
580 LOGIC SYNTHESIS

LOGIC SYNTHESIS

Synthesis of digital circuits consists of a series of steps involv-
ing translation, optimization, and mapping. In general, a de-
sign is described at different levels of abstraction using hard-
ware description languages like VHSIC hardware description
language (VHDL) or Verilog. Design descriptions at each level
are usually optimized based on area, timing, and power dissi-
pation measures to generate a design description at the fol-
lowing lower level. In this article we consider design descrip-
tion and optimization at the logic gate level. For sequential
circuits, we assume that a higher level of description, such as
the state-transition graph, is available. Our aim is to survey
various logic synthesis techniques that target different opti-
mization criteria, like area, timing, and power consumption.
It is beyond the scope of this article to delve into the details
of logic synthesis algorithms. For details of the algorithms,
the readers are referred to the papers and books referenced
here.

This article is organized as follows. In the first section we
describe two-level logic optimization techniques. Two-level
logic usually consists of an AND gate level and an OR gate
level. The logic description can be in a product-of-sums or a
sum-of-products form (such as in programmable logic arrays).
It turns out that logic implemented in multiple levels (rather
than two) can be more area efficient. The next section de-
scribes multilevel logic optimization algorithms that consider
area, timing, and power dissipation. After logic optimization,
the design is usually mapped into a target library. Such map-
ping techniques are called technology mapping and are briefly
described in this section. The previous sections consider only
combinational circuits. Because sequential circuits can have
feedback and use memory elements, like flip-flops or latches,

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

LOGIC SYNTHESIS 581

the synthesis techniques differ. Sequential circuits can be x1x3, and neither x1x2 contains x1x3 nor does x1x3 contain x1x2.
In addition, x1x2x3 is also an implicant of f and is containedrepresented by state-transition diagrams. In the following

section we consider the state assignment and the sequential in x1x2 and in x1x3. A prime implicant of f is an implicant of f
that is not contained in any other implicant of f , that is, x1x2circuit synthesis problem. The synthesis techniques described

in the previous sections are suitable for application-specific and x1x3 are two prime implicants of f whereas x1x2x3 is not.
A cover Cf of a Boolean function f is a set of implicantsintegrated circuits (ASIC) or gate array implementations. Re-

cently, a new style of design called the field-programmable that contains all the minterms of f , and f contains Cf. A cover
is said to be prime if all the implicants of the cover are prime.gate arrays (FPGAs) has become very popular. FPGAs usu-

ally consist of rows of logic modules (which can implement Sometimes f may have don’t care conditions that specify that
the result of f is not of concern for certain inputs. In this case,different types of logic gates) with (re)programmable routing

architectures. Such logic styles require a different logic syn- if don’t care conditions are denoted by DCf,
thesis style. The next section considers the basics of logic opti-
mization for FPGA’s. Finally conclusions are given in the f ⊆ Cf ⊆ f ∪ DCf (1)
last section.

A cover can contain some implicants that are don’t care condi-
tions. A minimum cover of a Boolean function f is a cover ofTWO-LEVEL LOGIC SYNTHESIS
f of a minimum number of implicants. In contrast, an
irredundant (or minimal) cover is a cover such that no subsetBy definition, two-level logic circuits are logic circuits with
of the cover can be a cover of f . If any implicant is taken awaytwo levels of logic gates. A typical technology that uses two-
from an irredundant cover, it is no longer a cover.level logic circuits is programmable logic arrays (PLAs). Usu-

Given the definitions of covers, the two-level logic optimi-ally NOR–NOR or NAND–NAND arrays are used. For exam-
zation problem becomes equivalent to finding a minimumple, logic function y � ((x1 � x2)� � (x3 � x4)�)� is a NOR–NOR
cover of a Boolean function. There are two approaches to solv-implementation. Here xi� (or xi) denotes the complement of xi. ing this problem, exact and heuristic. Because solving thisIn addition to PLAs, two-level logic design style is adopted
problem exactly may not be feasible for large circuits, a heu-because of its speed advantage. One of the factors that deter-
ristic approach is usually taken. Though a heuristic approachmine circuit delays is the number of stages (levels) through
may yield a suboptimal solution, it often gives a minimum so-which a signal goes. Therefore, two-level logic circuits are fast
lution.compared to multilevel logic circuits (are introduced later)

and may be chosen at the cost of area (using more and/or
Exact and Heuristic Solutionsbigger gates to implement the circuit). Another reason that

we are interested in two-level logic is that it represents a com- Among all the minimum covers, there is always a minimum
ponent of a multilevel logic network. If we can simplify the cover that is prime. This was proved by Quine (2) and allows
representation, it simplifies the multilevel logic optimization. us to limit our search space and to find a minimum cover
For simplicity, AND–OR representation is assumed in this among all the prime covers. In addition, we can make prime
section, that is, sums of products like z � x1x2 � x3x4 are our every nonprime implicant of a minimum cover. This is done
focus in this discussion. Because by DeMorgan’s laws (1) by replacing the nonprime implicant by a prime implicant
NOR–NOR or NAND–NAND expressions can be rewritten as that contains it. For example, suppose that abcde is a non-
sums of products, the assumption does not lose generality. prime implicant and is in a minimum cover Cf. By definition
For example, y � [(x1 � x2)� � (x3 � x4)�]� mentioned earlier of prime implicants, a prime implicant, say abd, must exist
can be rewritten as y� � x1�x2� � x3�x4� by DeMorgan’s laws (1). that contains abcde. Then abd can replace abcde. Usually the

Given a Boolean function represented as a sum of prod- area cost for abd is less than that of abcde, and therefore
ucts, we want to know how to implement it with minimum prime minimum covers give solutions of smaller area than
area. Most of the literature uses a minimum number of prod- that of nonprime minimum covers.
uct terms as the cost function to be optimized. This is to sim- Karnaugh map and Quine–McCluskey methods are sys-
plify the problem and to separate the optimization from the tematic procedures to simplify two-level logic functions (1).
specific technology that implements the function. However, it The Karnaugh map method is useful for simplifying functions
may not correspond to the minimum area. To understand how of two to four variables. It can be extended to handle func-
different optimization algorithms work, we have to introduce tions of five and six variables. For example, let y � a�b� �
some key concepts. a�b � ab�c. Figure 1 shows the Karnaugh map of function y.

