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IMAGE SEQUENCES

This article covers the fundamentals of image sequence (also referred to as moving picture or digital video) pro-
cessing, including motion estimation and compensation, motion segmentation, visual object tracking, sampling
structure conversion (standards conversion), and video filtering. These subjects are essential to the under-
standing of digital video systems, which have enabled the convergence of computing, telecommunications,
broadcasting and entertainment technologies.

Basics of Motion

Time-varying images are 2-D projections of the 3-D world (scene) at successive time instants. The projection can
be modeled by a perspective or orthographic mapping depending on the camera model and imaging conditions
(1). For analog video, each image is further sampled in the vertical direction, resulting in a one-dimensional
continuous-time video signal representing concatanation of image lines. For digital video, both horizontal and
vertical dimensions are sampled resulting in pixelization of the time-varying image.

Projected Motion versus Apparent Motion. Variation in the intensity patterns of successive images
are generally due to relative motion between the scene and camera, including motion of scene objects and/or
camera motion such as zoom, pan, and tilt. Other factors that affect image intensity patterns are sudden or
gradual changes in scene illumination, changes in reflective properties of objects, and imaging noise. Relative
motion between the scene and camera can best be modeled in 3-D, resulting in a 3-D motion description.
Projected motion refers to projection of this 3-D motion onto the 2-D image plane using the camera model. The
concept of projected motion is illustrated in Fig. 1.

However, the projected motion is not observable. Instead, what we observe is the so-called “apparent”
motion, which refers to image plane motion that can be deduced from observable differences in successive
image intensity patterns. The apparent motion is also referred to as optical flow. Clearly, the apparent motion
may differ from the projected motion; that is, all projected motion does not generate optical flow, and all optical
flow does not correspond to projected motion. Two examples are shown in Fig. 2. In what follows, motion
estimation refers to apparent motion estimation.

Motion vectors may be defined in the forward or backward direction. Given the intensity samples at
frames k and k + l, which are related by

computation of the real-valued correspondence vector field d(x) = [d1(x) d2(x)]T, where the temporal arguments
of d(x) are dropped, is known as forward motion estimation. If we define the motion vectors between frames k
and k − l, then the 2-D motion model can be stated as
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Fig. 1. The projected motion. Suppose a point Pt in 3-D moves to Pt′ . The projection of the resulting 3-D motion vector
into the image plane is depicted. Notice that all 3-D motion vectors whose tip lie on the dotted line project into the same
2-D motion vector.

Fig. 2. (a) A uniform rotating disc does not give rise to any intensity variations in time; (b) Changing illumination direction
results in intensity variations in the absence of any physical motion.

or

Computation of the motion field in this case is known as backward motion estimation.
However, even estimation of apparent motion is an ill-posed problem in the sense that it may not have a

solution (occlusion problem) or the solution may not be unique (aperture problem), as discussed below.
Occlusion Problem. Occlusion refers to covering and uncovering of an image region by either another

object (object-to-object occlusion) or the motion of the object itself such as out-of-plane rotations (self-occlusion).
The covered and uncovered region concepts are illustrated in Fig. 3. For those pixels in frame k which are in
the background-to-be-covered, no corresponding pixel can be found in frame k + 1. Similarly, for those pixels
in frame k + 1 which are in the uncovered background, there is no corresponding pixel in frame k.
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Fig. 3. The covered/uncovered region problem. The object indicated by solid lines translates in the x1 direction between
frames k and k + 1. The dotted region in frame k indicates the background to be covered in frame k + 1. The dotted region
in frame k + 1 indicates the background uncovered by the motion of the object.

Fig. 4. The aperture problem. Suppose we have a corner moving in the x2 direction (upward). If we estimate this motion
based on a local window, indicated by Aperture 1, then it is not possible to determine whether it moves upward or
perpendicular to the edge. The motion in the direction perpendicular to the edge is called the normal flow. However, if we
observe Aperture 2, then it is possible to estimate the correct motion, since the image has gradient in two perpendicular
directions within this aperture.

