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time–frequency analysis that have been obtained in the last
50 years is provided. Among the topics explored are: Gabor’s
time–frequency distribution, the short-time Fourier trans-
form, perfect reconstruction filter banks, the wavelet trans-
form, and Cohen’s class of time–frequency distributions. The
relationship between instantaneous frequency and time–
frequency distributions is then discussed.FREQUENCY MODULATION

The development of the first algorithm for time–frequency
analysis of an arbitrary signal is generally credited to GaborFrequency-modulated waveforms are commonly utilized for
(1). His work was motivated by a desire to define the informa-information transmission in radio communications, as well as
tion content of signals. He considered the time–frequencyfor environmental sensing in radar, sonar, and bioengineer-
representation of a signal as a ‘‘diagram of information,’’ withing. In many of these situations, the desired information is
areas in the two-dimensional representation being propor-extracted from the received signal by monitoring one or more
tional to the amount of data that they could convey. Gabordominant frequencies in the signal and examining their vari-
suggested that the time and frequency characteristics of a sig-ation as a function of time. The process by which a local ap-
nal x(t) be simultaneously observed with the expansionproximation to a signal’s frequency is obtained is known as

instantaneous frequency estimation (IFE).
In this article, concepts relating to instantaneous fre-

quency, along with algorithms for its computation, are re-
x(t) =

∞∑
m=−∞

∞∑
n=−∞

gmnψmn(t)

viewed. First, several means by which instantaneous fre-
where �mn(t) is expressed in terms of an elementary signalquency is commonly defined are discussed, and the
�(t) withrelationships between instantaneous frequency and time–

frequency distributions are explored. Next, several measures
ψmn(t) = ψ(t − mT ) exp( jn�t)of performance commonly used to evaluate instantaneous fre-

quency algorithms, such as the Cramer–Rao lower bound, are
The time and frequency lattice intervals are defined by T andexamined. Finally, a number of algorithms which have re-
�, respectively. Gabor also proposed that the signal with min-cently been suggested for IFE are summarized. Despite the
imum area on the time–frequency plane be used to generaterelative maturity of frequency modulation in the field of radio
the basis functions for his time–frequency decomposition.communications, the field of IFE is a growing one, and one in
Furthermore, he demonstrated that the signal with minimumwhich research is still quite active.
area, as defined by the product of the signal’s root mean
square (rms) width in time and frequency, was given by the

INSTANTANEOUS FREQUENCY ESTIMATION: Gaussian-modulated sinusoid. The concept that the time and
BACKGROUND AND DEFINITIONS frequency widths of a signal cannot be made arbitrarily small

simultaneously is a well-known property of Fourier analysis
The instantaneous frequency of a signal can be defined in sev- called the uncertainty principle (a term that originated in the
eral different ways. Two of the most popular definitions relate physics community). These ideas form the cornerstones of
the instantaneous frequency to time–frequency distributions time–frequency analysis.
and to the analytic signal. Either of these definitions can sat- The growing interest in time–frequency analysis acceler-
isfy intuition in certain situations, but yield puzzling results ated in the 1970s due to research regarding the short-time
in others. Nevertheless, useful estimates of the instantaneous Fourier transform (STFT) (2,3). These efforts were motivated
frequency can usually be obtained for narrowband signals, by a desire to analyze the time-varying spectral content of
and to a lesser degree for certain wideband signals. In this speech signals. The STFT is created by inserting a window
section, relationships between instantaneous frequency, function h(n) into the computation of the Fourier transform,
time–frequency distributions, and the analytic signal are dis- as expressed by
cussed.

Time–Frequency Distributions X (n, ω) =
∞∑

m=−∞
x(m)h(n − m) exp(− jωm)

The concept of frequency has long played a major role in the
analysis of signals. Through the Fourier transform, a signal The discrete index n varies from �� to ��, while the contin-

uous parameter � varies from 0 to 2�. For a fixed analysismay be decomposed into a continuum of complex exponen-
tials. In fact, the basis functions of the Fourier transform are time n, the window function selects a portion of the original

signal for spectral analysis, thereby allowing nonstationarypure tones of infinite time extent. However, when the spectral
composition of a signal varies as a function of time, the Fou- behavior to be observed in a manner impossible with the tra-

ditional Fourier transform. At each time instant, the signalrier transform no longer provides a simple spectral descrip-
tion of the signal. Instead, a time–frequency distribution segment selected for analysis is formed by the product of the

time-shifted window function with the original signal. It isyields more insight into the signal’s behavior. The most com-
mon example of time–frequency analysis—the printed musi- recognized that the result of this operation in the frequency

domain is the convolution of the spectral representation ofcal score—has existed for hundreds of years. With a musical
score, it is possible to denote the tones that are present in an the two functions. Thus, the shape of the window function is

fundamental to the STFT results. The rectangular windowarrangement at discrete intervals in time. In the following
paragraphs, a short discussion of the key developments in yields the minimum mainlobe spectral width (and therefore
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Figure 1. Structure for N-channel filter
bank. This tool is frequently employed forAnalysis
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time–frequency analysis.