From the map we conclude that it has two prime implicant
Basic Concepts and a prime minimum cover is �a�, b�c�. Notice that the dotted

squares or rectangles are prime implicants. The KarnaughA Boolean function f can be expressed as a sum of products
map method can be seen as an attempt to find all the primeof n literals. These product terms are called minterms. For
implicants and a prime minimum cover out of these prime im-example, w � x1x2 � x1x3 can be rewritten as x1x2x3� � x1x2x3
plicants.� x1x2�x3 with three minterms of three literals. An implicant

The Quine–McCluskey method finds all prime implicantsof a Boolean function f is a product term that is contained in
first and builds a prime implicant chart to determine primef . An implicant p is said to be contained in f if p � 1 implies
minimum covers. For example, letf � 1, which is denoted as p � f . Similarly, an implicant p1 is

said to be contained in another implicant p2, denoted as p1 �
p2, if p1 � 1 implies p2 � 1. For example, f � x1x2 � x1x3 has
implicants x1x2 and x1x3. Function f contains both x1x2 and

z = ab + ab + a′c′

= abc + abc′ + ab′c + a′bc′ + a′b′c′

582 LOGIC SYNTHESIS

p1 p2 p3 p4

Figure 3. Prime implicant chart of a function: It helps find a mini-Figure 1. Karnaugh Map of a logic function: It is used to simplify
mum cover.two-level logic functions.

MULTILEVEL LOGIC SYNTHESISThe optimization procedure is carried out in Fig. 2. The table
on the left-hand side is a list of minterms and the one on the

Optimal multilevel logic synthesis is a known difficult prob-left is a list of four prime implicants, p1, p2, p3, and p4. p1 (0-0
lem which has been studied since the 1950s. Unlike two-levelmeaning ac) is derived by combining minterm 1 and 2, and
logic optimization, the exact optimization methods for multi-p2 (�10 meaning bc�) is the result of combining minterm 2
level logic are not practical for today’s circuit design becauseand 4. The rest are shown as in the figure. Figure 3 shows
of their computational complexity. Therefore, we focus onthe prime implicant chart. It is shown that minterm 1
heuristic optimization methods in our discussion. The first of(a�b�c�) is covered only by p1 and minterm 3 (ab�c) is covered
the modern developments is the logic synthesis system (LSS)only by p3. Such prime implicants are called essential prime
at IBM (9), which has a variety of gate arrays and standardimplicants and must be chosen for the minimum prime cov-
cells as target technology. More recent work in multilevelers. As a result, minterms 1, 2, 3, and 5 are covered whereas
logic optimization includes MIS (10) and BOLD (11). Bothminterm 4 abc� is not. In this case, it is very easy to see that
MIS and BOLD are aimed at optimization techniques whichtwo minimum prime covers exist, �p1, p3, p2� and �p1, p3, p4�.
are independent of particular technologies and were devel-However, when the number of variables and prime implicants
oped to bring multilevel logic optimization to the level of sci-increases, computational time and memory used for searching
ence obtained for two-level logic optimization. Because the re-a minimum prime cover may be exponential in the worst case.
sults are independent of particular technologies, there is oneResearchers improved the Quine–McCluskey method by
more step, called technology mapping, that needs to be taken.building a smaller prime implicant chart and by applying an
Technology mapping maps the logic functions to the gates ofefficient branch-and-bound algorithm to search for the mini-
a particular technology before it can be implemented in a verymum prime covers (3). Further and other improvements have
large scale integration (VLSI) circuit. First we review somebeen done by Refs. 4–7. However, for most practical cases,
basic concepts before introducing the optimization techniquesthe run time of using exact solutions may not be tolerable.
behind MIS and BOLD. Then optimization techniques basedThis motivates heuristic approaches. A heuristic minimizer
on different algebra models (algebraic and Boolean models)ESPRESSO (3) gives minimal (not minimum) prime cover.
are discussed, followed by a brief discussion of other ap-ESPRESSO builds a prime cover and uses an iterative im-
proaches and technology mapping.provement strategy to modify and to delete implicants. Often

it gives solutions close to minimum covers.
Basic Concepts

The on-set of a function of f is the set of minterms for which
the function evaluates to 1. The off-set of the function of f is
the set of minterms for which f equals 0. The don’t care set
or dc-set is the set of minterms for which the value of the
function is unspecified. A function which does not have a dc-
set is a completely specified function. A function with a non-
empty dc-set is termed an incompletely-specified function.

Sum of Product Form. A literal is a Boolean variable (say,
x) or its complement (x� or x). A cube can be defined as a
product of literals, for example, xyz�. The trivial cubes, writ-
ten as 0 and 1, represent the Boolean functions 0 and 1, re-

p1

p2

p3

p4

spectively. A sum-of-products (SOP) form (also called expres-
sion) is a set of cubes. For example, expression a � bc consistsFigure 2. Quine-McCluskey method of a function: It is used to sim-

plify two-level logic functions. of two cubes, a and bc�.