Aperture Problem. The aperture problem is a restatement of the fact that the solution to 2-D motion
estimation problem is not unique. If motion vectors at each pixel are considered as independent variables, then
there are twice as many unknowns as there are equations given by Eq. (1). The number of equations is equal
to the number of pixels in the image, but for each pixel the motion vector has two components. Theoretical
analysis indicates that we can only determine motion that is orthogonal to the spatial image gradient, called
the normal flow, at each pixel (1). The aperture problem is illustrated in Fig. 4. It follows that it is possible
to overcome the aperture problem by estimating the motion based on a block of pixels that contain sufficient
gray-level variation. Of course, implicit here is the assumption that all these pixels translate by the same
motion vector.

Motion Models. The aperture and occlusion problems in 2-D motion estimation can be overcome by
employing global motion models. Motion models can be classified as nonparametric and parametric ones.

Nonparametric Models. Nonparametric models impose spatio-temporal smoothness constraints on the
estimated motion field. That is, we seek the smoothest solution out of all feasible solutions. The use of smooth-
ness constraints to define regularized solutions to ill-proposed problems is also well known in other areas of
science and engineering (2). The nonparametric constraints can be classified as deterministic versus stochas-
tic smoothness models. Deterministic models usually require solution of variational problems (3) whereas
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stochastic models lead to Bayesian estimation problems (4). Unlike parametric models, nonparametric models
are suitable for estimation of deformable motion fields.

Parametric Models. Parametric models aim to describe the orthographic or perspective projection of 3-D
rigid motion (displacement or velocity) of a surface into the image plane. In general, parametric 2-D motion
models depend on a representation of the 3-D surface. For example, a 2-D motion field resulting from 3-D rigid
motion of a planar surface under orthographic projection can be described by a 6-parameter affine model, while
under perspective projection it can be described by an 8-parameter nonlinear model (5). There also exist more
complicated models for quadratic surfaces (6).

The simplest parametric motion model is the translational block model, which can be characterized by a
single translation vector

where (x
′
1, x

′
2) denotes the coordinates of a point in the frame k + l.

The affine motion model, given by

has six free parameters, and represents the orthographic projection of a rigid motion of a planar object in 3-D.
The perspective and bilinear motion models, given by

and

respectively, have 8 free parameters. The perspective model represents the perspective projection of a rigid
motion of a planar object in 3-D.

Motion Estimation and Compensation

Motion estimation methods can be broadly classified into differential methods which require estimation of
spatial and temporal image intensity gradients, numerical optimization methods including pel-recursive and
Bayesian methods, search-based methods including block-matching and its variations, and transform-domain
methods. The essentials of these methods are summarized in the following.
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Fig. 5. The normal flow. All vectors whose tips lie on the dotted line satisfy Eq. (8).

Optical Flow Equation and Differential Methods. Let sc(x1, x2, t) denote a continuous space-time
intensity distribution. If the intensity remains constant along a motion trajectory, we have

where x1 and x2 vary by t according to the motion trajectory. Equation (6) is a total derivative expression and
denotes the rate of change of intensity along the motion trajectory. Using the chain rule of differentiation, it
can be expressed as

where v1(x, t) = dx1/dt and v2(x, t) = dx2/dt denote components of the coordinate velocity vector in terms of the
continuous spatial coordinates. The expression Eq. (7) is known as the optical flow equation (OFE) or optical
flow constraint, which can alternatively be expressed as

where ∇sc(x; t) .= [∂sc(x; t)/∂x1 · ∂sc(x; t)/∂x2]T and 〈·, ·〉 denotes vector inner product.
The OFE yields one scalar equation in two unknowns, v1(x, t) and v2(x, t), at each site (x, t). Inspection of

Eq. (8) reveals that we can only estimate the component of the flow vector that is in the direction of the spatial
image gradient ∇sc(x; t)/‖∇sc(x; t)‖, called the normal flow v⊥(x, t), because the component that is orthogonal
to the spatial image gradient disappears under the dot product. This is illustrated in Fig. 5. The normal flow
at each pixel can be computed from Eq. (8) as
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The OFE Eq. (7) imposes a constraint on the component of the flow vector that is in the direction of the
spatial gradient of the image intensity at each site (pixel), which is consistent with the aperture problem.
Observe that the OFE approach requires that first, the spatiotemporal image intensity be differentiable, and
second, the partial derivatives of the intensity be available. In the following we present two approaches to
estimate optical flow from estimates of normal flow.

