reduce the time
cation of vectors v1 and v2 was 10 and 11, then the dictionaryrequired for expensive failure analysis procedures that aim at
could be used to indicate fault 5’s presence in the defectivethe physical confirmation of the defect (e.g., under an electron
chip. Techniques for handling situations when the faultymicroscope). The time reduction is achieved by reducing the
responses do not match with any of the stored responsesnumber of candidates to examine by analysis at the logic
(exactly) are discussed later in this article under the sectionlevel.
Unmodeled Fault Diagnosis. Since fault dictionaries are typi-We shall first review diagnosis techniques based on their
cally prohibitively large to store, fault-dictionary compactionclassification of usage of precomputed information (as op-
has been an important focus of research. Past work ad-posed to run-time analysis) in the diagnosis process. The tech- dressing the size problem has yielded solutions in two distinct

niques are broadly grouped under static (cause–effect), dy- directions. The first set of contributions provide fault-diction-
namic (effect–cause), and integrated techniques. Then, we ary compaction targeting high modeled fault resolution
briefly review work on important tools required for diagnosis, (25,29–32), while the second set offers alternative representa-
diagnostic fault simulation, and diagnostic test generation. tions for storing the full fault dictionary (30,31,33).
After this, we review diagnosis techniques specifically de-
signed to handle unmodeled faults. Specific techniques that Fault-Dictionary Compaction Research
are representative of their genre are explained in greater de- Pass/Fail Dictionary (29). This type of fault dictionary re-

cords the faults detected, potentially detected, and not de-tail whenever possible.

228 DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING

– –

– 013

013

01 3 2

013 24

012345

Faults

00

11 10 01 00 11

01 10

Outputs

5

4 5

24

1234

0 0 0 01 1 1 1 0 1 0 0 01 1 1

0 10 10 10 1

0 1 0 1

0 1
12345

5

5 –

24 – – 5 – –

3 01 4 2 – – – – – 5 – – – –

Faults

Faults v1 v2

0
1
2
3
4
5

00
00
01
00
01
10

11
11
01
10
00
11

Outputs

(a)

(b) (c)

Figure 16. (a) Matrix dictionary; (b) vector-based tree; (c) output-based tree.

tected for each vector. It does not record detections separately First Failing Pattern Dictionary (30). This is a special case of
the drop on K dictionary for K � 1.by output. It is created by a single full-fault simulation and

is much smaller than a full-fault dictionary. But, as might be Detection Frequency Dictionary (30). A full-fault simulation
is performed, and for each fault f , the number of vectors defi-expected, this dictionary loses some diagnostic capability

when compared with the full-fault dictionary. nitely (df) and potentially producing errors (pf) are counted.
Each fault can cause errors numbering between df and df �Compact Dictionary (29). One method of enhancing the di-

agnostic capability of the pass/fail dictionary is to add output pf. The list of faults that causes each possible number of er-
rors forms an indistinguishability class for this dictionary.information. Such an approach is used in the creation of the

compact fault dictionary. The compact algorithm is computa- The resolution of this dictionary is poor in comparison with
other schemes.tionally intensive, requiring multiple simulations of all vec-

tors against some faults, plus a full-fault simulation to pro- Tree-Based Compaction Dictionary (32). Diagnostic experi-
ment trees (as shown in Fig. 16) have also been used to iden-duce the vector dictionary and another to produce the final

dictionary after extra columns are added. The dictionary pro- tify information that is not diagnostically useful (for modeled
faults) to provide compact dictionaries. An example of infor-duced is known to be considerably compressed, with no loss

of modeled fault resolution (30). mation that is eliminated corresponded to output information
for faults after they were completely distinguished fromSequential Dictionary (30). In this technique, a pass/fail dic-

tionary is enhanced by a single full-fault simulation. An entry other faults.
is added to the dictionary for any vector and output that dis-
tinguishes between any pair of faults not previously distin- Full-Fault-Dictionary Representation Research. A key prob-

lem with the compaction techniques that have been pre-guished. This is computationally cheaper that the compact
dictionary generation algorithm. There is no loss of modeled viously described lies in the fact that the information that

they identify as diagnostically useful is useful only with re-fault resolution.
List Splitting Dictionary (30). This dictionary is created by spect to modeled faults. Hence, the diagnostic accuracy of

such dictionaries in the presence of unmodeled faults may de-using efficient list splitting. The lists correspond to faults that
are not distinguished at each vector–output combination in grade. Thus there is a necessity for developing storage struc-

tures that enable efficient representation of the informationthe diagnosis process. However, it is not accurate for sequen-
tial circuits; hence the diagnostic resolution suffers. in the full-fault dictionary. This approach is orthogonal to

compaction, which has achieved storage savings by removingDrop on K Dictionary (30). While creating this dictionary,
the fault simulator drops each fault after its Kth detection output information.