LOGIC SYNTHESIS 583

An expression is algebraic (nonredundant) if no cube in the tion constraints on the logic gates and assuming loose models
for their area and performance. Second, the constraints on theexpression properly contains another. For example, a � ab is

redundant because a contains ab. But expression a � bc is usable gates (e.g., those represented in the cell library) are
taken into account.algebraic. A Boolean expression is a nonredundant ex-

pression.
Logic Synthesis Using the Algebraic ModelThe union of two expressions f and g, denoted as f � g, is

the set that consists of all the cubes of f and g and is trans- A logic network can be optimized by using the general proper-
formed into a nonredundant expression. Similarly, the inter- ties of polynomial algebra to simplify the Boolean model. The
section of f and g, denoted as f � g, is the set of all the com- simplification includes the assumption that the exponent of
mon cubes of f and g. every variable in the network is at most one in the polynomial

algebra and ignores don’t care conditions. Such an assump-
Factored Form. The usual representation of a logic function tion simplifies the problem but may yield a less than optimal

is the sum-of-products form. An alternative representation to solution.
this is the factored form. It is the generalization of the sum-
of-products form allowing nested parentheses. For example, Division. Given functions f and p, we can find functions q
the expression ace � ade � bce � bde � e can be written in and r such that (f � pq � r). Every such operation is like the
factored form as e(a � b)(c � d) � e. In other words, a factored division operation and is therefore called (algebraic) division
form is a sum of products of arbitrary depth. Generally the of f by p generating quotient q and remainder r. The function
factored form is not unique. For example. the expression abc p is called a divisor of f if r is not null and a factor if r is null.
� abd � cd is itself a factored form but can also be written Optimization can be carried out if good algebraic divisors
as ab(c � d) � cd or abc � (ab � c)d. Both are factored forms. can be found. The set of algebraic divisors is defined as

In many applications, it is infeasible to describe each sin- D(f) � (g� f/g � 0�).
gle-output function of a multiple-output function as a single The primary divisor of f is defined as P(f) � [(f/c�c is a
expression or a single factored form. Often, a set of intermedi- cube]. That means the primary divisors of an expression f are
ate functions is introduced, and each depends on the original the expressions f /c where c is a cube.
inputs and possibly other intermediate functions. Then, each For example, if
single-output function can be expressed as a function of origi-
nal inputs and the intermediate functions. For example, the f = abc + abde
multiple-output function

then
F1 = [(a + b)c + d]e + f

F2 = [(a + b)c + d]g + h f
a

= bc + bde

can be expressed as the following set of functions involving
is a primary divisor.variables x and y:

The kernels of f are defined as K(f) � (k�k � P(f), k is cube-
free). An expression is cube-free if it does not have a cube
factor. In other words, the kernels of an expression f are the
cube-free primary divisors of the expression.

The cube c used to obtain the kernel k � f /c is called the
co-kernel of f . Continuing with the previous example, f /a is a

F1 = ye + f

F2 = yg + h

y = xc + d

x = a + b
primary divisor but not cube-free because b is a factor of f /a.
Therefore,Multi-level logic refers to any multiple-output Boolean

function represented by a set of interconnected functions.
Therefore, multilevel logic is a particular representation of f

a
= b(c + de)

multiple-output functions.
A multiple-level logic function can be graphically repre-

However,sented as a directed acyclic graph (DAG) (V, E), where V and
E are the set of all vertices and edges in the graph, respec-
tively.

f
(ab)

= c + de
The set of input nodes VIN does not have any incoming

edges, and the set of output nodes VOUT does not have any is a kernel. ab is called a co-kernel. Note that by definition,
outgoing edges. The set of intermediate nodes is given by co-kernels are always cubes.
VINT � V � (VIN � VOUT). Each node vi � VINT, computes a
Boolean function Fi in terms of its fan-in nodes and is also Example. Given the expression
associated with a ‘‘local output’’ variable yi, where yi � Fi.

The desired design style affects the synthesis and optimi- X = abcdg + abcdh + abce + abc f + abi
zation methods. Indeed the search for an interconnection of
logic gates that optimize area and/or performance depends on then
the constraints on the choice of the gates themselves. Multi-
ple-level logic is usually partitioned into two tasks. First, a
logic network is optimized while neglecting the implementa-

X
a

= bcdg + bcdh + bce + bc f + bi

584 LOGIC SYNTHESIS

is a primary divisor, but is not a kernel because the expression Example. Consider a network with the following expres-
sions:is not cube-free (cube b divides each term). However,

X
ab

= cdg + cdh + ce + c f + i

and

fx = ace + bce + de + g

fy = ad + bd + cde + ge

fz = abc

K(fx) = [(ac + bc + d), (a + b), (ace + bce + de + g)]

K(fy) = [(a + b + ce), (cd + g), (ad + bd + cde + ge)]X
abcd

= g + h

The kernel set of f z is empty.

are both kernels with associated co-kernels ab and abcd.
Hence, multiple-cube common subexpressions can be ex-

tracted only from f x and f y. There is only one kernel intersec-Because no single cube is cube-free, a kernel must contain
tion, namely, (a � b) � K(fx), and (a � b � ce) � K(fy). Thetwo or more cubes. Also, because 1 is a cube, if f is cube-free,
intersection is a � b and can be extracted to yieldthen f is considered one of its own kernels.