Lucas–Kanade Method (7). A simple scheme to overcome the aperture problem is to assume that the
motion vector remains unchanged over a particular block of pixels, denoted by B; that is,

Although such a model cannot accurately handle rotation and/or zoom, it is possible to estimate a purely
translational motion vector under this model provided that the block of pixels contain sufficient gray-level
variation.

Define the error in the optical flow equation over the block of pixels B as

Computing the partials of the error E with respect to v1(t) and v2(t), respectively, and setting them equal to
zero, the result is

where .̂ denotes the estimate of the respective quantity. Solving these equations simultaneously, the result is

It is possible to increase the influence of the constraints toward the center of the block B by employing
weighted summations. A suitable weighting function may be in the form of a 2-D triangular window. Clearly,
the accuracy of the flow estimates depends on the accuracy of the estimated spatial and temporal partial
derivatives.



IMAGE SEQUENCES 7

Horn–Schunck Method (3). Horn and Schunck seek a motion field that satisfies the OFE with the
minimum pixel-to-pixel variation among the flow vectors, in order to impose a less restrictive global smoothness
constraint on the velocity field. Let

denote the error in the optical flow equation. Observe that the OFE is satisfied when Eof (v(x, t)) is equal to
zero. In the presence of occlusion and noise, we aim to minimize the square of Eof (v(x, t)), in order to enforce
the optical flow constraint. The pixel-to-pixel variation of the velocity vectors can be quantified by the sum of
the magnitude squares of the spatial gradients of the components of the velocity vector, given by

where we assume that the spatial and temporal coordinates are continuous variables. It can easily be verified
that the smoother the velocity field, the smaller E2

s(v(x, t)).
Then the Horn and Schunck method minimizes a weighted sum of the error in the OFE and a measure of

the pixel-to-pixel variation of the velocity field

to estimate the velocity vector at each point x, where A denotes the continuous image support. The parameter
α2, usually selected heuristically, controls the strength of the smoothness constraint. Larger values of α2

increase the influence of the constraint.
The minimization of the functional Eq. (15), using the calculus of variations, results in the Gauss–Seidel

iteration

where n is the iteration counter, the overbar denotes weighted local averaging (excluding the present pixel),
and all partials are elevated at the point (x, t). The reader is referred to Ref. 3 for the derivation of this iterative
estimator. The initial estimates of the velocities v(0)

1(x, t) and v(0)
2(x, t) are usually taken as zero. Of course, all

spatial and temporal image gradients need to be estimated from the observed image samples (1).
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Pel-Recursive Methods. Pel-recursive methods are predictor-corrector type displacement estimators
computed sequentially at each pixel. The prediction can be taken as the value of the motion estimate at the
previous pixel location or as a linear combination of previous motion estimates in a neighborhood of the current
pixel. The update is computed by gradient-based minimization of a positive-definite function E of the displaced
frame difference (DFD) at each pixel. The DFD is defined as

where d(x) denotes the displacement vector at the spatial location x. The positive definiteness of E ensures that
the minimum occurs when the DFD is zero. Pel-recursive motion estimation is usually preceded by a change
detection stage, where the frame difference at each pixel is tested against a threshold. Estimation is performed
only at those pixels belonging to the changed region.

An early pel-recursive estimator is the Netravali-Robbins algorithm which minimizes the square of the
DFD at each pixel, using a gradient descent method (8). Then, the criterion function E to be minimized is given
by

where dfd denotes the displaced frame difference. Minimization of E(x; d) with respect to d, at pixel x, by the
steepest descent method yields the iteration

where ∇x is the gradient with respect to x, and ε is the step size. Note that negative of the gradient points to the
direction of the steepest descent. In Eq. (18), the first and second terms are the prediction and update terms,
respectively. The aperture problem is also apparent in the pel-recursive algorithms. Since the update term
is a vector along the spatial gradient of the image intensity, no correction can be performed in the direction
perpendicular to the gradient vector.