Matrix Dictionary (42). Full-fault dictionaries need to storeand creates an otherwise standard dictionary, including pos-
sible detections until each fault’s Kth definite detection. This output information corresponding to each vector and fault

pair. Conventionally, they have been stored using a matrixtechnique assumes that K detections distinguish between
most fault pairs and that some faults cause errors for many representation. For a circuit with v vectors, o outputs, and f

faults, the size of the matrix dictionary is vof bits for combi-vectors, filling dictionaries with unneeded data. Simulation
costs here are less than those for a full-fault dictionary. national circuits and 2vof bits for sequential circuits.

DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING 229

List Dictionary (31). List-based dictionaries have been pro- be proved normal. Internal values are computed by the deduc-
tion algorithm, which implements a line-justification processposed as an alternative to the matrix representation (31). The

list dictionary records only information corresponding to de- the primary goal of which is to justify all the values obtained
at the POs (primary outputs), given the tests applied at thetections.

Tree-Based Fault-Dictionary Compaction and Representation. PIs (primary inputs). Backtracking is used either to recover
from incorrect decisions or to generate all possible solutions.Diagnostic experiment trees (32,33,43) are powerful tools for

modeling the information corresponding to a diagnostic exper- However, no results are available from this work for circuits
of practical size.iment. Diagnostic experiment trees are labeled trees; hence

the dictionary storage problem can be reduced to a labeled- The Pair-Analysis Approach (34). In contrast to other tech-
niques, this work considers pairs of vectors rather than singletree encoding problem. Two labeled trees that were used to

represent the diagnostic experiment are shown in Figs. 16(b) vectors. This gives the method an additional capability to en-
code polarity of different paths in the circuit by applying tran-and 16(c).

Definition 1 [Vector-Based Diagnostic Experiment Tree TV(V, sitions on a limited number of inputs. The primary claim in
this paper is that by the use of this technique, all faults canE)]. A diagnostic experiment tree in which each level repre-

sents the application of a test vector and in which each edge be diagnosed to their equivalence classes. This work is appli-
cable only to combinational circuits.e � E(TV) is associated with a list of outputs O(e) that is the

set of all the primary outputs of the circuit is called a vector- Sensitizing Input Pairs (45). A technique that has some simi-
larity to the pair-analysis approach has been recently pro-based diagnostic experiment tree.

Definition 2 [Output-Based Diagnostic Experiment Tree TO(V, posed. This is the first work that successfully provided analy-
sis-based solutions to nontrivial sequential circuits. However,E)]. A diagnostic experiment tree in which each level repre-

sents a (test vector, output) pair rather than a test vector, like other analysis techniques, it is still not possible to apply
this technique to large circuits.and in which each edge e � E(TO) is associated with a single

primary output of the circuit is called an output-based diag- Full-Scan Diagnosis Algorithms (35,36). This work targets
full-scan designs. The heart of this work lies in an efficientnostic experiment tree.

Example. Figures 16(b) and 16(c) show the vector-based vector parallel fault simulator that rapidly reduces the num-
ber of candidate faults based on the faulty responses and theand output-based diagnostic experiment trees corresponding

to the full-fault dictionary shown in the matrix format in expected failures due to the fault.
Modeled Fault Simulation (38,46,47). A common dynamic di-Fig. 16(a).

The information embedded in the vector-based diagnostic agnosis strategy that has been used to diagnose large circuit
defects is to obtain expected output responses by the use ofexperiment tree is fully exploited to identify output sequences

that may be eliminated to produce highly compact dictionar- modeled fault simulation. However, due to the excessive
fault-simulation costs, the time taken to perform the diagno-ies even while they retain high diagnostic resolution with re-

spect to modeled faults. The compact storage structures devel- sis may be large for repeated diagnosis of large circuits.
Path Tracing (PT) (40). A strategy for dynamic diagnosis withoped for storing the information identified to be useful provide

compaction of up to 2 orders of magnitude (32). For full-fault- reduced diagnostic fault simulation time performs fault drop-
ping during diagnosis time with the help of critical path trac-dictionary representation, it is shown that both of the labeled

trees can be efficiently represented by disjointly storing the ing. Faults are dropped when it is decided that they are on
lines that do not influence any faulty output lines.label information and the underlying unlabeled tree. The vec-

tor-based tree is encoded by the use of a compact binary code, Example Dynamic Diagnosis. An example of a diagnosis de-
cision arrived based on path tracing is shown in Fig. 17. Thewhile the regular structure of the output-based tree is ex-

ploited to provide a spectrum of eight alternative representa- output of gate e fails. The path trace starts from this output
and proceeds to the inputs. Because gate e has two controllingtions for the full-fault dictionary. It is worth noting that the

currently known list and the matrix formats arise as special inputs, the trace continues from one of them. Node B, which
is part of the bridging fault A@B (node A shorted with nodecases in this framework. The results give some of the best

currently known storage requirements for full-fault-diction- B), is included (along with other candidates on the paths
traced) in the candidate set of faulty nodes by the path–ary representation (33).
trace procedure.