The level of a kernel is defined to provide easily identifiable
subsets of the set of all kernels. Recall that kernels are ex-
pressions, and hence it makes sense to refer to the kernels of
a kernel. A kernel is called a level-0 kernel of f if it does not
have any kernels except itself. No literal appears twice in a

fw = a + b

fx = wce + de + g

fy = wd + cde + ge

fz = abc
level-0 kernel. A kernel is called a level-n kernel if it contains
a kernel of level (n � 1) but does not contain any kernels of
level-n except itself. This gives us a natural partition of the Logic Transformation
kernels:

The goal of multilevel logic optimization is to obtain a repre-
sentation of the Boolean function that is optimal with respect

K0(f) � K1(f) � K2(f) � . . . � Kn(f) � K(f) to area, speed, testability, and power dissipation. To restruc-
ture a logic function, the operations described following are
used.Example

Decomposition. The decomposition of a Boolean function isx = [a(b + c) + d)(eg + g(f + e)] + (b + c)(h + i)
the process of reexpressing a single function as a collection
of new functions. For example, the process of translating the

has, among others, the kernel b � c and a(b � c) � d which expression
are level-0 and level-1, respectively, whereas x itself is a ker-
nel of level 2 because it has level 1 kernels but no level 2

F = abc + abd + acd + bcdkernels other than itself.

to the set of expressions
The motivation for this definition of the kernels of a logic

expression comes from the following theorem which was used
in MIS (10):

F = XY + X Y

X = ab

Y = c + d
Theorem 1. f and g have a common multicube divisor if and
only if there exists kf � K(f), and kg � K(g) such that �kf �

is decomposition, shown in Fig. 4. The associated optimizationkg� � 2.
problem is to find a decomposition with minimum total area
or power.

That is, two functions have a common multiple-cube divi-
sor if and only if the intersection of a kernel from f and a

Extraction. Extraction is applied to many functions. It is
kernel from g has more than one cube. It is important to re- the process of identifying and creating some intermediate
member that an expression is a set of cubes and the intersec- functions and variables and reexpressing the original func-
tion of kernels refers to the set intersection of the expressions tions in terms of the original and the intermediate variables.
and not the Boolean intersection of the logic functions implied Extraction creates nodes with multiple fan-outs. For example,
by the expressions. extraction applied to the following three functions:

The computation of the kernel set of the expression in the
logic network is the first step toward the extraction of multi-
ple-cube expressions. Then the candidate common subexpres-
sions to be extracted are chosen among the kernel intersec-
tions.

F = (a + b)cd + e

G = (a + b)e

H = cde

LOGIC SYNTHESIS 585

Figure 4. Decomposition decomposes

a

b

c

d

F = abc + abd + a′c′d′ + b′c′d′

a

b

c

d

X = ab

Y = c + d

F = XY + X′Y′

large function into smaller ones.

yields produces

F = G(a + c)

This operation creates an arc (the wider line in Fig. 6) in
the Boolean network that connects the node of the substitut-
ing function, namely, G, to the node of the function being sub-

F = XY + e

G = Xe

H = Ye

X = a + b

Y = cd stituted in, namely, F.

Thus the operation identifies common subexpressions
Elimination. Elimination, collapsing, or flattening is the in-among different logic functions that form a network. This is

verse operation of substitution. If G is a fan-in of F, collapsingshown in Fig. 5. New nodes corresponding to the common sub-
G into F reexpresses F without G. It undoes the operation offunctions are created, and each of the logic functions in the
substituting G in F. For example, iforiginal network is simplified as a result of introducing these

new nodes. The optimization operation is to find a set of inter-
mediate functions such that the resulting network has mini-
mum area, low power dissipation, delay, or maximum test-

F = Ga + Gb

G = c + d
ability.

then, collapsing G into F results in
Factoring. Factoring is the process of deriving a factored

form from a sum-of-products form of a function. For example, F = ac + ad + bcd

G = c + dF = ac + ad + bc + bd + e

can be factored to This is illustrated in Fig. 7.

F = (a + b)(c + d) + e Logic Synthesis Using Don’t Cares

Logic networks can also be efficiently synthesized using theThe optimization problem associated with factoring is to
concepts of don’t cares. Such logic networks obtained by usingfind a factored form with the minimum number of literals.
this optimization is much more testable than merely 100%
testable for conventional input and output stuck-at faults.Substitution. Substitution, also resubstitution, of a function
The approach is based on determining the complete don’t-careG into F is the process of reexpressing F as a function of its
set for each two-level function embedded in a network of suchoriginal inputs and G. Let us consider the example of Fig. 6.
functions. Once this is done, a two-level minimizer can beSubstituting
used to minimize the subfunction. Before we describe the
don’t care-based logic optimization technique let us considerG = a + b
some definitions.

into Let F(y1, y2, . . . yn) be a Boolean expression. The cofactor
of F with respect to yk is given as (F)yk

. (F)yk
is obtained by

F = (a + b)(a + c) setting yk to ‘1’ in the expression of F. The cofactor of F with

Figure 5. Extraction extracts common

a

b

d

c

e

a

b

d

c

e

F = XY + e
F = (a + d) cd + e X = a + b

Y = cd
G = Xe′

H = Ye

G = (a + d) e′

cde

expressions from functions.

586 LOGIC SYNTHESIS

a

b

c
F = G (a + c)

G = a + b

a

b

c
F = (a + b)(a + c)

G = a + b

Figure 6. Substitution substitutes one function into another.

a

b

c

d

e

Figure 8. Example showing the intermediate variable don’t care set:
d � ab, c � a, and e � b and therefore d � ce. Since d � ce will never
happen, it is don’t care and should be utilized for logic optimization.respect to yk, (F)yk

, is defined similarly. Using Shannon’s theo-
rem, F can be represented as

set of node j, DTj.F = yk(F)yk
+ yk(F)yk

(2)

Given a multilevel circuit graph, a set of input vectors ex-
DT j =

⋂
i∈FO j

Eij

ists, specified by the user, which can never occur. These set
of inputs are called the external don’t care set of inputs. For

whereall our discussions, we assume that this set is 0�.
Note that Boolean functions Fi representing node vi, when

considered in isolation, are completely specified functions.
However, when embedded in a Boolean network, Fi is incom-
pletely specified, that is, has a don’t-care set. Such redundan-

