
RADAR POLARIMETRY

Radar polarimetry is the study of the vector nature of radar
signals and how the relationships between the vector field
components can be used to infer the geometry and com-
position of the illuminated surfaces and targets. In much
the same way that a color photograph contains more infor-
mation than a black-and-white image, polarimetric radar
systems, those that measure the vector properties of the
scattered radiation, provide much more information on the
illuminated scene than do single polarization systems. The
polarimetric properties of a radar target are intimately
connected to the target’s geometry. Spherically shaped tar-
gets, such as raindrops, respond to polarized electromag-
netic radiation very differently than do the pointed corners
of a building, the filamentary branches of a tree, or the
waves on the ocean surface. Polarimetric radar systems
quantify these differences and exploit them. For instance,
polarimetry can be used to better discriminate between
bursts of wind-blown rain and aircraft, between break-
ing water waves and submarine periscopes, and between
forested and urban areas.

Polarization is a characteristic of all electromagnetic
(EM) radiation. Any EM wave, regardless of which part
of the spectrum it occupies, propagates through free space
as a transverse wave. The electric and magnetic fields of
the wave are directed perpendicular to one another and lie
in a plane perpendicular to the direction of propagation. It
is the direction of these fields and how they vary with time
and space that define the polarization state of the wave.The
phenomenon of polarization can be illustrated easily with
polarized sunglasses. Polarized sunglasses are designed to
preferentially attenuate light whose electric field is ori-
ented horizontally, since this is the predominant polariza-
tion state of the reflected light that constitutes glare. When
the glasses are oriented horizontally (as they are when they
are worn), the light that passes through the lenses is es-
sentially vertically polarized. If a second pair of glasses is
placed in line with the first, little change in the transmitted
light will occur until the second pair is rotated by 90◦. The
lenses then become cross-polarized, and the view through
the cascaded lenses goes dark as the second lens blocks the
polarized light passed by the first.

Most common radar systems, such as those found on
ships for navigation or those used by police to monitor au-
tomobile speeds, use a single antenna and thus a single
polarization. These systems transmit a pulse with a po-
larization state determined by the antenna design. The
pulse propagates out from the antenna, reflects off the tar-
get, and then propagates back to the antenna, where it is
detected by the radar receiver. Although the target echo
and the transmitted pulse may have different polarization
states, due to changes incurred by the target’s geometry or
composition, only the component of the reflected echo that
matches the antenna polarization will be collected. Were
the target to alter the polarization state sufficiently, such
that the reflected echo was orthogonal to the transmitted

pulse, no echo would be detected by the radar. As in the case
of the cross-polarized sunglasses, the target would be es-
sentially invisible to this single-polarization radar. In con-
trast, polarimetric radar systems use multiple antennas
and switches that allow a complete characterization of the
reflected echo while allowing variation in the transmitted
polarization as well. In fact, a fully polarimetric system
can determine the echo for any combination of transmit
and receive polarizations using only a small number (at
most four) of judiciously chosen measurements.

Radar systems require more than multiple antennas
and switches to operate polarimetrically. Another impor-
tant aspect of a polarimetric radar system is coherence.
Determination of the polarization state of an EM wave re-
quires specification of both the relative magnitudes of the
EM field components as well as their relative phases. A
radar is coherent if it can measure the relative phase, as
well as magnitude, of received echoes, and thus polarimet-
ric radars must be coherent. (An exception to this rule is
discussed in the last section of this article.) Relative phase
indicates the timing of one EM wave component relative to
another, specifying whether the vertically polarized com-
ponent reaches its peak when the horizontal is near its
minimum, for instance. This timing difference contains in-
formation on the structure and composition of the target.

Relative phase is also crucial if the response of a tar-
get to an arbitrary combination of transmit and receive
polarizations is to be mathematically synthesized, rather
than directly measured. This process is called polarization
synthesis. From a small set of coherent measurements uti-
lizing orthogonal polarizations (e.g., vertical and horizon-
tal), polarization synthesis computes the radar cross sec-
tion (RCS) of a given target for any desired combination
of transmit and receive polarizations. No additional mea-
surements of the target are needed. The results of polar-
ization synthesis indicate which polarization combinations
enhance the visibility of the target and which combinations
reduce the backscatter from other, undesired objects (often
referred to as clutter). In addition, a plot of the RCS as a
function of the receive and transmit polarizations forms a
polarization signature, which may indicate the basic geom-
etry of the target.

Just how much can be learned about an object or a sur-
face from its polarimetric properties is still an area of ac-
tive research, particularly in the remote sensing commu-
nity. Airborne polarimetric radars are being investigated
as tools for monitoring land use, classifying terrain, topo-
graphic mapping, and imaging of the ocean surface. The
mathematical tools that aid in the analysis and interpre-
tation of polarimetric data are under development as well.
These tools allow decomposition of a complicated scene into
simpler, canonical structures that indicate the nature of
the predominant scattering centers.

The following sections describe radar polarimetry in
more detail. In the next section, the basic mathematical
framework of polarimetry is presented, including the rep-
resentation of polarized EM fields and of the polarimetric
response. Important aspects of polarimetric system design
are then discussed, and the article concludes with a sum-
mary of current research topics.
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Figure 1. Electric field at three instants in time for a linearly
polarized EM wave. The electric field vector is always parallel to
a line defined by the vector ê. The direction of ê depends on the
relative magnitudes of the x and y components of the field.

MATHEMATICAL FOUNDATION

Representation of Polarized Electromagnetic Waves

Completely Polarized Waves. The polarization state of an
EM wave is determined by the relative magnitudes and
phases of its electric field components. Assume a plane EM
wave is propagating along the z-axis of a right-handed co-
ordinate system. The electric field lies in the x–y plane and
can be expressed as

where ω = 2πf is the radian frequency, k = 2π/λ is the
wavenumber, λ is the wavelength, t is time, and x̂ and ŷ

are unit vectors in the x and y directions, respectively. αx

and αy are the phases of the x and y components, and the
corresponding magnitudes are Eo

x and Eo
y .

The wave is said to be linearly polarized if αx = αy =
α. In this case, the two components are in phase with one
another and Eq. (1) can be simplified to

where

In this case, the field is always parallel to the unit vector
ê, as illustrated in Fig. 1. As the magnitude and sign of
the field vary with time and/or position, the tip of the field
vector traces out a straight line parallel to ê.

Elliptical polarization results when αx �= αy . In this
more general case, the two components are no longer in
phase and the direction of the electric field is no longer
constant. The tip of the electric field vector at any point in
space (value of z) traces out an ellipse as time progresses.

Figure 2. Electric field at three instants in time for an elliptically
polarized EM wave. The tip of the electric field vector traces out
an ellipse as time progresses. The ellipse is characterized by its
orientation angle ψ and its ellipticity angle χ.