Expert Systems and Artificial Intelligence Techniques. Di-Dynamic Diagnosis. Dynamic diagnosis techniques analyze
the output responses produced by the failed chip at diagnosis agnosis has been attempted in rule-based expert systems that

utilize encoded empirical knowledge obtained from human ex-time with the possible use of diagnostic fault simulation to
derive a set of failures that best explain the set of observed perts. These systems are not entirely deductive and bear
responses. The approach does not require the storage of any
precomputed information. We present a brief overview of dy-
namic diagnosis research with emphasis on work targeting
large, practical circuits.

The Deduction Algorithm (42). This analysis processes the
response obtained from the faulty unit to determine the possi-
ble stuck-at faults that can generate that response, based on
deducing internal values in the unit under test (UUT). Any
line for which both 0 and 1 values are deduced can be neither

Bridge

A

B 1
1

0
0

1/0

0
1

1
a

c

e

d
b

1
0

1
1

s-a-0 (stuck-at-0) nor s-a-1 (stuck-at-1) and is identified as
fault-free. Faults are located on some of the lines that cannot Figure 17. Path trace from failing output.

230 DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING

some resemblance to the fault-dictionary approach. In con- fault pairs. Efficient generation of diagnostic test vectors can
be assisted by a fast diagnostic fault simulator. Typically, di-trast, some artificial intelligence researchers have proposed

techniques that are based on more detailed structural and agnostic fault-simulation techniques have focused on simula-
tion based on stuck-at faults and the developed measures arebehavioral models of the system being diagnosed. However,

the most important problem with such techniques is that they also for the same models. Rapid techniques are available both
for combinational and sequential circuits, and we review thetarget only small circuits and do not attempt to tackle the

problems that arise with more elaborate designs. more general case of sequential circuits here.
During fault simulation of a circuit starting from an un-

known state, a good or faulty sequential circuit can produceIntegrated Diagnosis. The prohibitive size of fault dictionar-
a 0, 1, or X on each primary output for each test vector input,ies and the large run times required for dynamic diagnosis
where X is an unknown value whose actual binary value de-have given rise to integrated fault-diagnosis techniques, in
pends on the initial state of the machine. If fault simulationwhich the focus is on storing a limited amount of essential
indicates that a fault f i produces an output of 0 and anotherinformation and utilizing this information effectively along
fault f j produces an output of 1 on the same primary outputwith analysis or simulation at run time. We now provide an
for the same input, then the faults f i and f j are said to beoverview of this research.
distinguished. However if a fault f i produces an output of 0 orDynamic Dictionaries. This approach involves two stages
1 and another fault f j produces an output of X, then it is possi-(31,41). The first stage identifies a small group of candidate
ble that the faults f i and f j may not be distinguished. There-faults, and then a small part of the full-fault dictionary is
fore, the pessimistic assumption is made that an output of 1generated dynamically in the second stage for just those
or 0 is indistinguishable (with respect to this test set) fromfaults and for only a few of the vectors that detect them.
an output of X.Hence, two-stage fault isolation avoids the static cost nor-

Diagnostic Measures. Camurati et al. (50) proposed two di-mally associated with full dictionaries and most of the compu-
agnostic measures. Diagnostic resolution (DR) is the fractiontation time that is required in a pure dynamic technique,
of fault pairs distinguished by a test set. Diagnostic powerwhile still providing most of the resolution. The limited dic-
(DP) is the fraction of faults that are fully distinguished. Ationary used in the first stage of the two-stage process is a
fault is fully distinguished if the test set distinguishes it fromvery small dictionary that can be generated by limited fault
every other fault in the fault list. A third measure (51), whichsimulation. The diagnosis algorithm lists all candidate faults
gives a more complete picture, is to identify sets of fault-that have been observed by comparing observed errors with
equivalence classes and report the number of these classes byrecords in the limited dictionary. Then, in a second stage, a
size; this measure is applicable to combinational circuits andset of vectors is fully simulated against candidate faults, and
sequential circuits that start from a known reset state. Thisa matching algorithm ranks all faults. Experimental results
is extended to indistinguishable fault classes (38) to accountwere provided for a variety of benchmark circuits and indus-
for unknown values occurring at the outputs of sequential cir-trial implementations. It was also shown that the loss of reso-
cuits during simulation. Another measure, the diagnostic ex-lution incurred was not significant.
pectation (30), is the average of indistinguishability classState-Information-Based Diagnosis. State-information-based
sizes over all faults. It is assumed that all faults are equallydiagnosis solves a crucial problem with traditional diagnostic
likely to occur.techniques based on storage (48). Typically, such techniques