the best frequency resolution) at the cost of large sidelobes utilized for instantaneous frequency estimation. Properly im-
plemented, they permit a compact representation of the time-(the peak of the largest sidelobe has a magnitude only 13 dB

less than the peak of the mainlobe). Other window functions, frequency properties of a signal with no loss of information.
The characteristics of analysis and synthesis filters that elim-such as the Hamming window, generate lower sidelobes, at

the price of a wider mainlobe. The length of the window func- inate aliasing, along with the requirements for perfect recon-
struction, are thus of interest.tion also affects the results produced by the STFT. The longer

the time length of the window, the greater the frequency reso- In an actual implementation of a filter bank, the digital
analysis filters are of finite length, and thus they cannot formlution of the time–frequency representation, but the poorer

the time resolution. an ideal bandpass filter with unity gain in the passband and
zero gain in the stopband. Therefore, some degree of aliasingA second interpretation of the STFT is obtained by examin-

ing the structure of the discrete short-time Fourier transform will occur when the output of each of the analysis filters is
decimated as in Fig. 1. If the analysis filters are not correctly(DSTFT), which is written as
designed, the aliased signals propagate through the filter
bank and severely limit the quality of the filter bank’s output.
Croisier et al. (4) examined this problem for the two-channel

X (n, k) =
∞∑

m=−∞
x(m)h(n − m) exp

�− j2πkm
N

�

filter bank shown in Fig. 2, and they derived conditions on
the analysis and synthesis filters such that these aliasedThe discrete index n varies from �� to ��, while the discrete
terms are completely canceled. Filters designed with this ap-index k varies from 0 to N � 1. For a fixed frequency index
proach are called quadrature mirror filters, since the analysisk, it is seen that the signal of interest is modulated by exp(�
filters of a two-channel network are mirrors of one anotherj2�km/N) and then convolved with the window function
about �/2. It is important to note that while the output of a(which typically has a low-pass frequency response). The se-
filter bank employing quadrature mirror filters does not con-ries combination of the modulator and the window function
tain aliased terms, other magnitude and phase distortionsresults in a bandpass filter. The DSTFT can therefore be
typically exist.thought of as being generated by passing a signal through a

The necessary and sufficient conditions for the design of aset of bandpass filters. Furthermore, if the discrete signal is
perfect reconstruction filter bank were derived by Smith andprocessed with an ideal bandpass filter with a passband equal
Barnwell (5). They also proposed an algorithm to constructto �/N, then the output of the filter can be decimated by a
analysis and synthesis filters which satisfied these conditions,factor of N (all signal samples are discarded except those cor-
using well-known filter design techniques (6). Although theyresponding to indices of N, 2N, 3N, etc.) with no loss of infor-
termed these filters conjugate quadrature filters, many re-mation. The incorporation of this philosophy with the band-
searchers consider them to a be a class of quadrature mirrorpass filter view of the STFT yields the analysis portion of the
filters. The power of Smith and Barnwell’s algorithm is dem-filter bank structure shown in Fig. 1. The rationale for deci-
onstrated by the fact that it is applicable to the two-channelmating the output of each of the bandpass filters is to reduce
structure shown in Fig. 2, the N-channel structure shown inthe storage requirements of the filter bank. In a similar fash-
Fig. 1, and the tree-structured analysis section shown in Fig.ion, a signal approximately equal to the input signal can be
3, as well as to filter banks employing nonuniform decimationproduced with the synthesis structure also shown in Fig. 1.
and interpolation rates. Additional results regarding the im-Note that the synthesis network contains interpolators (which
plementation of perfect reconstruction filter banks are in-insert N zeros between each input sample) and window func-
cluded in Refs. 7 and 8.tions known as synthesis filters. In general, the synthesis fil-

A closely related topic to time–frequency analysis is time-ters are similar, but not identical, to the analysis filters. In a
scale analysis, which is provided by the wavelet transform.typical data compression application of a filter bank, the out-
Due to the similarity of the discrete wavelet transform withputs of the analysis section are encoded, transmitted over a
perfect reconstruction filter banks, as well as the immensechannel, and then reconstructed with the synthesis section.
number of applications of the wavelet transform that haveEquality between the input and output of the filter bank sub-
been investigated over the past 10 years, a brief discussion ofject to a finite delay, called perfect reconstruction, is achieved
its development is included in the following.only for specific combinations of analysis filters and synthe-