This can be illustrated by evaluating Eq. (1) at a particular
value of z, for example, z = 0:

This ellipse is illustrated in Fig. 2. The ellipse is charac-
terized by its orientation angle ψ and ellipticity angle χ. In
terms of the original x and y amplitudes and phases,ψ and
χ are given by

where

and

Note that ψ is defined as the smallest angle between the x
axis and the major axis of the ellipse. The ellipticity angle
can be related to the major and minor axes of the ellipse,
2Eo

x ′ and 2Eo
y ′ , respectively, through the expression

With these definitions, the limits of χ are −45◦≤χ≤45◦

while ψ spans the range −90◦≤ψ≤90◦. The direction of ro-
tation of the electric field vector about the ellipse is spec-
ified by the sign of χ. By IEEE convention, left-hand el-
liptical polarization is specified by χ>0, while right-hand
rotation is denoted by χ<0. Note that if |χ| = 45◦, the ellipse
degenerates to a circle. This special case is referred to as
circular polarization.

Vector notation is a convenient way to denote polarized
fields. In vector exponential form, Eq. (1) can be written as

where
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completely defines the polarization state of the wave. When
a polarized electromagnetic wave is expressed in the vector
form of Eq. (11), the time harmonic factor e− j(ωt−kz) is as-
sumed. The phase factor e− jαy in Eq. (10) can be dropped,
since the value of αy depends on the arbitrary choice of
a phase reference. The polarization state can be defined
even more compactly by the complex polarization ratio, P
= Ey /Ex . All aspects of a polarized wave (except for field
strength) can be expressed in terms of this single, complex
number 1.

The Stokes vector is an alternative representation of po-
larized fields, defined in the following manner:

[The Stokes vector is sometimes defined with the element
V in the second position within the vector:

In addition, some authors define V = 2Im(E∗
xEy ) =

(−1)·2Im(ExE∗
y ).] While the representations in Eqs. (11)

and (12) contain the same information about wave polar-
ization in the case of a completely polarized wave, the
Stokes vector has the advantage that all the vector ele-
ments are real-valued, and, as discussed in the following
section, it can accommodate fields that are not completely
polarized.

For completely polarized waves, it can be shown that I2
0

= Q2 + U2 + V2. This is the equation of a sphere of radius I0.
Each polarization state can thus be mapped uniquely onto
a point of a sphere, using the parameters Q,U,V as Carte-
sian coordinates. This graphical representation of wave po-
larization is referred to as the Poincaré sphere (1).

Partial Polarization. Not all polarized EM waves can be
adequately described using the representation of Eq. (11).
The polarization state of natural EM waves, such as sun-
light, is unpolarized, meaning that the polarization state
varies randomly from one time instant to the next. Simi-
larly, the polarization state of the radar backscatter from
some surfaces, such as the sea surface or a wind-blown
canopy of trees, may vary rapidly with time. The total radar
backscatter in these cases is the vector sum of many indi-
vidual echoes produced by many discrete scattering cen-
ters located within the radar footprint, each of which is
moving and evolving. The net polarization state may be
nearly linear at one instant, but elliptical only a few mil-
liseconds later. Even if these surfaces could be frozen in
time, the polarization state would still vary appreciably
as the radar beam was moved about in space, since new
scattering centers would enter the spot illuminated by the
beam as others would exit. What is needed in these situ-
ations is a statistical measure of the polarization state of
the wave. The Stokes vector can be adapted to these situa-

tions, in which the time and/or spatially varying fields are
termed partially polarized.

For partially polarized waves, the ensemble averages of
the Stokes vector elements, indicated by angular brackets
〈〉, are used. The Stokes vector becomes

The average may be over time with the radar directed at a
single spot, over space if the surface is stationary, or over
a mixture of time and space. The last two elements, U and
V, indicate the degree of correlation between the x and y
components. For a completely unpolarized wave, Ex and Ey

are uncorrelated and thus U = V = 0.

Vertical and Horizontal Polarization. In most radar appli-
cations, it is more convenient to represent polarized waves
in a spherical, rather than rectangular, coordinate system.
Since the electric and magnetic fields that propagate in
free space are transverse to the direction of propagation,
and thus do not always lie in a convenient, fixed plane (such
as the x–y plane assumed thus far), a spherical coordinate
system is a more natural choice. This is illustrated in Fig.
3. The direction of propagation of the wave (formerly the ẑ

direction) is denoted by the unit vector k̂, while the trans-
verse coordinate unit vectors (formerly x̂ and ŷ) are v̂ and
ĥ. The coordinate system (k̂,v̂,ĥ) is defined such that it co-
incides with the standard spherical system (r̂,θ̂,φ̂). The let-
ters v and h refer to vertical and horizontal polarization,
respectively, a reference to the fact that if the θ=90◦ plane is
assumed to be Earth’s surface (as it usually is), v̂ contains
a vertically oriented component while ĥ lies in a horizontal
plane. In this coordinate system, a spherical wave can be
expressed as

where r = rr̂ and r is the distance from the coordinate sys-
tem origin. Sufficiently far from the origin and over a small
enough range of angles about the direction k̂, this spher-
ical wave can be considered to be a plane wave. All the
expressions derived above for a plane wave propagating in
the z direction are then still valid with the x and y sub-
scripts interchanged with “v” and “h”, respectively. Note
that with this transformation, the orientation angle, ψ, is
defined relative to the vertical axis. Other authors use al-
ternative conventions, however, that define ψ relative to
the horizontal.

Representation of the Polarimetric Response

The previous section describes how the polarization state
of an EM wave can be described mathematically. In this
section, two formalisms are presented that describe how
the polarization state of a wave is altered when it reflects
off a target. The first, which applies to completely polar-
ized waves, utilizes the scattering matrix to describe the
target’s polarimetric properties. The second, which can be
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Figure 3. Diagram indicating the decomposition of the electric
field E(t,z) into vertically and horizontally polarized components.
The direction of propagation, denoted by the unit vector k̂, and the
vertically and horizontally polarized unit vectors, v̂ and ĥ, respec-
tively, form a right-handed coordinate system coincident with the
standard spherical coordinate system (r̂,θ̂,φ̂). The terms “vertical”
and “horizontal” arise from the fact that ĥ is always parallel to the
horizontal (θ̂ = 90◦) plane while v̂ has a component in the vertical
(ẑ) direction.

applied to completely or partially polarized targets, uses
the Mueller matrix to describe the target. Both matrices
describe the target’s polarimetric properties by quantify-
ing how the polarization of the reflected wave is related to
the polarization of the incident wave, and both are complete
descriptions of the scattering properties of the illuminated
scene or target. As shown in what follows, the response of
the scene to any combination of transmit and receive po-
larizations can be computed from these matrices, without
the need for additional measurements.

When using any representation of the polarimetric re-
sponse, care must be taken that consistent source, tar-
get, and receiver coordinate systems are used. This arti-
cle assumes the backscatter alignment (BSA) convention
in which the incident and scattered wave unit vectors are
identical. For a description of other conventions, see Refs.
1 and 2. The notation used in this section closely matches
that of Ref. 2.

Polarization Scattering Matrix. The scattering matrix is
a 2 × 2 matrix relating the transmitted wave incident on
a target Et to the reflected wave at the receiver Er:

where

and

is the scattering matrix. The elements of S̄ are complex,
containing both magnitude and phase information, but in
most cases the four magnitudes and phases are not inde-
pendent. In the case of a monostatic radar in the absence of
any nonreciprocal materials (e.g., ferromagnetics or plas-
mas in a magnetic field), the reciprocity theorem forces S̄vh

= S̄hv , and thus there are three independent magnitudes
and two independent (relative) phases. Although not ex-
plicitly shown in Eq. (17), the elements of S̄ are in general
functions of the radar frequency as well as the orientation
of the target relative to the radar system.