Eij = ((Fi)y j
≡ (Fi)y j

) (3)

= (Fi)y j
(Fi)y j

+ (Fi)y j
(Fi)y j

(4)

cies can be generated by using the structure of the Boolean
network. In Ref. 8 two sets of don’t cares, intermediate vari- and FOj represent the transitive fan-out of j. Let us consider
able don’t care set, DIV (common to all nodes) and transitive a simple two-input (a and b are inputs whereas c is an output)
fan-out don’t care set, DT (which is specific to node j), are AND gate. The output c is insensitive to input b when an
defined. Then logic optimization is based on such don’t cares input of (a � 0 and b � 1) is applied to the circuit.
obtained from the multilevel Boolean network. Now each node of the Boolean network can be optimized

The overall intermediate variable don’t care set is defined using a two-level optimizer with the don’t care sets as de-
by scribed above. However, note that the don’t care sets for each

node can be large. Hence, researchers have tried to optimize
don’t care sets using heuristics, such as don’t care filters.
Such filters tradeoff computational time versus optimizationDIV =

m∑
j=1

DIV j

quality.

where DIVj � yjFj � yjFj, representing the EXOR function. Other Optimization Algorithms
DIVj can be best understood by considering the example of

There are other interesting approaches in addition to the oneFig. 8. It is clear from the figure that certain set of inputs,
just discussed. One is to use circuit redundancy to simplifysuch as d � (c.e), can never occur at the inputs to the OR
the network (12,13). For example, let a node vi in a logic net-gate. The set of such inputs are the intermediate variable don’t
work F be untestable for stuck-at-0, that is, if F� denotes thecare set.
new logic network by forcing vi to logic 0, and F and F� areThe set of input vectors for which node i is insensitive to
equivalent. If vi is an input to a NAND gate, the NAND gatethe values of node j (i is in the transitive fan-out of node j and
can be replaced by a logic value 1. If vi is an input to a NORis a primary output) is called the transitive fan-out don’t care
gate, vi can be eliminated from the inputs of the NOR gate.
Transduction (14), global flow (15), and rule-based systems
(9) are some of the most significant techniques.

The logic synthesis techniques described previously are
geared mainly toward area and performance optimization. We
described area optimization techniques in detail. However,
performance can be optimized by reducing the fan-out
(achieved using logic duplication), by optimizing the number
of inverters required (standard CMOS efficiently implement
only inverting logic), and by reducing the logic depth during
synthesis. More recently, because of the increased number of

a

b

c

d

F = Ga + G′b

G = c + d

a

b

c

d

F = ac + ad + bc′d′

G = c + d

devices per chip and the proliferation of battery-operated
components coupled with the fact that frequency has doubledFigure 7. Elimination eliminates one particular function representa-

tion from a function. That is, it flattens the original function. every two years, power dissipation is becoming a major con-

LOGIC SYNTHESIS 587

cern. Average power dissipation in a standard CMOS circuit
is given approximately by

Pavg = V 2
dd

∑
i∈gates

Ciai + Isckt.Vdd + Ileak.Vdd

where Vdd is the supply voltage, Ci is the capacitance associ-
ated with the output of a logic gate, and ai represents the
average number of signal switching at node i. Isckt and Ileak

represent the short circuit and the leakage currents of the
design, respectively. The first component results from the
switching current and is by far the dominant (more than 85%
in current technology in the active mode of operation) and
hence, let us concentrate on the switching component of
power. �i�gates Ciai represents the switched capacitance per
unit time. Estimating ai is difficult because it depends on the
primary input signal distribution. It has been shown that the
inputs to a logic circuit can be represented as stochastic pro-
cesses that have certain properties: signal probability (the
probability that a signal is logic ONE) and signal activity (the
probability of signal switching). Probabilistic and statistical

a
b
c
d

a
b

c
d

Logic network Subject tree

Library cells Pattern graphs
methods (18,19) have been developed to determine the signal

Figure 9. Decomposition of logic network and library cells: Technol-activity at the internal nodes of a logic circuit. It should also
ogy mapping first decomposes library cells into pattern graphs andbe noted that in CMOS circuits, Ci is proportional to the fan-
the logic network into a subject tree.out of the logic gate. Hence, during logic synthesis, one can

try to optimize power dissipation by properly selecting com-
mon subexpressions which would reduce the overall switched
capacitance based on the given input signal probability and tree. The library cells are also decomposed into base func-
activity (31). However, it should be observed that power con- tions. In Fig. 10, the subtrees of the subject tree are matched
scious technology mapping techniques are also important by some pattern graphs and therefore are mapped into the
since the logic network derived after the logic optimization corresponding library cells.
phase is modified during technology mapping (23). Assume that the cost of pattern graph does not depend on

the parent of vi. For example, the cost function can be the
Technology Mapping area of pattern graphs. A bottom-up dynamic programming

algorithm can be performed from the leaves to the root toIn the multilevel logic synthesis described previously, optimi-
compute the optimum tree covering. However, if delay is thezation is a technology-independent process. Logic network F
cost function, the cost of a pattern graph depends on the par-generated by the multilevel logic synthesis has to be mapped
ent of the root of the subtree. An approximate solution to thisto real circuits that satisfy timing and area constraints. The
was proposed in Refs. 17 and 20 by storing a piecewise func-real circuits usually consist of a set of predefined gates called
tion at every node.library L, and the gates are called library cells. Library cells

are technology-dependent. To simplify the mapping from F to
library cells of L, two different approaches have been taken—
tree-based and Boolean-matching approaches.