Distinguishability Matrix Approach. Early methods for per-store only primary output-based information, offering only a
forming diagnostic fault simulation for moderately large cir-black-box view of the circuit and thus little diagnostic flexi-
cuits (38) used a distinguishability matrix. The distinguish-bility. This technique provides a solution by storing informa-
ability matrix is an f � f matrix, where f is the number oftion corresponding to the internal nodes in the circuit, namely
faults. An entry of 1 indicates that the two faults specified atthe state nodes. The selective storage of state information has
the intersection of the row and column are distinguished bybeen shown to improve the time for diagnostic fault simula-
some sequence of test vectors in the test set. It requirestion significantly. Experimental results on large circuits
O(f 2) space, and the time complexity is O(vof 2), where v is thewere presented.
number of vectors in the set and o is the number of outputsLevel-Information-Based Diagnosis. Precomputed informa-
in the circuit.tion tracking the diagnostic classes at each level of the diag-

List-Based Methods. Ryan, Fuchs, and Pomeranz (30) men-nostic experiment tree, specifically targeting a reduction in
tion that a more efficient way to represent faults that are in-the fault simulation costs to be incurred at diagnosis time, is
distinguishable by a given test set is by using lists of faults.the key contribution of this work (49). Fault simulation costs
Jou and Chen (52) and Chen and Jou (53) represent pairs ofare modeled in terms of computations associated with each
indistinguishable faults using lists. This representation is a(fault, vector) pair.
compact implementation of the distinguishability matrix. It is
equivalent to storing only those entries of the distinguishabil-

Tools for Diagnosis: Diagnostic Fault Simulation and
ity matrix with values of 0. Here, faults may appear in multi-

Test Generation
ple lists.

The indistinguishability relationship between all pairs ofDiagnostic Fault Simulation. Diagnostic fault simulation is
useful for determining the diagnostic capability of a given test faults can be represented as an undirected graph, with the

faults as nodes and the indistinguishability relationships be-set and for generating fault dictionaries and diagnostic infor-
mation specific to a given test set. Diagnostic capability is tween them as edges. Previous approaches essentially repre-

sent this graph as an adjacency matrix (38) or as incidencereported using various diagnostic measures. Diagnostic test
generation involves generating tests to distinguish between lists (52,53).

DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING 231

Later representations (39) avoided explicit storage of the tions and identify them implicitly (without explicitly making
a call to the diagnostic engine for each relation) have simpli-indistinguishability relationship between all pairs of faults,

but represent the indistinguishability relationship between fied the computational task of diagnostic test-pattern genera-
tion (67,68).classes of faults. Each fault is present in only one of the

classes. This makes the representation more compact than
those previously proposed (38,52,53). Although the worst-case Unmodeled Fault Diagnosis
space complexity is still O(f 2), experimental results demon-

The fault model used to predict defect behavior plays an im-strated that the average memory usage is almost linear for
portant role in diagnosis (47). In order for a fault model to bethe benchmark circuits. The representation also reduces the
valid for diagnosis it should accurately model the correspond-number of output response comparisons between faults and
ing defect, and such defects should occur in real circuits (71).hence speeds up the simulation process.
It is worth noting that static (cause–effect) techniques areDiagnostic Test-Pattern Generation. Diagnostic automatic
perhaps more dependent on the fault models than dynamictest pattern generation (DATPG) is critical to performing ef-
(effect–cause).ficient fault diagnosis. In diagnostic test generation, the goal

is to find a test sequence such that the circuit produces a dif-
Based on Modeled Faults. A typical approach for diagnosingferent response under one fault than it does under another.

unmodeled faults is to use the information available from theSuch techniques have been primarily targeted towards stuck-
modeled faults in a controlled manner to make conclusionsat faults and for combinational circuits, although recent work
about the presence of unmodeled faults. Issues concerning ac-has made progress towards both unmodeled faults and se-
curacy and the time required to perform diagnosis govern thequential circuits.
kind of matching algorithm being used. These schemes canThe diagnostic test-generation problem for sequential cir-
range from dropping all faults whose response shows a definitecuits is more acute than its combinational circuit counterpart
mismatch with the observed faulty response (applicable to puremainly because of multiple time frames that need to be han-
modeled fault diagnosis; fast) (31,35,36) to dropping few or nodled. The problem is compounded by the unknown values in
faults with the use of scoring schemes to obtain a set of candi-state elements; these unknown values may increase the num-
date faults (applicable to arbitrary unmodeled fault diagnosis;ber of fault pairs that need to be explicitly considered by a
slow) (31,38). Schemes studying the use of various combina-diagnostic test generator.
tions of matching schemes and fault models have also receivedCombinational Circuits. Work on DATPG for combinational
research attention, and information corresponding to vectorscircuits has been developed based on both functional (e.g.,
showing failures and vectors showing no failures has been usedBDD-based) and structural techniques (PODEM-based)
to obtain separate matching parameters (31,47,72). This ap-(50,54–57). DIATEST (56) is a combinational diagnostic test-
proach has been suggested to attain better diagnosis for un-generation program that was developed based on the conver-
modeled faults. An intuitive explanation for the better accura-sion of a conventional test generator into a diagnostic test
cies obtained using the separate handling of the failinggenerator. Complete results (with no aborted fault pairs) were
(failures observed) and passing (good values observed) vectorsprovided on moderate-sized (on the largest standard public
is given from the fact that obtaining separate parametersbenchmark circuits) combinational circuits. Since equivalence
makes it possible to explain observed failures as opposed toidentification, much like redundancy identification, is a com-
other matching schemes in which matching of an error is notputationally intensive operation in the DATPG process, tech-
distinguished from the matching of a good value.niques to identify combinational equivalences (57–61) have