The variation of the scattering matrix elements with
target orientation is undesirable in terms of target recog-
nition. The task of identifying an unknown target at an
unknown aspect would be much simpler if the form of its
scattering matrix were essentially independent of orienta-
tion. An eigenvalue analysis of the scattering matrix can
partially achieve this goal while also providing physical
insight into the scattering process. Through an eigenvalue
analysis (e.g., see Ref. 1), it can be shown that the scat-
tering matrix can be diagonalized and represented by the
following five independent parameters; m2, the maximum
RCS of the target;ψt the orientation angle; τ, the symmetry
angle; ν, the bounce angle; and γ, the polarizability angle.
With the exception of ψt , which is a direct measure of the
target’s rotation angle, these parameters are independent
of target rotations about the radar line of sight and are
thus relatively invariant indicators of a target’s identity.
(The parameter values will change, however, if the radar
views the target from a different line of sight.) τ is a mea-
sure of the symmetry of the target, having a value of 0◦ for
targets with a plane of symmetry and a value of ±45◦ for
nonsymmetric objects, and is also the ellipticity angle of
the eigenvectors. The bounce angle ν indicates the number
of bounces involved in the target scattering, with a value
of 0◦ corresponding to an odd number of bounces and a
value of ±90◦ indicating an even number. Examples of odd
bounce targets are spheres (one bounce) and trihedral cor-
ner reflectors (three bounces; see Example 1 below here),
while the dihedral corner reflector is an even bounce scat-
terer (two bounces; see Example 2 here). The polarizability
γ indicates the ability of the target to polarize incident ra-
diation that is unpolarized, with 0◦ and 45◦ corresponding
to complete and no polarizability, respectively. An example
of a target with a high degree of polarizability is a long,
thin wire, which tends to reflect only radiation polarized
parallel to its axis. In contrast, a sphere exhibits γ = 45◦,
since it has no preferred axis of symmetry. These five pa-
rameters are sometimes referred to as the Huynen param-
eters, in reference to their introduction by J. R. Huynen
(3). These parameters also describe the null and maximum
polarizations for the target, those polarization states for
which the RCS is zero and m2, respectively. When plotted
on the Poincaré sphere, these polarization states define a
characteristic structure called the polarization fork (see,
e.g., Refs. 2 and 4).

In practice, the elements of the scattering matrix are
generally obtained by recording the radar echoes from two
pulses. First, the radar system transmits a pure vertically
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polarized wave

and the receiver detects and records both the vertically
and horizontally polarized echoes, Evv and Ehv . From Eqs.
15,16,17, S̄vv and S̄hv can then be calculated from

Similarly, S̄hh and S̄vh are determined by transmitting a
pure horizontally polarized pulse,

and recording the vertically and horizontally polarized
echoes Ehh and Evh from which the remaining scattering
matrix elements

are obtained. Of course, two pulses of any two linearly in-
dependent polarization states could be used to determine
the scattering matrix elements, since Eq. (15) defines four
equations in four unknowns. But in general practice, pure
vertically and horizontally polarized pulses are used.
Example 1. (Sphere) The simplest scattering matrix is
that of sphere, given by

where the constant A depends on the sphere’s size. This
target does not alter the polarization state of the incident
radiation, since S̄hv = S̄vh = 0, and responds identically to
horizontally and vertically polarized radiation. Other ob-
jects with scattering matrices of the same form are large,
flat surfaces at normal incidence and trihedral corner re-
flectors. The latter is a type of radar calibration target re-
sembling the inside corner of a box. For these targets, the
Huynen parameters τ, ν, and γ are equal to 0◦, 0◦, and 45◦,
respectively, while the orientation angle ψt is arbitrary.
Example 2. (Rotated Dihedral Corner Reflector) A dihe-
dral corner reflector is a radar calibration target formed
from two intersecting, perpendicular plates. The scatter-
ing matrix of this target with the seam rotated at an angle
θ relative to the horizontal plane is

where A depends on the size of the plates. The tendency of
this target to depolarize (change the polarization state of)
the incident radiation is strongly dependent on its orienta-
tion. At θ = 22.5◦, vertically or horizontally polarized inci-
dent radiation will be rotated 45◦ after reflection, whereas
at θ = 45◦, the rotation is 90◦. The Huynen parameters for
the dihedral are ψt = θ, τ = 0◦, ν = 45◦, and γ = 45◦.

Example 3. (Helix) The scattering matrix for a simple he-
lix is

where the + and − signs refer to left- and right-handed he-
lices, respectively. The factor j =

√− = ejπ/2 arises from the
natural mode of oscillation for the helix, circular polariza-
tion, in which the relative phase between the vertical and
horizontal components is π/2 radians (90◦). The Huynen
parameters τ and γ are ±45◦ and 0◦, respectively, while ψt

and ν are arbitrary.

Mueller Matrix. In the same way that the scattering ma-
trix relates the EM fields incident on and reflected from a
target, the Mueller matrix relates the incident and scat-
tered Stokes vectors

where

and L̄ is the 4×4 Mueller matrix. Unlike in the case of the
scattering matrix, the Mueller matrix elements are real.
(Note that a factor of 1/r2 is required, rather than 1/r as for
the scattering matrix expression, since the Stokes vector
elements are proportional to products of the field compo-
nents.) As shown in Ref. 2, the Mueller matrix elements can
be expressed in terms of the scattering matrix elements
through

where

and

This relationship between L̄ and S̄ is strictly valid only
for completely polarized targets, since S̄ does not exist oth-
erwise. Complex radar targets, such as wind-blown trees,
exhibit time-varying polarization matrix elements, and no
single scattering matrix can describe their polarization
transformation properties. The elements of S̄ tend to be
zero-mean quantities, and so averaging these terms is not
an effective way to describe the average polarization scat-
tering behavior of a target. This average behavior can be
described by computing a time-averaged Mueller matrix,
however. In practice, the average Mueller matrix is some-
times calculated by first computing the scattering matrix
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elements from each pair of a large number of alternating
vertically and horizontally polarized transmit pulses, us-
ing Eqs. (18) and (19). Equations (26) and (27) are then used
to compute individual Mueller matrices for each measure-
ment.The final,averaged Mueller matrix is then calculated
by averaging the individual matrix elements. This proce-
dure is valid if the target or scene of interest can be consid-
ered to be stationary, and thus completely polarized, over
the time period required to transmit a single pair of ver-
tically and horizontally polarized pulses. As this interval
can be as short as a fraction of a millisecond, this is a very
reasonable assumption in many cases. A direct technique
for computing the time-averaged Mueller matrix, without
calculating a sequence of polarization scattering matrices,
is described in Ref. 5.

Some authors use different names for the matrix L̄ de-
fined using the BSA convention and that defined using the
forwardscatter alignment (FSA) convention, referring to
the former as the Kennaugh matrix and the latter as the
Mueller matrix (1). While making this distinction avoids
potential confusion, both are commonly referred to as the
Mueller matrix.