Tree-based Matching and Covering. In this approach, logic
network F and all library cells are decomposed into a set of
base functions B. The set of base functions is usually small.
For example, it can be 2-input NAND gate and inverter. The
decomposed F corresponds to a graph, called subject graph.
Similarly, each decomposed library cell corresponds to a pat-
tern graph. In the subject graph and pattern graphs, each
node corresponds to a base function. However, there may be
more than one way to decompose F and library cells. There-
fore, the final result depends on how we decompose F. In addi-
tion to decomposition, the subject graph is partitioned into
trees (16). For a node vi in a tree, if a pattern graph is isomor-
phic to a subtree rooted in vi, the pattern graph matches vi.

For example, let us consider Fig. 9. Assume that the set of
base functions B consists of a 2-input NAND gate and an in-

a
b

c
d

a
b

c
d

verter and that library cells are 2-input NAND and NOR
gates and an inverter. Logic network F � abcd is decomposed Figure 10. Tree-based technology mapping: Subtrees are matched

by pattern graphs and are mapped into corresponding library cells.into three NAND gates and three inverters, which is a subject

588 LOGIC SYNTHESIS

Boolean Matching and Covering. In the Boolean-matching
approach (21,22) the logic network F is still decomposed into a
subject graph. However, the subject graph is partitioned into
rooted directed acyclic graphs (DAGs) rather than trees. In
addition, the library cell’s functions are checked against
rooted subgraphs of rooted DAGs by equivalence checking.
Equivalence between two Boolean functions can be checked
by using ordered binary decision diagrams (OBDDs).

Technology Mapping for Low Power and Deep Submicron Cir-
cuits. In addition to area and performance (delays) as cost
functions or optimization constraints, power dissipation has
become another design constraint. The key to reducing power Figure 12. State transition table (left) and graph are two represen-

tations of finite state machine.dissipation is to hide nodes with higher switching activity
(23). Another new design concern is the change of delay and
area models of library cells. In today’s deep submicron cir-
cuits, interconnects contribute significantly to delays and die transition graph (STG) shown in Fig. 12. Each node in the
area. Therefore, when optimizing delays and area, we need to STG represents a state, and the edges are the transition func-
take layout into account (24). tion �. An FSM is incompletely specified if the next state func-

tion and/or the outputs are not specified for some combina-
tions of inputs and present states. Otherwise, it is completely

SEQUENTIAL CIRCUIT SYNTHESIS specified. Usually, the less the states are, the smaller the cir-
cuit area is. Therefore, it is desirable to reduce the number
of states (state minimization), if possible, before some binaryA sequential circuit can be specified by a set of registers
numbers are assigned to states (state assignment).(latches) and a logic network, which is a clocked sequential

network or synchronous logic network. They can also be de-
State Minimizationscribed by a more abstract model—finite-state machine

(FSM). We first focus on the FSM model. State minimization takes slightly different forms for com-
A finite state machine is defined by a sextuple (I, S, �, s0, pletely and incompletely specified FSMs. For convenience, we

O, �), where I, O, S, and s0 are primary inputs, primary out- denote the output sequence OS(IS, si) assuming that the FSM
puts, a set of states, and an initial or reset state (s0 � S). The is initialized in state si and an input sequence IS is given. For
next state function � takes a current state and primary inputs a completely specified FSM, two states si and sj are equivalent
as input and gives a next state. Therefore, � : S � I � S. if the output sequences OS(IS, si) and OS(IS, sj) are the same
The output function � takes either a state for a Moore model for any input sequence IS. It can be shown that si and sj are
(� : S � 0) or a state and primary inputs for a Mealy model equivalent if and only if, for any input I (not input sequence
(� : S � I � 0). We concentrate on the Mealy model because IS), they have the same output and have equivalent next
it is more general and the techniques that are introduced states for the same input (25). This suggests an iterative pro-
later can also be applied to Moore machines. Figure 11 shows cedure to find equivalent classes within ns steps and thus ob-
a Mealy-clocked sequential network. There are two more con- tain the minimum number of states. Number ns is the num-
cise but equivalent ways to describe a FSM rather than the ber of states before minimization. For incompletely specified
sex-tuple. They are the state-transition table and the state FSM, a pairwise compatibility is defined (25). However, the

computational complexity of finding a minimum is too high,
and often times heuristic algorithms are applied instead to
obtain near-optimal solutions.

State Assignment

State assignment or state encoding is the process of assigning
binary numbers to states of an FSM. Because the number of
bits used to encode states is related to circuit complexity a
minimum number of state bits is preferred. State assignment
for two-level logic circuits can be thought of as symbolic mini-
mization (26,27) whereas present states and next states are
input symbols and output symbols on the state-transition ta-
ble. However, because si may appear as present and next
states, a constraint must be added to make sure that si gets
the same encoding for serving as input and output symbols.
State assignment for multilevel logic circuits uses multilevel
logic network as the combinational logic circuits shown in Fig.
11. Recall from the third section that many transformationsFigure 11. State machine representation: Output and states are

functions of input and the previous states. optimize the network. A heuristic method was proposed (28–

LOGIC SYNTHESIS 589

and s3 (001) so that the distance between s1 and s2 is short. It
tries to maximize the number of common cubes. The common
cube a�b�c appears five times.

FSM and combinational logic synthesis have been conven-
tionally targeted to reducing area and critical path delay
(10,26,28). However, power dissipation during the logic syn-
thesis process is being considered only recently. The synthesis
process consists of two parts: state assignment, which deter-
mines the combinational logic function, and multilevel optimi-
zation of the combinational logic, which tries to minimize area
while at the same time trying to reduce the sum over all cir-
cuit nodes of the product of the circuit activity at a node and
the capacitance at the node.