In the late 1970s, the French geophysical engineer Morletsis filters.
derived an alternative to the STFT for time–frequency analy-It is evident that filter banks are a natural extension of

the STFT. As is the case for the STFT, filter banks may be sis. The seismic signals of interest to Morlet contained high-
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Figure 2. Structure for two-channel filter
bank. This simple configuration can be
used to construct more complicated struc-
tures.
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frequency components with shorter timespans than did the Morlet and Grossman used a nonorthogonal basis for the
transform consisting of functions very similar to Gabor’slow-frequency components. With the STFT, it was impossible

to simultaneously obtain good time resolution for the high- Gaussian-modulated sinusoids. An orthogonal basis was de-
veloped in 1985 by Meyer.frequency components and good frequency resolution for the

low-frequency components. Morlet recognized that his goal Structures for the discrete wavelet transform and its in-
verse were developed by Daubechies (11). The form of the for-could be obtained by decomposing the seismic signals not with

translated and modulated versions of an elementary signal ward structure is shown in Fig. 4 and is seen to be very simi-
lar to a pruned version of the tree-structured filter bank(as was done in Gabor’s work and the STFT), but with the

translated and scaled versions of an elementary signal. This shown in Fig. 3. At each level of the discrete wavelet trans-
form, the input signal is passed through a low-pass and high-concept yielded basis functions which contained a constant

number of cycles. Morlet chose to call his functions ‘‘wavelets pass filter. The outputs of the filters are decimated by a factor
of two, and the decimated low-pass filter output is againof constant shape’’ (9). Although the term wavelet had been

used in the seismic field for a number of years before Morlet’s passed to a low-pass and high-pass filter pair. Daubechies de-
rived conditions for the filters such that the structure yieldswork, it had been used to denote seismic pulses, not a time-

frequency tool. perfect reconstruction, and she used these conditions to gen-
erate a set of viable filters frequently referred to as ‘‘Daube-Morlet later collaborated with Grossman to place the

wavelet transform on a firm mathematical foundation (10). chies wavelets.’’ Of special interest to Daubechies was the rel-
atively long impulse response of the filter produced by a seriesThey defined the continuous wavelet transform as
of short filters alternated with decimators. She termed the
combined impulse response of the low-pass filters alternated
with decimators the scaling function, and the impulse re-

Wx(τ , a) = 1√|a|

∫ ∞

−∞
x(t)m∗

� t − τ

a

�
dt

sponse of the low-pass filters alternated with decimators and
where a is a scale factor, and the ‘‘mother wavelet’’ m(t) followed by a high-pass filter the wavelet function. She showed
serves as a window function. The inverse wavelet transform that as the number of levels in the transform grows large, the
is given by scaling function and the wavelet function converge to smooth

waveforms, provided that the component filters have suffi-
cient ‘‘regularity.’’ In digital signal processing terms, the reg-
ularity of a filter corresponds to the number of zeros at z �

x(t) = c
∫ ∞

−∞

∫ ∞

−∞

1
a2 Wx(τ , a)m

� t − τ

a

�
da dτ

Figure 3. Analysis portion of tree-struc-
tured filter bank formed by the sequential
application of two-channel filter banks.
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Figure 4. Structure for discrete wavelet
transform. Note the similarity of this con-
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figuration to the structure shown in Fig. 3.

�1 (� � �) in the filter transfer function. Soon after Daube- from certain time–frequency distributions is equivalent to the
corresponding quantity derived from the analytic signal.chies’ work was published, Mallat extended her results to two

dimensions and applied them to image processing (12). It has A major benefit obtained by employing a time–frequency
distribution for instantaneous frequency estimation is the ca-since been recognized that Daubechies’ conditions for perfect

reconstruction are identical to those published by Smith and pability of the distribution to aid in the determination of
whether the signal under examination is monocomponent orBarnwell. It has also been recognized that the structure corre-

sponding to the discrete wavelet transform is equivalent to multicomponent. Monocomponent signals are those which can
be shown to possess energy in a contiguous portion of thean octave-channel filter bank, a form of which had been inves-

tigated earlier for speech-coding (3). Nevertheless, the atten- time-frequency plane. At any point in time, this type of signal
exhibits a narrowband characteristic. An example of this typetion focused on filter banks and time–frequency analysis due

to the introduction of the wavelet transform has resulted in of signal is a sinusoid with a continuous time-varying fre-
quency. Conversely, multicomponent signals are those thatan explosion of new developments in these fields that has con-

tinued today. can be shown to possess energy in multiple, well-isolated fre-
quency bands at the same instant in time. Speech frequentlyIn addition to the time–frequency distributions described

above, many others have been developed over the past 50 displays this behavior. It is noted that the above definition of
years. A significant number of continuous time–frequency monocomponent excludes signals such as an impulse, which
distributions can be characterized by what is known as Co- could also be argued to be monocomponent due to its ridge-
hen’s class of distributions (13), which is defined by like time–frequency distribution. Obviously, the identification

of a signal as monocomponent or multicomponent is not pre-
cise (15); but it is important, as the instantaneous frequency
of a multicomponent signal may have no physical mean-
ing (16).