Other Representations of the Polarimetric Response. In
addition to the scattering and Mueller matrix formalisms,
the polarimetric scattering properties of the target can also
be expressed by the covariance matrix C and the coherency
(or density) matrix ρ. In terms of the scattering matrix el-
ements, these matrices are given by

where

(These expressions apply to the backscattering, reciprocal
case. In the general bistatic case, both C and ρ are 4×4
matrices.) As in the case of the Mueller matrix, these ma-
trices can be applied to the partially polarized case through
averaging of the elements, and they contain the same infor-
mation as do the scattering or Mueller matrices. Different
aspects of polarimetry are expressed more compactly with
one representation or the other, however. (See, e.g., Refs. 2
and 4.)

Polarization Synthesis. The scattering and Mueller ma-
trices are complete representations of the polarimetric
scattering properties of a target or surface in that the tar-
get response to any combination of transmit and receive po-
larizations can be computed from them. Polarization syn-
thesis refers to the process of determining a target’s re-
sponse to an arbitrary combination of transmit and receive
polarizations by way of the target’s scattering or Mueller

matrix, without actually transmitting and receiving these
polarization states.

The equation describing polarization synthesis can be
derived by starting with the definition of the (monostatic)
RCS of a target

where |Es|2 is the electric field intensity scattered by the
target, measured at the receiver, and |Et |2 is the incident
electric field intensity, measured at the target, and r is the
distance between the radar antenna and the target. This
expression states that the RCS is given by the power per
unit solid angle incident on the antenna divided by the
power per unit area incident on the target.

As it stands, this expression does not account for the po-
larization of the receive antenna. A system will measure
this value of the RCS only if the receive antenna is de-
signed to receive the polarization state of Es. Otherwise,
only a fraction of the power incident on the antenna will
be actually absorbed, and the measured RCS will be lower
than that given by Eq. (31). This effect can be accounted
for in the following way. The polarization of an antenna is
defined by the unit vector p, the polarization vector, given
by

where,by IEEE convention,E is the far field radiated by the
antenna when it is used to transmit. If a field Es impinges
on a receive antenna having polarization pr, the effective
field incident on the antenna is the projection of Es on pr,
pr · Es and the effective field intensity is then |pr · Es|2. The
expression for the cross section in this case is

Noting that

and making the substitution  p t = (Et/|Et |) produces the po-
larization synthesis equation:

Once S̄ has been determined, the target RCS for any com-
bination of transmit and receive polarizations can be com-
puted from this expression. The unit vectors pr and pt cor-
responding to the desired transmit and receive polariza-
tions are simply inserted. A similar expression using the
Stokes vector and Mueller matrix representation can also
be derived (2).

Polarization Response. The RCS values computed by Eq.
(34) can be represented graphically by a surface termed
the polarization signature or polarization response (6). The
term signature refers to the fact that these surfaces are
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Figure 4. (a) Copolarized signature for a sphere. The surface is a plot of the normalized RCS of the sphere versus the orientation and
ellipticity angles of the transmit and receive polarizations. The cross section is maximum for linearly polarized radiation, as indicated by
the ridge in the surface for χ = 0, and vanishes for left- and right-handed circular polarization (χ = ±45◦). (b) Cross-polarized signature for
the sphere. The cross-polarized signature is a plot of the normalized RCS of the sphere versus the orientation and ellipticity angles of the
transmit polarization, assuming that the transmit and receive antennas are orthogonally polarized. The cross-polarized RCS vanishes for
linear polarization and is maximized for left- and right-handed circular polarization.

Figure 5. (a) Copolarized signature for a dihedral corner reflector with its seam oriented hori-
zontally. The RCS is maximum for vertical, horizontal, and circular polarizations and vanishes for
linear polarizations with ψ = ±45◦. (b) Cross-polarized signature for the dihedral corner reflec-
tor. The cross-polarized RCS is maximum for linear polarizations with ψ = ±45◦ and vanishes for
vertical, horizontal, and circular polarizations.

Figure 6. (a) Copolarized signature for a left-handed helix. The copolarized RCS is maximized
by left-handed circular polarization and vanishes for right-handed circular polarization. (b) Cross-
polarized signature of a left-handed helix. The cross-polarized response is maximized with linear
polarizations, but the peak response is weaker than the maximum exhibited in the copolarized
case.

distinctive and can be used to broadly classify targets. Two
types of signatures are used: the co-polarized signature, in
which the incident and scattered polarization states are
assumed to be identical; and the cross-polarized signature,
in which the incident and scattered states are assumed to
be orthogonal. The signatures of some common targets are
shown in Figs. 4–6.

Example 4. (Sphere) The co- and cross-polarized signa-
tures of a sphere are shown in Figs. 4a and 4b, respectively.
The signature consists of a plot of the target RCS versus
the ellipticity and orientation angles χ and ψ of the inci-
dent and scattered radiation. Linearly polarized states lie
along the χ = 0◦ line, with vertical located at (χ = 0◦, ψ =
±90◦) and horizontal located at (χ = 0◦, ψ = 0◦). Left- and
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right-handed circular polarizations are located along the
χ = ±45◦ lines. The ridge in the copolarized surface along
the χ = 0◦ line indicates that the copolarized RCS of the
sphere is maximized when the polarization is linear. The
response vanishes when circular polarization is used. (For
this reason, some operational radar systems use circular
polarization when monitoring targets through rain. This
choice of polarization reduces the clutter signal produced
by raindrops, which are roughly spherical in shape.) In con-
trast, the cross-polarized response is minimized by linear
polarization and maximized when circular polarization is
used. The surfaces in Fig. 4 are also the polarization sig-
natures of a trihedral corner reflector and a flat plate at
normal incidence, since these targets have the same nor-
malized scattering matrices as the sphere [Eq. (20)].
Example 5. (Dihedral Corner Reflector) Figures 5a and 5b
show the co- and cross-polarized responses, respectively, of
a dihedral corner reflector with its seam oriented parallel
to the horizontal plane. The copolarized RCS is maximum
for vertical, horizontal, and circular polarizations, but van-
ishes for linear polarized radiation with an orientation an-
gle ψ = ±45◦. Examination of the dihedral scattering ma-
trix [Eq. (21)], shows that when the incident polarization
state is linear withψ = ±45◦, the scattered and incident po-
larization states are orthogonal. The copolarized response
consequently vanishes, while the cross-polarized response
(Fig. 5b), exhibits maxima at these points.
Example 6. (Helix) The co- and cross-polarized signatures
of a left-handed helix are shown in Figs. 6a and 6b, respec-
tively. The co-polarized RCS is maximized when left-hand
circular polarization is used and vanishes for right-hand
circular polarization. Unlike for the sphere or the dihedral
corner reflector, the cross-polarized response of the helix
never achieves a value of 1.

POLARIMETRIC RADAR DESIGN

A polarimetric radar, or polarimeter, measures the scatter-
ing matrix of a target by sequentially transmitting a pair
of orthogonally polarized pulses toward the target and si-
multaneously measuring the co- and cross-polarized com-
ponents of the scattered wave. The need to transmit and
receive multiple polarizations makes the design of a polari-
metric radar more complicated than the design of a conven-
tional, single polarization, radar system. A basic polarime-
ter is composed of a transmitter that generates microwave
pulses at a specified carrier frequency, an antenna capable
of transmitting and receiving two orthogonally polarized
wave components and focusing these waves into a narrow
angular beamwidth in space, switching circuitry that al-
ternately routes the transmitted pulses between the two
orthogonal ports of the antenna feed, a pair of receivers
for detecting the signals received from the antenna, and
a multichannel data acquisition system for recording the
signals backscattered from the target.