The state assignment scheme in (31) considers the likeli-
hood of state transitions—the probability of a state transition
(say, from state S1 to state S2) when the primary input signalFigure 13. Fanout-oriented encoding tries to maximize the size of
probabilities (probability that an input is equal to logic ONE)common cubes.
are given. The state assignment minimizes the total number
of transitions occurring at the V inputs (or the present state
inputs) of the state machine shown in Fig. 11. It can be ob-30) to consider common cube extraction, that is, state assign-
served that scaled-down supply voltage technologies can stillment is done so that larger and/or more common cubes can
be applied after logic synthesis to reduce power dissipationbe extracted.
further. The multilevel logic optimization process is iterative.For example, assume that S � �s1, s2, s3, s4, s5, s6� and 3-bit
During each iteration, the best subexpression from among all(minimum number) encoding is used. s1 and s2 both have a
promising common subexpressions is selected. The objectivetransition to s3 when inputs are x1 and x2 respectively, as
function is based on both area and power savings. The se-shown in Fig. 13. We encoded s1 (001) and s2 (000) so that
lected subexpression is factored out of all affected expres-their Hamming distance is short. The Hamming distance be-
sions.tween two states is the number of 1’s in s1 XOR (bitwise) s2.

Let the encoded transition functions be f 1, f 2, f 3 and the state
bits be a, b, c. Then f 1 has two cubes x1a�b�c and x2a�b�c.

LOGIC SYNTHESIS FOR FPGAsTherefore, f 1 has a common cube a�b� because

Field-programmable gate arrays (FPGAs) combine the flexi-x1a′b′c + x2a′b′c′ = a′b′(x1c + x2c′) (5)
bility of mask programmable gate arrays with the conve-

Similarly, f 2 and the output have the same common cube nience of field programmability. This can be achieved by
a�b�. Keeping the Hamming distance short between states si channelled gate array architecture consisting of rows of con-
and sj is called fan-out oriented encoding if they have a transi- figurable logic modules interspersed with programmable rout-
tion to the same state. It tries to maximize the size of com- ing tracks (32,33). In such an architecture, a logic module can
mon cubes. be configured to implement different functions by connecting

Figure 14 shows an example of fan-in oriented encoding. one or more of its inputs to logical 0 (GND) or logical 1 (VCC)
The idea is to keep the Hamming distance short between or by shorting them together. This connectivity is achieved by
states si and sj with an incoming transition from the same programming the appropriate programmable connections
state. Let us consider Fig. 8. We encoded s1 (111), s2 (110), (PCs).

Figure 15 shows the row-based FPGA architecture (32,33).
Each logic module consists of an interconnection of a set of
logic gates and can implement different logic functions. Two
possible logic block architectures are multiplexor-based or
lookup-table-based. The multiplexor-based architectures use
logic blocks that combine a number of multiplexors and some
AND or OR gates. Lookup-table-based logic blocks can imple-
ment any logic functions with no more than a certain number
of inputs (35). A possible logic synthesis and technology map-
ping technique would exhaustively identify all possible logic
functions that a logic module can implement by tying inputs
of the logic module to ZERO or ONE and others to signals.
The number of unique functions for logic modules can be large
(�700 for Actel Act2, which is multiplexor-based). The num-
ber is usually much larger in lookup-table-based blocks. A li-
brary with these many combinational functions is difficult to
manage. The function list can be reduced by qualifying the
functions against an existing gate array or FPGA library. TheFigure 14. Fanin-oriented encoding tries to maximize the number of

common cubes. number of functions reduced from 766 to 115 for Act2 by us-

590 LOGIC SYNTHESIS

3. R. Rudell and A. Sangiovanni-Vincentelli, Multiplied-value mini-
mization for PLA optimization, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., CAD-6: 727–750, 1987.

4. O. Coudert and J. Madre, Implicit and incremental computation
of primes and essential primes of Boolean functions, Proc. Design
Autom. Conf., 1992, pp. 36–39.

5. O. Coudert, J. Madre, and H. Fraisse, A new viewpoint on two-
level logic minimization, Proc. Design Autom. Conf., 1993, pp.
625–630.

6. M. Dagenais, V. Agarwal, and N. Rumin, McBOOLE: A new pro-
cedure for exact logic minimization, IEEE Trans. Comput.-Aided
Des. Integr. Circuit Syst., CAD-5: 229–232, 1986.

7. P. McGeer et al., ESPRESSO-SIGNATURES: A new exact mini-
mizer for logic functions, Proc. Design Autom. Conf., 1993, pp.
618–621.

8. K. Bartlett et al., Multilevel logic minimization using implicit
don’t cares, IEEE Trans. Comput.-Aided Des. Integr. Circuit Syst.
IC’s, CAD-7 (6): 723–740, 1988.

9. J. Darringer et al., LSS: A system for production logic synthesis,
Figure 15. FPGA architecture can configure logic modules to imple- IBM J. Res. Dev., 28 (5): 537–545, 1984.
ment different functions.

10. R. Brayton et al., Multiple-level logic optimization system, IEEE
Trans. Comput.-Aided Des. Integr. Circuit Syst., CAD-6: 1062–
1081, 1987.

ing this scheme (34). The reduced number of functions, used 11. K. A. Bartlett et al., Multilevel logic minimization using implicit
after logic synthesis for technology mapping, produced excel- don’t cares, IEEE Trans. Comput.-Aided Des. Integr. Circuit Syst.,
lent results on benchmark circuits. Hence, such logic synthe- CAD-7: 723–740, 1988.
sis and technology mapping requires minimal changes in the 12. D. Bryan, F. Brglez, and R. Lisanke, Redundancy identification
logic synthesis and technology mapping algorithms described and removal, Int. Workshop Logic Synthesis, 1991.
earlier for gate arrays and ASIC’s. 13. S. C. Chang et al., Layout driven logic synthesis for FPGAs, Proc.