Cx(t, ω) = 1
4π2

∫∫∫
x∗(u − 1

2 τ )x(u + 1
2 τ )φ(θ, τ )

exp(− jθt − jτω + jθu) du dτ dθ

A significant disadvantage of employing time–frequency
distributions for IFE is that the construction of the distribu-where �(�, 
) is a two-dimensional function known as the ker-
tion is a computationally complex procedure, even when filternel, and x(t) is the signal under consideration. A particular
bank structures are utilized. Fortunately, there is an alterna-member in Cohen’s class is identified by its kernel. For exam-
tive approach for IFE. In many situations, a reasonable esti-ple, the spectogram, which is defined as the magnitude
mate of the instantaneous frequency of a signal can insteadsquared of the STFT, is a recognized member of Cohen’s class

of distributions, with a kernel given by be obtained from computationally simple operations on its an-
alytic signal. Background for this philosophy is given in the
following section. A summary of algorithms which have been
suggested for the implementation of this approach are pro-

φ(θ, τ ) =
∫

h∗(u − 1
2 τ ) exp(− jθu)h(u + 1

2 τ ) du

vided in the section entitled [Algorithms for Instantaneous
Frequency Estimation.]where h(t) is the window function defined previously. A dis-

crete form of Cohen’s class of time–frequency distributions is
examined in Ref. 14. Analytic Signals

With respect to a time–frequency distribution, there are
In this section, the relationships between the instantaneoustwo possible means of defining the instantaneous frequency
frequency of a signal and its analytic signal are examined.of a signal at a point in time. The instantaneous frequency
First, a brief review of the analytic signal is provided. Themay be associated with either (1) the peak value of the sig-
definition of the instantaneous frequency in terms of the ana-nal’s distribution at that time or (2) the average of the fre-
lytic signal is then discussed. Practical issues regarding thequencies present in the signal at that time. These approaches
computation of the analytic signal are also presented. Finally,are appealing because they permit the introduction of the in-
the situations for which the estimate of instantaneous fre-stantaneous bandwidth concept in a natural manner as the
quency obtained via the analytic signal agrees with the esti-spectral spread of energy in the time–frequency plane about
mate obtained from certain time–frequency distributions arethe instantaneous frequency. In the following section, it is

shown that the instantaneous frequency estimate derived examined.
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Interestingly, as was the case with time–frequency analy- The analytic signal z(n) can be obtained in a number of ways,
each with its own advantages and disadvantages. The se-sis, the original work done in the area of analytic signals was

conducted by Gabor (1). He defined the complex analytic sig- quence y(n) can be generated by the brute force approach of
zeroing the spectral components of x(n) corresponding to neg-nal z(t) corresponding to a real signal x(t) to be the sum of the

signal with a second signal generated via the Hilbert trans- ative frequencies. This technique works well for finite data
sets, but can be difficult to implement in real-time applica-form
tions. The sequence y(n) can also be generated by processing
the sequence x(n) with a digital filter designed to approximate
the Hilbert transform (6). However, the group delay intro-

z(t) = x(t) + jHHH{x(t)}
= x(t) + jy(t)

duced to y(n) by the digital filter must also be introduced to
x(n), which can be difficult for noninteger delays. A third ap-The continuous Hilbert transform is defined as
proach is to compute the complex sequence z(n) directly, by
processing the sequence x(n) with a complex filter constructed
by modulating a real low-pass filter by a complex exponen-

HHH{x(t)} = p.v.
1
π

∫ ∞

−∞

x(τ )

t − τ
dτ

tial (18).
It is interesting to note the relationship between (1) thewhere p.v. indicates the Cauchy principal value of the inte-

instantaneous frequency estimate obtained from a time–gral. The signal z(t) is similar to x(t), in that for positive fre-
frequency distribution and (2) the instantaneous frequencyquencies, Z( f) � 2X( f). However, the spectrum of z(t) contains
estimate obtained from the derivative of the analytic signal’sno energy at negative frequencies. Indeed, one technique for
phase. For continuous signals, it can be shown that the firstderiving the analytic signal of a real signal is to compute its
moment of a time–frequency distribution of Cohen’s class isFourier transform, ignore the spectral components corre-
equivalent to the derivative of the analytic signal’s phase ifsponding to negative frequencies, apply the appropriate scal-
the kernel �(�, 
) is selected such thating factor, and then to compute the inverse Fourier transform

of the modified signal. Gabor developed the analytic signal
concept to aid in the derivation of the signal with minimum
time–frequency extent. However, the most extensive applica-