As in conventional radar design, the most important
design equation for radar polarimetry is the radar range
equation

which gives the receiver signal-to-noise ratio (SNR) in
terms of the peak transmitted power level Pt; the an-
tenna gain, Gt = 4π/θ2, where θ is the antenna’s focusing
beamwidth (assumed here to be equal in azimuth and ele-
vation planes, as is the case for a pencil-beam antenna);
the antenna’s collecting area A, which typically ranges
between 60% and 95% of its physical area, depending
on the aperture illumination efficiency; the polarization-
dependent radar cross section of the target σ; the range
between the radar antenna and the target R; the band-
width B and noise figure Fn of the receiver; Boltzmann’s
constant, k = 1.38 × 10−23 J/K; and the physical tempera-
ture of the receiver T, usually taken to be 290 K. Whereas
reliable radar target detection can often be accomplished
with a receiver SNR of 15 dB using a conventional radar
(7), measuring the polarimetric response of a target typi-
cally requires SNR levels of 20 dB or higher (8). A large
part of polarimeter system design involves trading off the
various parameters of Eq. (35) to achieve a specified level of
SNR performance. Reference 2 describes some of the trade-
offs involved in the design of a spaceborne imaging radar
polarimeter having transmitted power level Pt = 5 kW, an-
tenna gain Gt = 10,000 (40 dB), and surface area A = 32 m2

(15 dB) that achieves an SNR level of 24 dB when view-
ing Earth’s surface at 400 km range. Another example of a
spaceborne imaging polarimeter is given in Ref. 9.

The operating wavelength of a polarimetric radar sys-
tem is chosen as the result of a tradeoff among considera-
tions such as the physical size of the antenna, peak trans-
mitted power level, availability of components, cost, and
for most remote sensing applications, the sensitivity of the
surface backscatter coefficient [or normalized radar cross
section (NRCS)] to environmental parameters. In general,
radar systems operating at higher microwave frequencies
have smaller antennas and larger peak transmitted power
levels than do radars operating at lower microwave fre-
quencies. The focusing gain and physical size of an antenna
are related by the equation A = λ2Gt /4π (assuming 100%
aperture efficiency), where wavelength λ is inversely re-
lated to the operating frequency f by the equation λ = c/f,
where c is the speed of light. These equations reveal that
larger antenna gains can be obtained for a given antenna
size at higher frequencies than at lower frequencies. Con-
versely, a specified amount of focusing gain can be achieved
with a smaller physical antenna size at a higher frequency
than at a lower frequency. However, receiver SNR is propor-
tional to the product of the focusing gain and the physical
collecting area of the antenna.Therefore, increasing the op-
erating frequency to reduce the physical size of an antenna
while achieving a specified level of antenna gain results in
reduced receiver SNR. This loss must be compensated by
increasing the peak transmitted power level of the radar
system. This tradeoff is particularly important in airborne
and spaceborne radar system deployments where it is de-
sirable to utilize small antennas.

At millimeter-wave frequencies and higher microwave
frequencies (typically above X band), atmospheric attenu-
ation becomes an important consideration, and the SNR in
Eq. (35) must be multiplied by the term exp(−2αR), where
α, having units of nepers (napiers) per meter (Np/m), is the
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attenuation coefficient. Attenuation coefficients for propa-
gation through the clear atmosphere and through rain are
given in Ref. 10 for different frequencies. When scattering
targets are small compared with the operating wavelength,
such as raindrops observed with a millimeter-wave radar
system, σ is a strong function of frequency and is given by
the Rayleigh expression σ = a/λ4, where the constant a de-
pends on the shape of the target. The SNR in this case is
given by the equation

which reveals that increases in the operating frequency
(decreases in wavelength) result in higher SNR levels rela-
tive to operating at a lower operating frequency. Reference
11 describes a dual-frequency polarimetric radar system
developed for cloud profiling studies. The radar contains
transmitters operating at 33 and 95 GHz that share a com-
mon 1-m-diameter dielectric lens antenna. Because of the
strong wavelength dependence in the backscatter coeffi-
cient from the raindrops, the 33-GHz channel of this radar
requires 120 kW peak power level, whereas the 95-GHz
channel requires only 1.5 kW peak power level to achieve
the same SNR.

Transmitter Design Considerations

Polarimetric processing of radar data involves the coherent
combination of scattered wave measurements correspond-
ing to a pair of consecutive transmitted pulses. Phase-
coherent transmitters are therefore used in most polari-
metric radar designs. (A technique for measuring the time-
averaged Mueller matrix directly that does not require a
coherent transmitter is described in Ref. 5.) The master os-
cillator power amplifier (MOPA) transmitter configuration
is commonly used in coherent transmitter design. In this
configuration, a low-power (typically in the tens of milli-
watts) microwave signal, derived from a microwave oscil-
lator that is phase-locked to a stable crystal oscillator, is
pulse-modulated using a pin diode switch and then ampli-
fied to achieve the required peak power level using a power
amplifier. Solid-state field-effect transistor (FET) ampli-
fiers are often used in lower frequency (X-band and below)
microwave systems having power levels of several watts.
Microwave power tube amplifiers [TWTs (traveling-wave
tubes) and klystrons] are often used in higher-power and
microwave frequency radar transmitters. Examples of po-
larimeter systems utilizing klystron amplifiers with peak
power levels of 200 kW at S band and 1.5 kW at 95 GHz are
described in Refs. 11 and 12, respectively. MOPA transmit-
ters tend to be expensive, typically costing several tens to
hundreds of thousands of dollars. These systems provide
for highly flexible transmitted waveforms, however, and a
variety of waveforms (pulsed, chirped, phase-coded) can be
generated using a MOPA design.

Self-excited power oscillator tubes, such as the mag-
netron oscillator and the extended interaction oscillator
(EIO), are also used in polarimeter transmitter designs.
These devices often cost considerably less than MOPA
transmitters, but they are typically limited to pulsed ap-
plications. These incoherent power oscillators typically ex-

hibit frequency drift and pulse-to-pulse phase modulations,
and frequency stabilization and coherent-on-receive cir-
cuits are required when these devices are used in polari-
metric radar designs. Reference 11 gives an example of a
high-power magnetron transmitter for a millimeter-wave
polarimeter system.

Polarimeter Antennas

Polarimetric radar antennas must be capable of transmit-
ting and receiving two orthogonally polarized waves. Any
pair of orthogonal polarizations can be used, but verti-
cal/horizontal linear and right/left circular are the most
common. As in a conventional radar, the physical size of
the antenna must be large enough to achieve the focus-
ing beamwidth and directive gain specified by the system
design and SNR budget, and the antenna sidelobes must
be below some specified value. The antenna designs used
in radar polarimeters must also achieve high polarization
purity. A typical specification requires the cross-polarized
radiation, integrated across the antenna pattern, to be 30
dB below the copolarized signal level (8).