been proposed.
Sequential Circuits. Formal techniques have also been used Bridging Fault Diagnosis. A common failure mode in current

complementary metal-oxide semiconductor (CMOS) technolo-for sequential circuit diagnostic test generation (62,63); how-
ever, the drawbacks of these approaches are the assumption gies is that of short circuits. Thus, many failures can be mod-

eled as bridging faults and they have hence received extraof a fault-free reset state and the inability to handle large
circuits due to memory requirement problems. Simulation- attention. Techniques for diagnosing bridging faults have

been primarily targeted at combinational circuits because ofbased diagnostic test generation algorithms for large sequen-
tial circuits have also been presented (64), but there is a lack the large computational overheads associated with the simu-

lation of bridging faults and the lack of a clear understandingof indistinguishability identification. Later, a powerful
method to modify a conventional sequential test generator of the complete effects of sequential bridging faults. Even for

combinational circuits, only a limited set of realistic bridginginto a sequential diagnostic test generator has been proposed
(65). The method utilizes circuit netlist modification along faults that are extracted from the layout (73) are typically

used because of the prohibitively large numbers of all possiblewith a forced 0/1 or 1/0 (66) value at a primary input in the
modified circuit. bridging faults, even for small circuits. An additional compli-

cating factor for these faults is that a short circuit (that mayIndistinguishability. There is also evidence (62,63,65,67,68)
indicating that a main burden of diagnostic test generation is produce an intermediate voltage value) may be interpreted

differently by logic gates downstream from the bridged linesin proving indistinguishability. Another difficulty in solving
this problem arises in sequential circuits because the terms due to variable input logic thresholds. This is known as the

Byzantine generals problem.distinguishable, indistinguishable, detectable, and undetect-
able take on different meanings with different test methodolo- Several techniques have been proposed for bridging-fault

diagnosis in combinational circuits. The most popular ap-gies [multiple observation time (69,70) or conventional, gate-
level test generation with single observation time and three- proaches are ones that use stuck-at dictionaries to diagnose

bridging faults. The reason for this is that this avoids compu-valued simulation (42)]. Methods to characterize these rela-

232 DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING

15. W. Kunz, Hannibal: An efficient tools for logic verification basedtationally intensive bridging-fault simulation. Millman,
on recursive learning, Proc. IEEE Int. Conf. Comput.-Aided Des.McClusky, and Acken (74) presented an approach to diagnose
(ICCAD ’93), 1993.bridging faults using stuck-at dictionaries. Chess et al. (46)

16. J. Jain, R. Mukherjee, and M. Fujita, Advanced verification tech-and Lavo, Larrabee, and Chess (72) improved on this tech-
niques based on learning, Proc. ACM/IEEE Des. Autom. Conf.,nique. These techniques enumerate bridging faults and are
1995.hence constrained to use a reduced set of bridging faults ex-

17. A. Kuehlmann and F. Krohm, Equivalence checking using cutstracted from the layout. Furthermore, they need to either
and heaps, Proc. 34th ACM/IEEE Des. Autom. Conf., 1997.store a stuck-at fault dictionary or perform stuck-at fault sim-

18. O. Coudert and J. C. Madre, A unified framework for the formalulation. Chakravarty and Liu (75) proposed a technique based
verification of sequential circuits, Proc. IEEE Int. Conf. Comput.-on Iddq (quiescent current) using only good circuit simulation.
Aided Des. (ICCAD ’90), 1990, pp. 126–129.Chakravarty and Gong (76) described a voltage-based algo-

19. E. M. Clarke and E. A. Emerson, Automatic verification of finite-rithm that used the wired-AND (wired-OR) model. This work
state concurrent systems using temporal logic specification, ACM(76) implicitly considers all bridging faults. It is worth noting Trans. Programm. Lang. Syst., 8 (2): 244–263, 1986.

that wired-AND and wired-OR models that are assumed work
20. M. Fujita, H. Tanaka, and T. Moto-oka, Logic design assistanceonly for technologies for which one logic value is always more with temporal logic, Proc. IFIP WG10.2 Int. Conf. Hardw. Descript.