∂φ(θ, τ )

∂τ

∣∣∣∣
τ=0

= 0

tion of analytic signals has been in the communications field.
The importance of the analytic signal to the definition of Furthermore, for signals with quadratic phase functions, the

instantaneous frequency can be seen by considering a simple peak of the time–frequency distribution known as the Wig-
example. Suppose a continuous real signal x(t) is given by ner–Ville distribution corresponds to the instantaneous fre-

quency (19). Results for the discrete signal case have ap-x(t) = a(t) cos(φ(t))
peared in Ref. 20 and in Ref. 14.

where a(t) represents a time-varying amplitude, and �(t) rep-
resents a time-varying phase. Since the ‘‘frequency’’ of a si- MEASURES OF PERFORMANCE FOR INSTANTANEOUS
nusoid is defined as the derivative of its phase, the instanta- FREQUENCY ESTIMATION ALGORITHMS
neous frequency of a signal x(t) could be computed with the
derivative of �(t). This definition appears to agree with intu- To evaluate various IFE algorithms, there must be a means of
ition. However, when the magnitude of a(t) is bounded by b comparing the performance and implementation of a specific
the signal x(t) can also be expressed as algorithm to an alternate approach. In this section, the mea-

sures of performance typically used to compare IFE algo-x(t) = b cos(φ̃(t))
rithms to one another are discussed. The measures of perfor-
mance that are considered include both statistical andwhere �̃(t) � �(t). Therefore, the postulated definition does
computational issues. At the conclusion of this section, thesenot yield a unique instantaneous frequency for the signal
criteria are demonstrated by utilizing them to evaluate thex(t). By defining the instantaneous frequency of x(t) to be the
performance of the classical periodogram approach to esti-derivative of the phase of the corresponding unique analytic
mating the frequency of a sinusoid embedded in whitesignal z(t), this ambiguity can be eliminated (17). Since the
Gaussian noise.analytic signal is complex, it can always be expressed

Since the problem of interest concerns the estimation ofuniquely as
an unknown quantity in the presence of noise, it is useful to
introduce several statistical concepts from estimation theory.z(t) = m(t) exp( jθ(t))
Typically, it is desired to estimate the value of an unknown
parameter � from N noisy measurements of a quantity relatedThe instantaneous frequency can thus be uniquely defined as
to �. An estimator is considered unbiased when the expectedd�(t)/dt. However, it is not claimed that this definition pro-
value of the estimate �̂ equals the true value of the parame-vides satisfactory results in every scenario.
ter:In practice, discrete sequences x(n) corresponding to sam-

ples of the continuous signal x(t) at time instants t � nT are
available, and it is desired to form the discrete analytic sig- E{θ̂} = θ

nal z(n) where
If this condition does not hold, the estimator is termed biased.
An estimator is considered consistent if it yields an estimatez(n) = x(n) + jy(n)
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that asymptotically converges in probability to the true value. considerations. Computational issues include: the algorithm’s
complexity as measured by the number of arithmetic opera-For a consistent estimator,
tions (such as multiplications or arctan function calls) re-
quired for its implementation, the storage requirements of thelim

N→∞
Pr{|θ̂ − θ | > ε} = 0

algorithm, and the data window size required for satisfac-
tory performance.

where Pr denotes probability and � is an arbitrary small posi- As a demonstration of the concepts described in this sec-
tive number. Both of these characteristics are generally tion, the classical approach to the estimation of the frequency
thought to be desirable but, depending on the problem of in- of a single complex sinusoid with unknown amplitude and
terest, may or may not be required. phase in the presence of white Gaussian noise is considered.

The benchmark by which the variance of a particular unbi- The CRLB for the frequency estimate is given by
ased estimator can be evaluated is given by the Cramer–Rao
lower bound (CRLB). As its name implies, the CRLB provides
a lower bound on the variance of any linear or nonlinear unbi- CRLB = 12

T2N(N2 − 1)

�
σ 2

A2

�
ased estimator. Thus, given the variance of a particular unbi-
ased estimator, the CRLB may be used to determine if other

where A is the amplitude of the complex sinusoid, �2 is theunbiased estimators might exist which exhibit smaller vari-
power of the complex white Gaussian noise, T is the samplingance. Although other bounds on estimator variance exist, it is
period, N is the number of available data samples, and A2/�2

generally agreed that the CRLB is the easiest to compute,
is the SNR. To derive a ML estimator for this problem, theand hence finds extensive use (21). The CRLB for the scalar
likelihood function L is computed in terms of the unknownparameter � is expressed in terms of the measurement vector
frequency, amplitude, and phase. It has been shown that thex with
likelihood function is given by