Many of the antennas used for conventional radar de-
sign can be used in polarimeter systems by adapting them
for dual-polarization operation. A corrugated horn antenna
equipped with an orthomode transducer (OMT) can be used
for dual-linear polarization operation in applications re-
quiring modest directive gain (up to 20 dB). Higher levels
of directive gain can be achieved by using the corrugated
horn to illuminate a parabolic reflector in either a prime-
focus or Cassegrain configuration (13, 14). References 11
and 15 describe millimeter-wave polarimeter systems that
use dielectric lens antennas. The antenna for the polari-
metric radar flown on the space shuttle, the Spaceborne
Imaging Radar—C (SIR-C), is a microstrip patch array
with transmit/receive (T/R) modules distributed across the
array surface (9). The system operates simultaneously at
L and C bands.

Polarization Switches

Single-pole double-throw (SPDT) switches are needed in
the transmitter of a polarimetric radar to alternately route
the transmitted signal between the two ports of the an-
tenna. The switching is performed on a pulse-to-pulse ba-
sis, so the switches must be capable of toggling the high-
power microwave-transmitted pulse between the two an-
tenna ports at switching speeds of 0.1–1 ms or faster. For
low-power (less than 10 W), short-range polarimeter de-
signs, pin diode switches are often used. Higher-power ap-
plications (up to tens or hundreds of watts of peak trans-
mitted power level) typically use ferrite switching circu-
lators. Three circulators are typically used in the design,
as described in Ref. 14. Off-the-shelf ferrite switching cir-
culators capable of handling several tens of kilowatts are
commonly available at L- through Ku-band microwave fre-
quencies at a cost of several thousand dollars per circulator.

Many polarimeter designs require peak transmitter
power levels that are too high for off-the-shelf ferrite
switches. Reference 14 describes a high-power, 1-MW S-
band polarimeter design that uses a ferrite switching cir-
culator custom-made at a cost of $75,000. Reference 11 de-
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scribes a 33-GHz, 125-kW polarimeter that uses two sepa-
rate transmitters to feed the antenna ports, rather than a
single transmitter with a polarization switch.

Receiver and Data Acquisition

Two superheterodyne receiving channels are used in a po-
larimeter to detect the co- and cross-polarized components
of the scattered wave. Current designs achieve dynamic
ranges of up to 100 dB by using low-noise front-end am-
plifiers, matched filters, and wide-dynamic-range coherent
detectors. Standard in-phase/quadrature demodulator cir-
cuits operate over a limited dynamic range, typically on the
order of 30 dB. The wide-dynamic-range circuits used in
many polarimeter receivers use logarithmic detectors for
measuring signal amplitude and constant-phase limiters
followed by in-phase/quadrature demodulators for measur-
ing signal phase. Examples of these detector circuits are
given in Refs. 11 and 14. Data acquisition systems with six
channels are required in polarimeters that utilize these
wide-dynamic-range detectors.

Polarimeter Calibration

Calibration is an important aspect of polarimetric radar
design that has received considerable attention in recent
years. In order to determine the scattering or Mueller
matrix of a target, accurate measurements of the rela-
tive magnitudes and phases of the EM fields constitut-
ing the target echo are needed. However, the estimates of
these quantities that the radar system produces are in-
evitably contaminated by the system itself, due to com-
ponent mismatch and/or a lack of polarization isolation.
Without a proper calibration, the fixed biases (errors) in
the measured magnitudes and phases introduced by the
system cannot be differentiated from the true radar re-
sponse of target. The objective of calibration is thus to de-
termine the gain (magnitude and phase) of the four dif-
ferent measurement paths (vertical transmitter–vertical
receiver; vertical transmitter–horizontal receiver; hori-
zontal transmitter–horizontal receiver; and horizontal
transmitter–vertical receiver) followed by the radar pulse
during measurement of a target’s scattering matrix, as well
as to estimate the degree of cross-polarization distortion
caused by the transmitting and receiving antennas. Once
these calibration measurements are made, the contribu-
tion of the system to any target measurement can be deter-
mined and removed. One technique that is commonly used
is to measure the polarimetric scattering behavior of three
reference targets having known scattering matrices. The
measurements so obtained provide enough information to
uniquely determine the set of seven complex unknowns in
the polarimeter distortion matrices required for polarimet-
rically calibrating the radar system (16). Other calibration
techniques have been developed that invoke assumptions
about the observed targets, such as reciprocity and uncor-
related co- and cross-polarized scattering, to estimate the
system distortion matrices directly, without relying on ref-
erence scattering targets (17). A procedure for field cali-
bration of bistatic polarimeter systems without using ref-
erence scattering targets has also been developed (18). For
a summary of polarimetric calibration procedures, see Ref.

19.

CURRENT RESEARCH

Radar Scattering Studies

Polarimetric radar measurements can often be used to de-
termine the physical scattering mechanisms responsible
for a radar echo. As discussed in a previous section, a
sphere and a trihedral corner reflector are examples of
“odd-bounce scatterers” that exhibit scattering matrices
having elements Svv and Shh in phase with each other. A
dihedral corner reflector, in contrast, is an example of an
“even-bounce scatterer”, in which the Svv and Shh elements
exhibit a 180◦ phase difference. In the case of the Mueller
matrix, the elements L33 and L44 convey similar informa-
tion. A complex radar target dominated by a single-bounce
scattering mechanism exhibits large positive values for el-
ements L33 and L44, whereas these elements are negative
when the target is dominated by a double-bounce scatter-
ing mechanism. In contrast, the Mueller matrix of a target
composed of a combination of even- and odd-bounce scat-
terers exhibits near-zero values for L33 and L44 (20).

The mechanisms responsible for radar backscatter from
the sea surface are a topic of current investigations.
McLaughlin et al. (13) describe measurements of ocean
waves in the Chesapeake Bay performed at a 3◦ grazing
angle using a high-range-resolution (1.5-m) X-band polari-
metric radar. These measurements were conducted to de-
termine the physical scattering mechanisms responsible
for sea spikes, which are strong radar echoes with anoma-
lous polarization characteristics that occur in low-grazing-
angle radar backscatter from the ocean surface. Figure 7
shows a typical copolarization signature of the ocean sur-
face echo in the absence of a sea spike. The plot exhibits
maximum RCS at VV polarization, minimum RCS at HH
polarization, and intermediate cross sections of approxi-
mately 0.25, corresponding to a level 6 dB below the VV
peak, at right-hand and left-hand circular polarizations.
The coefficient of variation, a measure of the polarization
sensitivity of a scatterer, is defined as the ratio of minimum
to maximum RCS in a polarization signature plot (6). The
coefficient of variation of this plot is 0.01 (−20 dB), indi-
cating that the radar echo is highly polarized. The Mueller
matrix (not shown) exhibited large values for L33 and L44,
meaning that a single-scattering mechanism, such as dis-
tributed Bragg scattering, dominates the radar echo from
the ocean surface. Figure 8 shows a copolarization signa-
ture for a sea spike radar echo that occurred during the
passage of a long ocean wave crest through the radar res-
olution cell. The sea spike echo exhibits polarimetric scat-
tering characteristics that are substantially different from
the ocean surface echo in the absence of sea spikes. Figure
8 exhibits RCS maxima at VV and HH polarizations as well
as a large “pedestal” corresponding to relatively high cross-
section values at other copolarization states. The coeffi-
cient of variation for this plot is 0.3 (−5.2 dB), a relatively
large value, meaning that the echo is weakly polarization-
sensitive. The L33 and L44 Mueller matrix elements for this
echo had small values indicating that no single scattering
mechanism dominates the backscatter signal. One possi-
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Figure 7. Copolarized signature of the sea surface in the absence
of sea spikes. The high RCS at vertical polarization, the minimum
at horizontal polarization, and the high degree of polarization (low
pedestal) indicate a single, Bragg-like scattering mechanism.