Let us consider the lookup-table-based FPGA architecture. Design Autom. Conf., 1994, pp. 308–313.
A direct mapping technique can also be used for mapping 14. S. Muroga et al., The transduction method-design of logic net-
logic functions into FPGAs. We assume that logic synthesis works based on permissible functions, IEEE Trans. Comput., C-

38: 1404–1424, 1989.or an optimization step has already been performed. The logic
network is decomposed into a forest of trees. The network 15. L. Berman and L. Trevillyan, Global flow optimization in auto-

matic logic design, IEEE Trans. Comput.-Aided Des. Integr. Cir-does not have to be represented as a set of 2-input NAND
cuit Syst., CAD-10: 557–564, 1991.gates and inverters because there is no explicit library. Each

16. K. Keutzer, DAGON: Technology binding and local optimizationtree is optimally mapped into the lookup table by using dy-
by DAG matching, Proc. Design Autom. Conf., 1987, pp. 341–347.namic programming (36). Note that the structure of the logic

17. R. Rudell, Logic Synthesis for VLSI Design, Ph.D. Thesis, Univ.function is not important for mapping, but what is important
California, Berkeley, 1989.is the number of inputs because a lookup table can implement

18. F. Najm, A survey of power estimation techniques in VLSI cir-any logic function up to a certain number of inputs. Hence, a
cuits, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., VLSI-2modified technology mapping can efficiently map a logic net-
(4): 446–455, 1994.work directly into a lookup-table-based architecture.

19. T.-L. Chou and K. Roy, Accurate Estimation of Power Dissipation
in CMOS Sequential Circuits, IEEE Trans. Very Large Scale In-

SUMMARY tegr. (VLSI) Syst., VLSI-4 (3): 369–380, 1996.
20. H. Touati, Performance oriented technology mapping, Ph.D. The-

In recent years automatic logic synthesis and technology sis, Univ. California, Berkeley, 1990.
mapping have been used very successfully to synthesize ran- 21. F. Mailhot and G. De Micheli, Technology mapping with Boolean
dom logic and control circuitry for optimizing area, timing, matching, IEEE Trans. Comput.-Aided Des. Integr. Circuit Syst.,

CAD-12: 559–620, 1993.and power dissipation. In this article we have surveyed com-
binational and sequential logic synthesis and technology map- 22. C. R. Morrison, R. M. Jacoby, and G. D. Hachtel, Techmap: Tech-

nology mapping with delay and area optimization, in G. Saucierping techniques. We also presented a modified technology
and P. M. McLellan (eds.), Logic and Architecture Synthesis formapping technique for FPGAs. Unfortunately the details of
Silicon Compilers, Amsterdam, The Netherlands: North-Holland,the algorithms were omitted, but readers should find the ref-
1989, pp. 53–64.erences useful for further studies.

23. M. Pedram, Power minimization in IC design: Principles and ap-
plications, ACM Trans. Des. Autom. Electron. Syst., 1 (1): 3–56,

BIBLIOGRAPHY 1996.
24. M. Pedram, N. Bhat, and E. S. Kuh, Combining technology map-

1. F. Hill and G. Peterson, Introduction to Switching Theory and ping and layout, The VLSI Design: An Int. J. Custom-Chip Des.,
Logical Design, 3rd ed., New York: Wiley, 1981. Simulation Test., 5 (2): 111–124, 1997.

25. F. Hill and G. Peterson, Switching Theory and Logical Design,2. W. Quine, The problem of simplifying truth functions, Amer.
Math. Mon., 59: 521–531, 1952. New York: Wiley, 1981.

LOGIC TESTING 591

26. G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli, Opti-
mal state assignment for finite state machines, IEEE Trans. Com-
put.-Aided Des. Integr. Circuit Syst., CAD-4: 269–284, 1985.

27. G. De Micheli, Symbolic design of combinational and sequential
logic circuits implemented by two-level logic macros, IEEE Trans.
Comput.-Aided Des. Integr. Circuit Syst., CAD-5: 597–616, 1986.

28. S. Devadas et al., MUSTANG: State assignment of finite-state
machines targeting multi-level logic implementations, IEEE
Trans. Comput.-Aided Des. Integr. Circuit Syst., CAD-7: 1290–
1300, 1988.

29. X. Du et al., MUSE: A MUltilevel Symbolic Encoding algorithm
for state assignment, IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuit Syst., CAD-10: 28–38, 1991.

30. B. Lin and A. R. Newton, Synthesis of multiple level logic from
symbolic high-level description language, Proc. IFIP Int. Conf.
VLSI, 1989, pp. 187–196.

31. K. Roy and S. Prasad, Circuit Activity Based Logic Synthesis for
Low Power Reliable Operations, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., VLSI-1 (4): 503–513, 1993.

32. A. E. Gammal et al., An architecture for electrically configurable
gate array, IEEE J. Solid State Circuits, 24 (2): 394–398,1989.

33. J. Birkner et al., A very high speed field programmable gate
array using metal to metal antifuse programming elements,
IEEE Custom Integr. Circuits Conf., May 1991, pp. 1.7.1–1.7.6.

34. C.-H. Shaw et al., An FPGA architecture evaluation framework,
ACM Workshop FPGAs, 1992, pp. 15–20.

35. H.-C. Hsieh et al., Third generation architecture boosts speed and
density of field programmable gate arrays, IEEE Custom Integr.
Circuits Conf., 1990, pp. 31.2.1–31.2.7.

36. R. Francis, J. Rose, and K. Chung, A technology mapping pro-
gram for lookup table based field programmable gate arrays, 27th
Design Autom. Conf., 1990, pp. 613–619.

TAN-LI CHOU

Intel Corporation

KAUSHIK ROY

Purdue University

LOGIC, TEMPORAL. See TEMPORAL LOGIC.