L(ω, A, θ ) = 2ARe[exp(− jθ ) exp(− jωt0)X (ω)]var(θ̂ ) ≥ 1

−E
{

∂2 ln p(xxx; θ )

∂θ2

}
where � is the unknown phase, t0 is the time corresponding to
the first data sample, and X(�) represents the discrete-time

where p(x; �) is the probability density function (PDF) of x Fourier transform of the data sequence x(nT) (23). The ML
given the parameter � (22). The expectation is taken with re- estimate of the sinusoid’s frequency is the maximum of L(�,
spect to p(x; �), which results in a function of �. When the A, �) with respect to � over all values of A and �, and it can
PDF is considered to be a function of the unknown parameter be shown to correspond to the frequency which maximizes the
� (with a fixed measurement vector x) it is called the likeli- periodogram �X(�)�2. To implement this approach, it has been
hood function. suggested that a coarse frequency estimate be obtained from

Although the CRLB may be computed for a specific estima- the peak magnitude of the discrete Fourier transform (DFT)
tion problem, there is no guarantee that an unbiased estima- and that a more accurate result be obtained via an interpola-
tor exists which will equal the bound for all values of the un- tion algorithm. The performance of the overall algorithm is
known parameter. If such an estimator does exist, it is said significantly improved if the length of the original data se-
to be efficient. An estimator is considered asymptotically effi- quence is increased by a factor of two or four by zero-padding,
cient if its variance converges to the CRLB as the number of before the coarse DFT is computed. An accurate means of im-
observations becomes large. Maximum likelihood (ML) esti- plementing the interpolation procedure with only three DFT
mators are known to be asymptotically efficient, and they can points is presented in Ref. 24.
be constructed by computing the value of � which maximizes The ML algorithm for estimating the frequency of a single
the likelihood function. The performance of ML algorithms for sinusoid in noise is conceptually simple, but computationally
large data records, along with the existence of an analytical intensive. This is especially the case when the algorithm must
approach to their derivation, makes ML algorithms very ap- be implemented under a real-time schedule in order to track
pealing. In practice, these algorithms can be computationally a time-varying frequency. In the following section, additional
complex, such that other approaches may be preferred. approaches to the implementation problem are examined.

At high signal-to-noise ratio (SNR), the variance of ML es-
timators is typically very close to the CRLB. As the SNR is
decreased, the CRLB and the estimator variance increase at ALGORITHMS FOR INSTANTANEOUS

FREQUENCY ESTIMATIONthe same rate. For nonlinear estimators, this behavior contin-
ues until a threshold is reached. Below this value of SNR, the

In this section, a selection of algorithms that have been sug-variance of the estimator increases at a much faster rate than
the CRLB. In a plot of the variance as a function of SNR, a gested for IFE are summarized. This selection is not all-inclu-

sive, and it is in fact concentrated in two areas: The first setknee will be seen at the threshold. Thus, the estimator
threshold is frequently used as a metric to compare several of algorithms employ weighted phase averaging techniques,

and the second set of algorithms are designed to function withestimators which have similar high-SNR characteristics. For
maximum likelihood estimators, the threshold typically de- extremely short data windows in high-SNR environments.

Both sets of algorithms are designed for monocomponent sig-creases as the size of the data window increases.
In addition to the factors described above, various algo- nals. References to other approaches for estimating the in-

stantaneous frequency of monocomponent signals, along withrithms for the estimation of a particular parameter may also
be compared to one another with respect to computational approaches for multicomponent signals, are provided.
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Algorithms Employing Weighted Phase Averaging rather than the phases themselves. The phase difference
�(n) can be written as

One way to represent a constant amplitude, complex signal
with time-varying frequency is to model the signal as a com-
plex exponential with polynomial phase. From the Weierstass

�(n) = φ(n + 1) − φ(n)

= ω + v(n + 1) − v(n)
Theorem, it is known that all continuous phase functions can
be approximated to any desired accuracy by a polynomial. The frequency estimation problem can then be expressed as
The polynomial phase model is thus very general, in addition the estimation of the mean of a colored Gaussian noise pro-
to being easily analyzed. When P coefficients are considered cess. Kay showed that the ML frequency estimate for this
in the polynomial, the signal model is expressed by problem is given by