strongly driven than the other. A deductive technique for Lang. Their Appl., 1985.
combinational circuits that does not explicitly simulate faults 21. J. R. Burch, et al., Sequential circuit verification using symbolic
has been proposed. However, this technique is not complete model checking, Proc. 27th ACM/IEEE Des. Autom. Conf., 1990,
because it only reduces the candidate set of bridging faults pp. 46–51.
and may end up with a potentially large set of candidates. 22. J. R. Burch et al., Symbolic model checking: 1020 states and be-

yond, Proc. 5th Annu. IEEE Symp. Logic Comput. Sci., 1991.
23. R. P. Kurshan, Automata-theoretic verification of coordinatingBIBLIOGRAPHY

processes, Lect. Notes Comput. Sci., 430: 414–453, 1990.
24. H. Touati et al., Implicit state enumeration of finite state ma-1. A. Gupta, Formal hardware verification methods: A survey, For-

chines using bdds, Proc. IEEE Int. Conf. Comput.-Aided Des. (IC-mal Methods Syst. Des., 1 (2/3): 151–238, October, 1992.
CAD ’90), 1990, pp. 130–133.2. S. B. Aker, Binary decision diagrams, IEEE Trans. Comput., C-

25. R. E. Tulloss, Size optimization of fault dictionaries, Proc. Int.27: 509–516, 1978.
Test Conf., 1978, pp. 264–265.3. R. E. Bryant, Graph-based algorithms for boolean function ma-

26. R. E. Tulloss, Fault dictionary compression: Recognizing whennipulation, IEEE Trans. Comput., C-35: 667–691, 1986.
a fault may be unambiguously represented by a single failure4. S. Minato, N. Ishiura, and S. Yajima, Shared binary decision dia-
detection, Proc. Int. Test Conf., 1980, pp. 368–370.gram with attributed edges for efficient boolean function manipu-

27. J. Richman and K. R. Bowden, The modern fault dictionary, Proc.lation, Proc. 27th ACM/IEEE Des. Autom. Conf., 1990, pp. 52–57.
Int. Test Conf., 1985, pp. 696–702.5. S. J. Friedman and K. J. Spowit, Finding the optimal variable

28. V. Ratford and P. Keating, Integrating guided probe and faultordering for binary decision diagrams, Proc. 24th ACM/IEEE
dictionary: An enhanced diagnostic approach, Proc. Int. TestDes. Autom. Conf., 1987, pp. 348–356.
Conf., 1986, pp. 304–311.6. M. Fujita, H. Fujisawa, and N. Kawato, Evaluation and imple-

29. I. Pomeranz and S. M. Reddy, On the generation of small diction-mentation of boolean comparison method based on binary deci-
aries for fault location, Proc. IEEE Int. Conf. Comput.-Aided Des.sion diagrams, Proc. IEEE Int. Conf. Comput.-Aided Des. (ICCAD
(ICCAD ’92), 1992, pp. 272–279.’88), 1988, pp. 6–9.

30. P. G. Ryan, W. K. Fuchs, and I. Pomeranz, Fault dictionary com-7. N. Ishiura, H. Sawada, and S. Yajima, Minimization of binary
pression and equivalence class computation for sequential cir-decision diagrams based on exchanges of variables, Proc. IEEE
cuits, Proc. IEEE Int. Conf. Comput.-Aided Des. (ICCAD ’93), 1993,Int. Conf. Comput.-Aided Des. (ICCAD ’91), 1991, pp. 472–745.
pp. 508–511.8. T. Kakuda, M. Fujita, and Y. Matsunaga, On variable ordering

31. P. G. Ryan, Compressed and Dynamic Fault Dictionaries for Faultof binary decision diagrams for the application of multi-level logic
Isolation, Tech. Rep. UILU-ENG-94-2234, Center for Reliablesynthesis, Proc. Eur. Des. Autom. Conf. (EDAC ’91) , 1991, pp.
and High-Performance, Urbana-Champaign: Computing, Univ. of50–54.
Illinois, 1994.9. S. Malik et al., Logic verification using binary decision diagrams

32. V. Boppana and W. K. Fuchs, Fault dictionary compaction by out-in a logic synthesis environment, Proc. IEEE Int. Conf. Comput.-
put sequence removal, Proc. IEEE Int. Conf. Comput.-Aided Des.Aided Des. (ICCAD ’88), 1988, pp. 6–9.
(ICCAD ’94), 1994, pp. 576–579.10. S. Minato, Minimum-width method of variable ordering for bi-

33. V. Boppana, I. Hartanto, and W. K. Fuchs, Full fault dictionarynary decision diagrams, IEICE Jpn. Trans. Fundam., E75-A (3):
storage based on labeled tree encoding, Proc. VLSI Test Symp.,March, 1992.
1996, pp. 174–179.11. R. Rudell, Dynamic variable ordering for ordered binary decision

34. H. Cox and J. Rajski, A method of fault analysis for test genera-diagrams, Proc. IEEE Int. Conf. Comput.-Aided Des. (ICCAD
tion and fault diagnosis, IEEE Trans. Comput.-Aided Des., 7:’93), 1993.
813–833, 1988.12. K. S. Brace, R. L. Rudell, and R. E. Bryant, Efficient implementa-

35. J. A. Waicukauski et al., Fault simulation for structured VLSI,tion of a bdd package, Proc. 27th ACM/IEEE Des. Autom. Conf.,
VLSI Syst. Des., 6 (12): 20–32, 1985.1990, pp. 40–45.