Figure 8. Copolarized signature of the sea surface in the pres-
ence of a sea spike. Peaks in the response at both vertical and
horizontal polarizations and the low degree of polarization (high
pedestal) indicate a mixture of scattering mechanisms.

ble explanation for this observation is that a combination
of Bragg resonant waves and non-Bragg scatterers, such
as plumes generated at breaking wavecrests, combine to
form the sea spike echo from the ocean surface.

Sletten et al. (21) have also utilized a polarimetric radar
to investigate sea spikes. In their experiments, an ultra-
wideband, polarimetric radar system was used to inves-
tigate the backscatter from breaking water waves gener-
ated in a laboratory wavetank. (The term ultrawideband
refers to the ability of a radar to measure the backscat-
ter from a target over a wide band of radar frequencies
simultaneously.) Observed differences in the VV and HH
responses as a function of radar frequency indicate that
the strongest echoes (sea spikes) produced by the breakers
are the result of a double-bounce scattering mechanism,
arising from multiple scatter between the front face of the
wave and a plume near its crest. In particular, the VV and
HH frequency responses were found to be roughly comple-
mentary (i.e., HH high when VV is low, and vice versa), a
result related to the 180◦ phase shift observed between Shh

and Svv for double-bounce scatterers.

Image Classification

Another active area of research is image classification. In
remote sensing, the objective of this research is to auto-
matically separate different regions of an image into dif-
ferent classes, dependent on the type of terrain or land
usage. For instance, classification schemes are under de-
velopment to separate forested, urban, agricultural, and
water-covered regions in remotely sensed imagery. In an
ideal classification scheme, the signal characteristics that
define each class can be uniquely associated with physi-
cal attributes of the scatterers in that class. Polarimetric
images are the best candidates for this type of processing,
given the amount of information they provide on the scat-
terers in the scene. Signal polarization constitutes another
dimension in which distinctions can be drawn between re-
gions in an image. The same principle can be applied to the
problem of detecting and classifying targets (as opposed to
regions within an image) with a nonimaging radar. This is
the situation encountered in some military applications.

Polarimetric target decomposition is one approach to
classification. In this approach, the scattering, Mueller, or
coherency matrix is considered to be a linear combination
of several basis matrices, each of which represents a canon-
ical target or a departure of the original matrix from the
canonical target. In any radar image of a real surface, the
signal for a given pixel is produced by several (perhaps
many) scattering centers or objects within the illuminated
scene. The total signal is a mixture of the echoes produced
by each scattering center, and thus the polarimetric prop-
erties of that pixel are a mixture as well. In addition, mo-
tion of the scatterers (due to surface winds, e.g.) may cause
variation in their scattering properties, resulting in partial
polarization. Target decomposition techniques attempt to
break the measured matrices down into their fundamental
constituents or to extract the characteristics of the primary
scattering centers from the background.

The application of polarimetric decomposition theories
to radar problems began with the pioneering work of Huy-
nen (22). Huynen decomposed the coherency matrix into
two components: a pure (i.e., completely polarized) target,
and a mixed (partially polarized) state that was invariant
to rotations of the radar system about the line of sight.
The pure target is intended to represent the average, or
dominant, target, and the mixed state is the residue or
remainder. Enforcing rotational invariance on the residue
ensures,at least to some degree, that the mixed state has no
preferred axis of symmetry and is thus produced by the un-
polarized noise in the measurement. Holm and Barnes (23)
later determined that there are actually two other Huynen-
like decompositions of the coherency matrix, which makes
interpretation of the results somewhat ambiguous. Holm
and Barnes also developed another decomposition method,
referred to as the “natural” or “characteristic” decomposi-
tion, which breaks the coherency matrix into three compo-
nents: a matrix representing a pure state that provides a
measure of the average target; a mixed-state matrix, which
indicates the variance of the target about its average; and
an unpolarized component. This decomposition is based
on an eigenvalue analysis of the coherency matrix and
can thus be expected to produce statistically independent



12 Radar Polarimetry

components. In a simulation, this method was successfully
used to extract a rotating dihedral corner reflector embed-
ded in polarization noise. Krogager and Czyz (24) have
taken a different approach to the decomposition problem,
concentrating instead on decomposition of the scattering
matrix. In this technique, the scattering matrix is decom-
posed into three coherent (nonaveraged) components that
can be physically interpreted as representing a sphere, a
rotated dihedral corner reflector, and a helix. While these
three matrices are not orthogonal (the dihedral component
can also be attributed to a pair of helices), the technique
has physical appeal and may be a natural scheme for some
applications. Freeman and Durden (25) have developed
a three-component model comprising three mechanisms:
volume scatter from a cloud of dipoles with random ori-
entations, double-bounce scatter from two orthogonal sur-
faces with different dielectric constants, and a moderately
rough surface modeled by Bragg scatter. A fit of this three-
component model to imagery containing backscatter from
a variety of vegetation and open water indicates that the
model describes the actual scattering mechanisms well.
Cloude and Pottier have summarized these and other de-
composition techniques (26) and have introduced their own
classification scheme based on an eigenvector decomposi-
tion of the coherency matrix (27). The technique classifies
pixels within an image through two parameters: the polari-
metric entropy H, which is derived from the eigenvalues of
the coherency matrix and that indicates the degree of po-
larization; and an angle α, which indicates the dominant
scattering mechanism. α ranges from 0◦ to 90◦, with low
values indicating geometric optics and higher values in-
dicating Bragg scattering and double-bounce mechanisms.
The authors divide the H–α plane into different zones, each
of which indicates a different class of scattering behavior.
The scheme is unsupervised (i.e., does not require training
data), and the results of its application to imagery con-
taining a mixture of vegetation, urban buildings, and open
water are promising.

Other approaches to polarimetric image classification
exist as well. For instance, Lee et al. (28) have applied a
Bayes maximum-likelihood classifier to the problem, in-
cluding the effects of multiple-look averaging, while Yueh
(30) conducted a similar investigation assuming single-
look statistics. Lee et al. (29) have also combined the un-
supervised decomposition scheme of Cloude and Pottier
with a maximum-likelihood classifier based on the com-
plex Wishart distribution for the polarimetric covariance
matrix. Ferrazzoli et al. (31) have used a simplified scheme
that considers the normalized RCS values for five polariza-
tion combinations (HH, VV, HV, circular copolarized, and
circular cross-polarized) and three radar frequency bands
(P, L, and C) to distinguish between forest, urban areas,
and agricultural areas and to classify several types of crops.
Fully polarimetric synthetic aperture radar (SAR) imagery
has also been classified using algorithms based on neural
nets (see, for instance, Ref. 32).