ω̂K =
N−2∑
n=0

w(n)�(n)z(n) = A exp

�
j

P∑
p=0

cpnp

�
+ ε(n)

where the total number of data samples available for pro-where A is the constant signal amplitude, n is the sampling
cessing is denoted by N, and w(n) represents a parabolicindex, cp is the polynomial coefficient, and �(n) is complex
weighting function given byzero-mean white Gaussian noise. In the following discussion,

algorithms which employ weighted phase averaging to esti-
mate the coefficients of the polynomial phase model are exam-
ined. Before examining algorithms capable of estimating all

w(n) = 1.5N
N2 − 1

[
1 −

�n − (0.5N − 1)

0.5N

�2
]

P coefficients, less complex approaches corresponding to lin-
Kay noted that if a uniform weighting is applied, the phaseear and quadratic phase models are summarized. The less so-
differences are merely averaged, and the variance of the esti-phisticated approaches are of interest due to their relatively
mate is increased by a factor equal to N/6 at high SNR. Itundemanding computational requirements. In fact, it has
was later shown that Kay’s algorithm can be derived frombeen suggested that time-varying frequencies be tracked with
Tretter’s algorithm using summation-by-parts (27).sliding window implementations of these simpler algorithms.

As is typical with nonlinear estimation methods, the vari-A sinusoid with constant frequency can be represented by
ance of Kay’s algorithm departs from the CRLB when thethe polynomial phase model with a constant plus linear phase
SNR is reduced below a threshold value. Kim noted that theterm. As discussed in the previous section, the ML estimate
threshold of Kay’s algorithm occurs when the SNR drops be-of the frequency of a single sinusoid embedded in white
low a value for which the phase noise approximation is valid.Gaussian noise is given by the peak of the periodogram. Un-
He suggested that the SNR of the signal be increased beforefortunately, the construction of the periodogram is computa-
the phase of the data samples is computed, by averaging Ktionally intensive, and other less complex approaches are de-
adjacent data samples. In this manner, the threshold is de-sired. One such approach was suggested by Tretter (25). He
creased, at a cost of a small loss in estimation performanceconsidered the input data sequence to be modeled by
and a decreased estimation range (28). For example, for data
lengths greater than 24 and K � 4, Kim determined that hisz(n) = A exp( j(θ + ωn)) + ε(n)

algorithm departs from the CRLB at high SNR by less than
0.2 dB. The threshold is reduced by a factor of 20 log(K) dB,where � is a constant phase and � is the signal’s angular fre-
and the estimation range is reduced by a factor of K.quency. The angular frequency is assumed to be bounded by

In the frequency estimation work conducted by Rife and�� � � � �. The noise power is given by �2, and the SNR is
Boorstyn (23), it was noted that the angular frequency esti-thus expressed as
mate of their algorithm (described in the previous section of
this article) was biased whenever the angular frequency was
close to zero or the sampling frequency. Similarly, the vari-SNR = A2

σ 2

ance of Kay’s estimator also significantly degrades when the
Tretter showed that for SNR � 1, the data sequence can be angular frequency is close to these values. A means of over-
approximated as coming this problem was proposed by Lovell and Williamson

(29). They noted that the performance degradation is avoided
if the weighting function is applied to the phase differences
in a circular, rather than linear, fashion. For example, to com-

z(n) ≈ A exp( j(θ + ωn + v(n)))

≈ A exp( jφ(n))

pute the mean of a group of phases, they suggested that the
phases first be expressed as unit magnitude phasors and thatwhere v(n) is a real Gaussian white noise sequence with vari-
the argument of the sum of phasors then be computed. Byance equal to 1/(2SNR). The impact of this approximation is
incorporating these concepts into Kay’s estimators, the sensi-that all of the information required to estimate the frequency
tivity of the estimator variance with respect to angular fre-� is contained in the signal phase �(n). Tretter suggested that
quency was significantly reduced.the phase be estimated by unwrapping the sequence obtained

The second coefficient relating to frequency in a polynomialfrom computing the arctan of z(n). The frequency is then esti-
phase model corresponds to frequency rate. Including this pa-mated via least squares or linear regression. For high SNR,
rameter �, the signal model is written asthis estimation scheme achieves the CRLB.

An alternate viewpoint to this problem was provided by
Kay (26). He suggested that phase differences be employed z(n) = A exp( j(θ + ωn + 1

2µn2)) + ε(n)
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The frequency rate is assumed to be bounded by �� � � � �. accurate estimates of the instantaneous frequency with only
four or five data samples. This feature is very desirable, be-This type of modulation is termed linear frequency modulation