36. J. A. Waicukauski and E. Lindbloom, Failure diagnosis of struc-13. J. C. Madre and J. P. Billon, Proving circuit correctness using
tured VLSI, IEEE Des. Test Comput., 6(4): 49–60, 1989.formal comparison between expected and extracted behavior,

Proc. 25th ACM/IEEE Des. Autom. Conf., 1988, pp. 205–210. 37. M. Abramovici and M. A. Breuer, Fault diagnosis based on effect-
cause analysis, Proc. 24th ACM/IEEE Des. Autom. Conf., 1987,14. D. Brand, Verification of large synthesized designs, Proc. IEEE

Int. Conf. Comput.-Aided Des. (ICCAD ’93), 1993. pp. 69–76.

DESIGN VERIFICATION AND FAULT DIAGNOSIS IN MANUFACTURING 233

38. E. M. Rudnick, W. K. Fuchs, and J. H. Patel, Diagnostic fault 62. G. Cabodi et al., An approach to sequential circuit diagnosis
based on formal verification techniques, J. Electron. Test.: Theorysimulation of sequential circuits, Proc. Int. Test Conf., 1992, pp.

178–186. Appl., 4: 11–17, 1993.
39. S. Venkataraman et al., Rapid diagnostic fault simulation at 63. K. E. Kubiak, Symbolic Techniques for VLSI Test and Diagnosis,

stuck-at faults in sequential circuits using compact lists, Proc. Tech. Rep. UILU-ENG-94-2207, Urbana-Champaign: Center for
32nd ACM/IEEE Des. Autom. Conf., 1995, pp. 133–138. Reliable and High-Performance Computing, University of Illi-

nois, 1994.40. S. Venkataraman, I. Hartanto, and W. K. Fuchs, Dynamic diag-
nosis of sequential circuits based on stuck-at faults, Proc. VLSI 64. G. Cabodi et al., GARDA: A diagnostic ATPG for large synchro-
Test Symp., 1996, pp. 198–203. nous sequential circuits, Proc. Eur. Des. Test Conf., 1995, pp.

267–271.41. P. Ryan, S. Rawat, and W. K. Fuchs, Two-stage fault location,
Proc. Int. Test Conf., 1991, pp. 963–968. 65. I. Hartanto et al., Diagnostic test pattern generation for sequen-

tial circuits, Proc. VLSI Test Symp., 1997, pp. 196–202.42. M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital System
Testing and Testable Design, New York: Computer Science 66. J. P. Roth, W. G. Bouricius, and P. R. Schneider, Programmed
Press, 1990. algorithms to compute tests to detect and distinguish between

failures in logic circuits, IEEE Trans. Electron. Comput., EC-16:43. Z. Kohavi, Switching and Finite Automata Theory, New York:
567–579, 1967.McGraw-Hill, 1978.

67. V. Boppana, I. Hartanto, and W. K. Fuchs, Characterization and44. F. C. Hennie, Finite-State Models for Logical Machines, New York:
implicit identification of sequential indistinguishability, Proc. Int.Wiley, 1968.
Conf. VLSI Des., 1997, pp. 376–380.45. N. Yanagida, H. Takahashi, and Y. Takamatsu, Multiple fault

68. V. Boppana, State information-based solutions for sequential cir-diagnosis in sequential circuits using sensitizing sequence pairs,
cuit diagnosis and testing, Tech. Rep. CRHC-97-20, Ph.D. thesis,Proc. Int. Symp. Fault Tolerant Comput., 1996, pp. 86–95.
Center Reliable High-Performance Comput., Univ. of Illinois at46. B. Chess et al., Diagnosing of realistic bridging faults with stuck-
Urbana-Champaign, 1997.at information, Proc. IEEE Int. Conf. Comput.-Aided Des. (ICCAD

69. I. Pomeranz and S. M. Reddy, The multiple observation time test’95), 1995, pp. 185–192.
strategy, IEEE Trans. Comput.-Aided Des., 40: 627–637, 1992.47. R. C. Aitken and P. C. Maxwell, Better models or better algo-

70. I. Pomeranz and S. M. Reddy, Classification of faults in synchro-rithms? Techniques to improve fault diagnosis, Hewlett-Packard
nous sequential circuits, IEEE Trans. Comput., 42: 1066–1077,J., February, 46 (1): 110–116, 1995.
1993.48. V. Boppana, I. Hartanto, and W. K. Fuchs, Fault diagnosis using

state information, Proc. Int. Symp. Fault Tolerant Comput., 1996, 71. R. C. Aitken, Finding defects with fault models, Proc. Int. Test
pp. 96–103. Conf., 1995, pp. 498–505.