Contrast Enhancement

The scattering environment observed by a radar system is
composed of many different targets that scatter incident

electromagnetic energy. To the extent that the different
scatterers or classes of scatterers have different polariza-
tion signatures, the echoes from one type of scatterer may
be enhanced relative to the echoes from other scatterers
by using a polarimetric radar. As discussed earlier in this
article, knowledge of the polarization scattering matrix or
Mueller matrix of a target allows one to calculate the trans-
mitting and receiving polarizations that would result in
maximum or minimum radar cross-section level (33). It is
also possible to simulate (synthesize) any desired receive
polarization in the signal processor of a polarimetric radar
by forming a weighted linear combination of the signals
received by the two receiving channels (34). Similarly, it
is possible to synthesize any arbitrary transmitting an-
tenna polarization by forming a weighted linear combina-
tion of the received signals corresponding to two consecu-
tive transmitted pulses. Therefore, the processor can syn-
thesize the appropriate combination of transmitting and
receiving antenna polarization states that maximize (or
minimize) the echo from a given scatterer having a known
polarization scattering matrix or Mueller matrix.

Figure 9 illustrates the concept of image contrast en-
hancement. Figures 9a, 9b, and 9c show SAR images of San
Francisco, California processed using HH, VV, and VH=HV
polarizations, respectively. The Golden Gate Bridge ap-
pears as a bright, vertical line in the middle third of the
images, and Golden Gate Park is the wide, horizontal
band that appears in the lower quadrant. A comparison of
the three images shows that HH polarization maximizes
the contrast between the developed, urban areas (recog-
nized by a grid pattern formed by perpendicular streets)
and Golden Gate Park, which contains mixed vegetation.
VV polarization increases the relative RCS of the waves
present on the surface of the Pacific Ocean, as seen by a
comparison of Figs. 9a and 9b, while the image in Fig. 9c
shows that maximum contrast between the land and wa-
ter occurs for the HV(=VH) polarization combination. [The
imaging polarimeter used to collect the data presented in
Fig. 9, the NASA/JPL AIRSAR, was developed by the Jet
Propulsion Laboratory (JPL). For more information on the
system and its successors, see Refs. 2, 6, and 35].

For target detecting radars, it is desirable to enhance
the radar echo from wanted targets, such as aircraft, while
suppressing the echo from unwanted targets, such as ter-
rain clutter. In certain imaging radar applications, it is de-
sirable to enhance the echo from one type of terrain while
suppressing the echo from other types of terrain. The lim-
itations to contrast enhancement are (1) lack of a priori
knowledge of the scattering matrix of the desired target
and (2) similarity of polarimetric responses of the desired
and undesired scattering targets. Research performed on
the target detection problem, including techniques to adap-
tively estimate the scattering matrices of targets and clut-
ter, is described in Refs. 36–38. Work in polarization-based
suppression of bistatic clutter is described in Ref. 39. Sev-
eral papers dealing with polarimetric contrast enhance-
ment in imaging radars for terrain mapping are summa-
rized in Ref. 2.
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Figure 9. Synthetic aperture radar image of San Francisco, near Golden Gate Park, processed with three different polarization combina-
tions: (a) HH polarization, showing the strongest contrast between urban and mixed vegetation areas; (b) VV polarization, which exhibits
stronger backscatter from the areas covered by open water; and (c) HV = VH polarization, which maximizes the contrast between open
water and land.

Meteorology

While Doppler (coherent) radar has become an indispens-
able tool for meteorologists, the current fleet of operational
weather radars utilize a single polarization. Research has
shown, however, that polarization-diverse radars can pro-
vide weather forecasters with additional information. For
example, polarimetric radar systems can discriminate ice
particles from water droplets, and can detect hail. Radar
echoes from precipitation are complex and depend on the
shape, size distribution, water-phase state, and type of hy-
drometeor responsible for scattering the incident energy
(40). Large raindrops assume a flat pancake shape as they
achieve terminal falling velocity, and thus scatter hori-
zontally polarized energy more effectively than vertically
polarized energy. Hailstones, in contrast, have irregular
shapes but tumble as they fall, and thus exhibit equal scat-
tering cross sections at vertical and horizontal polariza-
tions. Exploiting this observation, Aydin et al. (41) devel-
oped a technique for discriminating rain from hail echoes
by computing the ratio of horizontal to vertical power levels
received when a dual-polarization radar transmits pulses
into storms. Accurate measurement of rainfall rate is an-
other important and evolving issue in the meteorological
community. The relationship between the radar reflectivity
coefficient of rain and the rain rate is different for differ-
ent types of rain. Seliga and Bringi (42) have shown that
independent measurement of rain reflectivity at vertical
and horizontal polarizations provides more accurate rain-
fall estimates than do single-polarization radar estimates.
Polarization diverse radars can also provide information on
clouds. Mead (5) has developed a lightweight 94-GHz radar
for airborne cloud profiling studies, and has used this sys-
tem to determine the height of the melting layer. The tech-
nique involves calculation of the ratio of cross-polarized to
copolarized scattering when looking vertically into a layer
of developing clouds.

Topographic Mapping

Schuler et al. (43, 44) have developed a technique to extract
topographic information from fully polarimetric radar im-
agery. The method extracts the azimuthal slope of the im-
aged terrain by determining the shift that this slope in-
duces in the polarimetric response. Integration of the in-

ferred slopes across the image, in conjunction with suitable
tie points (integration constants), then yields the elevation
profile. To illustrate the basic principle behind the tech-
nique, assume that the scattering from the surface can be
described by Bragg scatter, and thus has a scattering ma-
trix (in the absence of any azimuthal tilts) of the form

where a and b are real and b>a. If the surface is tilted in
the azimuthal plane by an angle δ, the scattering matrix
becomes

which, after carrying out the matrix multiplication, can be
expressed as

Tilting the surface introduces the off-diagonal terms S̄δhv
and S̄δvh , with S̄δhv = S̄δvh from reciprocity. Solving this sys-
tem of equations for δ produces the following expression:

Thus, the azimuthal slope of the surface can be derived
from the elements of the measured scattering matrix.
While Eq. (40) applies only to the case of Bragg scatter-
ing and cannot be applied in general, it illustrates the ba-
sic principle behind the method. A more general technique
for determining the shift in the polarimetric response, and
thus the azimuthal slope, is discussed in Ref. 43.

Figure 10a shows an elevation map of the terrain near
Camp Roberts, CA, derived from JPL AIRSAR data using
this method (44). For comparison, a digital elevation map
(DEM) of the same area derived from data collected with
the JPL TOPSAR system, an interferometric SAR designed
to measure terrain topography, is displayed in Fig. 10b.
The overall form of the two maps agrees very well, as do
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Figure 10. (a) Topographic map of Camp Roberts, CA produced
from polarimetric SAR data collected by the JPL AIRSAR. The sur-
face elevation is computed by integrating surface slopes derived
from the polarimetric signature. Data from two orthogonal air-
craft passes are used to reduce the number of required tie points
to one. (b) Topographic map of the area in Fig. 10a produced using
the JPL TOPSAR system. The RMS difference between the maps
is 28 m.

many of the details. The RMS elevation difference between
the maps over the entire region is 28 m, while the maxi-
mum and minimum elevations in the scene are 300 and
180 m, respectively. The errors in the polarimetrically de-
rived map are greatest in the river valleys, where more
complex, manmade structures are present. In order to re-
duce the required number of tie points to one, data from
two orthogonal aircraft passes have been used. The final
elevation map is obtained as an iterative solution to the
Poisson equation using curvature data derived from the
two passes as inputs (43).
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