(LFM), and the corresponding signal is termed a chirp signal. cause the instantaneous frequency estimate is thus highly lo-
calized in time.Despite its simple form, this signal is utilized in many fields

and is thus of significant interest. Teager’s energy operator was originally proposed as a
means of quantifying the ‘‘energy’’ present in an harmonic os-A procedure to jointly estimate �, �, and � for a chirp sig-

nal was suggested by Djuric and Kay (30). In this approach, cillation (33). It has since been utilized to derive algorithms
for instantaneous frequency estimation that are highly timethe additive complex noise is modeled as real phase noise, as

was the case in Refs. 25 and 26. However, a different tech- localized. The discrete form of this operator is given by
nique is utilized to estimate the unambiguous phase se-
quence. First, two phase difference operations are imple- �[x(n)] = x2(n) − x(n + 1)x(n − 1)

mented on the original data sequence, and the phase of the
where it is assumed that the sampling period is unity. Utiliz-resulting data samples are computed with the arctan func-
ing this operator, three different algorithms have been de-tion. The sequence d(n) is thus generated, where
rived to estimate the instantaneous frequency and amplitude
of a monocomponent AM-FM signal (34). The three algo-d(n) = µ + �2w(n)

rithms are denoted DESA-1a, DESA-1, and DESA-2, and the
and �2w(n) denotes a colored noise sequence. An estimate associated instantaneous frequency estimation algorithms are
�̂(n) of the unambiguous phase sequence �(n) corresponding expressed as
to the original data sequence is then obtained by twice inte-
grating d(n). The estimates of �, �, and � are then jointly
obtained from �̂(n). If only the frequency rate is desired, �
may be estimated directly from d(n) in a similar fashion as �
was estimated in Ref. 26.

One shortcoming of the algorithm suggested by Djuric and
Kay is its performance for large values of �. When the magni-

ω1a(n) = arccos
�

1 − �[x(n) − x(n − 1)]
2�[x(n)]

�

ω1(n) = arccos
�

1 − �[x(n) − x(n − 1)] + �[x(n + 1) − x(n)]
4�[x(n)]

�

ω2(n) = 1
2 arccos

�
1 − �[x(n + 1) − x(n − 1)]

2�[x(n)]

�

tude of this parameter is close to its upper bound, errors occur
in the phase unwrapping algorithm, and the performance of The first algorithm requires four data points for its operation,
the estimator degrades. To overcome this effect, they sug- and the remaining two algorithms require five data points.
gested that a third phase difference operation be employed. All three algorithms may be implemented with only a few
However, this approach increases the probability of an outlier multiplications per time step.
occurring due to differentiation of the phase noise, thereby A second means of constructing highly time localized in-
degrading the unwrapping process and hence the estimation stantaneous frequency estimators is by symbolically express-
performance. An alternative solution to this problem was pro- ing the roots of the predictor filter corresponding to a sinusoi-
posed by Slocumb and Kitchen (31). In their work, an itera- dal signal model in terms of the input data samples (35). Two
tive procedure is suggested in which the phase unwrapping forms of linear prediction have been examined for this appli-
and parameter estimation is conducted concurrently. A re- cation: the covariance method and the modified covariance
cursive least squares (RLS) algorithm (32) is employed to im- method. For the modified covariance method, two estimators
prove the phase unwrapping process, thereby removing the were derived in Ref. 35. The first estimator requires four data
sensitivity of the threshold to the value of �. For large values samples for its operation, and the second requires five data
of �, the threshold corresponding to Slocumb and Kitchen’s samples. The estimators are expressed in terms of the input
approach is as much as 12 dB lower than the threshold of data samples via
Djuric and Kay’s algorithm.

The approaches presented above for chirp signals can be
extended to estimate an arbitrary number of coefficients of
the polynomial phase model. To prevent aliasing in a criti-

ωMC4(n)

= arccos
�x(n − 2)x(n − 1) + 2x(n − 1)x(n) + x(n)x(n + 1)

2(x2(n − 1) + x2(n))

�
cally sampled signal, the polynomial coefficients must be
bounded by

and

|cp| <
π

p!

For the algorithm presented in Ref. 30, increasing the num-
ber of parameters to be estimated also increases the threshold

ωMC5(n) = arccos

�x(n − 2)x(n − 1) + 2x(n − 1)x(n)

+2x(n)x(n + 1) + x(n + 1)x(n + 2)

2(x2(n − 1) + x2(n) + x2(n + 1))

�
of the algorithm.

Utilizing the covariance method, a single estimator was de-
Algorithms Employing Short Data Windows rived that required five data samples for its operation:
In certain situations, it is reasonable to assume a very high
SNR, even as high as 40 dB. It is then possible to obtain esti-
mates of the instantaneous frequency of a monocomponent
signal with only a few data samples. In this section, two com-
putationally efficient algorithms are described which obtain

ωC5(n) = arccos

�
x(n − 1)x(n) − x(n − 2)x(n + 1)

x2(n) − x(n − 1)x(n + 1)

+x2(n − 1) − x(n − 2)x(n)

�
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