49. V. Boppana and W K. Fuchs, Integrated fault diagnosis targeting 72. D. B. Lavo, T. Larrabee, and B. Chess, Beyond the byzantine
reduced simulation, Proc. IEEE Int. Conf. Comput.-Aided Des. (IC- generals: Unexpected behavior and bridging fault diagnosis, Proc.
CAD ’96), 1996, pp. 267–271. Int. Test Conf., 1996, pp. 611–619.

50. P. Camurati et al., A diagnostic test pattern generation algo- 73. A. Jee and F. J. Ferguson, Carafe: An inductive fault analysis
rithm, Proc. Int. Test Conf., 1990, pp. 52–58. tool for CMOS VLSI circuits, Proc. VLSI Test Symp., 1993, pp.

92–98.51. K. Kubiak et al., Exact evaluation of diagnostic test resolution,
Proc. 29th ACM/IEEE Des. Autom. Conf., 1992, pp. 347–352. 74. S. D. Millman, E. J. McCluskey, and J. M. Acken, Diagnosing

CMOS bridging faults with stuck-at fault dictionaries, Proc. Int.52. J. M. Jou and S.-C. Chen, A fast and memory-efficient diagnostic
Test. Conf., 1990, pp. 860–870.fault simulation for sequential circuits, Proc. IEEE Int. Conf.

Comput.-Aided Des. (ICCAD’94), 1994, pp. 723–726. 75. S. Chakravarty and M. Liu, Algorithms for current monitoring
based diagnosis of bridging and leakage faults, Proc. 29th ACM/53. S.-C. Chen and J. M. Jou, Diagnostic fault simulation for syn-
IEEE Des. Autom. Conf., 1992, pp. 353–356.chronous sequential circuits, IEEE Trans. Comput.-Aided Des.,

16: 299–308, 1997. 76. S. Chakravarty and Y. Gong, An algorithm for diagnosing two-
line bridging faults in CMOS combinational circuits, Proc. 30th54. P. Camurati et al., Diagnostic oriented test pattern generation,
ACM/IEEE Des. Autom. Conf., 1993, pp. 520–524.Proc. Eur. Des. Autom. Conf., (ECAD’90), 1990, pp. 470–474.

55. J. Savir and J. P. Roth, Testing for, and distinguishing between
failures, Proc. Int. Symp. Fault Tolerant Comput., 1982, pp. MASAHIRO FUJITA

165–172. VAMSI BOPPANA

Fujitsu Labs of America56. T. Grüning, U. Mahlstedt, and H. Koopmeiners, DIATEST: A fast
diagnostic test pattern generator for combinational circuits, Proc.
IEEE Int. Conf. Comput.-Aided Des. (ICCAD’91), 1991, pp.
194–197.

DETECTION ALGORITHM, RADAR. See RADAR TAR-57. I. Hartanto, V. Boppana, and W. K. Fuchs, Diagnostic fault
GET RECOGNITION.equivalence identification using redundancy information & struc-

tural analysis, Proc. Int. Test Conf., 1996, pp. 294–302. DETECTION THEORY. See CORRELATION THEORY.
58. E. J. McCluskey and F. W. Clegg, Fault equivalence in combina- DETECTORS. See DEMODULATION PHOTODETECTORS QUAN-

tional logic networks, IEEE Trans. Comput., C-20: 1286–1293, TUM WELL.
1971. DETECTORS, IONIZATION. See IONIZATION CHAMBERS.

59. A. Goundan and J. P. Hayes, Identification of equivalent faults DETECTORS, MICROWAVE. See MICROWAVE DE-in logic networks, IEEE Trans. Comput., C-29: 978–985, 1980.
TECTORS.60. B. K. Roy, Diagnosis and fault equivalences in combinational cir-

DETECTORS, SUBATOMIC-PARTICLE. See PARTICLEcuits, IEEE Trans. Comput., C-23: 955–963, 1974.
SPECTROMETERS.61. A. Lioy, Advanced fault collapsing, IEEE Des. Test Comput., 9 (1):

64–71, 1992. DETECTORS, THERMOPILE. See THERMOPILES.

234 DIAGNOSIS OF SEMICONDUCTOR PROCESSES

DETECTORS, ULTRAVIOLET. See ULTRAVIOLET DE-

TECTORS.
DEVICE AND PROCESS MODELING. See MONTE

CARLO ANALYSIS.
DEVICE MODELS. See NONLINEAR NETWORK ELEMENTS.
DEVICES, DIAMOND. See DIAMOND BASED SEMICONDUCT-

ING DEVICES.
DEVICES, FIBER-OPTIC. See FIBEROPTIC SENSORS.
DEVICES, ORGANIC. See ORGANIC SEMICONDUCTOR DE-

VICES.
DEVICES SUPERCONDUCTING. See SUPERCONDUCT-

ING ELECTRONICS.
DEVICES, SURFACE MOUNT. See SURFACE MOUNT

TECHNOLOGY.
DIAGNOSIS. See FAULT DIAGNOSIS.
DIAGNOSIS FAULT LOCATION. See DESIGN VERIFICA-

TION AND FAULT DIAGNOSIS IN MANUFACTURING.