The convergence and the rate of convergence of the Netravali-Robbins algorithm depend on the choice
of the step size parameter ε. For example, if ε = 1/16, then at least 32 iterations are required to estimate a
displacement by 2 pixels. On the other hand, a large choice for the step size may cause an oscillatory behavior.
Several strategies can be advanced to facilitate faster convergence of the algorithm (9,10). For example, Caffario
and Rocca (10) developed an adaptive step-size expression

which includes a bias term η2 to avoid division by zero in areas of constant intensity where the spatial gradient
is almost zero. A typical value for η2 = 100. In addition, Walker and Rao (9) have introduced the following
heuristic rules: (1) If the DFD is less than a threshold, the update term is set equal to zero. (2) If the DFD
exceeds the threshold, but the magnitude of the spatial image gradient is zero, then the update term is again
set equal to zero. (3) If the absolute value of the update term (for each component) is less than 1

16 , then it is set
equal to ± 1

16 . (4) If the absolute value of the update term (for each component) is more than 2, then it is set
equal to ±2. Experimental results indicate that using an adaptive step size greatly improves the convergence
of the algorithm.

Extension of the pel-recursive approach to block-based estimation results in the so-called Wiener-type
motion estimation strategies (1).
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Fig. 6. Block matching.

Bayesian Methods. Bayesian methods utilize probabilistic smoothness constraints, usually in the
form of a Markov–Gibbs random field, to model the local interaction of displacement vectors. A maximum a
posteriori probability estimate of the displacement field can then be computed by minimizing a cost function,
which consists of an optical flow error term and a Gibbs potential term (penalizing discontinuities in the
estimated motion field) (4). This global minimization problem can then be solved by a simulated annealing
procedure or a deterministic approximation of it (1). The main drawback of Bayesian methods is that simulated
annealing procedures require an extensive amount of computation, whereas deterministic procedures may be
caught in a local minimum of the cost function.

Block-Matching. Block-matching is perhaps the most commonly used motion estimation technique
since it fits well with block-based video compression standards such as ISO/IEC MPEG-1/2 and ITU-T
H.261/263. Block matching takes a fixed size block from the present frame, and searches for the location
of the best-matching block of the same size in the reference frame (see Fig. 6). Block-matching algorithms
differ in the choice of the matching criteria and search strategy employed.

The matching of the blocks can be quantified according to various criteria including maximum cross-
correlation (similar to the phase-correlation method (1)), minimum mean square error (MSE), minimum mean
absolute difference (MAD), maximum matching pel count (MPC), and so on. For example, the minimum MSE
criterion is defined by

where B is an N1 × N2 block, and (d1, d2) denotes a candidate motion vector. The estimate of the motion vector
is the value of (d1, d2) which minimizes Eq. (20). Alternatively, the minimum MAD criterion, defined as
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Fig. 7. Three-step search. Only pixels marked “1” are searched in the first step. The pixel providing the best match is
circled. The second step is now centered about this pixel and the step size is halved.

is the most popular choice for very large scale integration (VLSI) implementations. Then the displacement
estimate is given by

The performance of the MAD criterion deteriorates as the search area becomes larger due to the presence of
several local minima.

Finding the best-matching block requires computation of the matching criterion for all candidate displace-
ment vectors (d1, d2) at each pixel (n1, n2). This procedure, known as full search, is extremely time-consuming.
As a first measure to reduce the computational burden, we limit the candidate vectors to within a “search
window”

which is centered about each pixel for which a motion vector will be estimated, where M1 and M2 are pre-
determined integers. A search window is shown in Fig. 6. Another commonly employed practice to lower the
computational burden is to estimate motion vectors on a sparse grid of pixels, e.g., once every eight pixels and
eight lines using a 16 × 16 block, and then interpolate the motion field to estimate the remaining vectors.

In most cases, however, search strategies faster than the full search are utilized, although they lead
to suboptimal solutions. Some examples of faster search algorithms include the three-step search and cross-
search. These faster search algorithms evaluate the criterion function only at a predetermined subset of the
candidate motion vectors. The three-step search is illustrated in Fig. 7. Note that the expected accuracy of
motion estimates varies according to the application. In motion-compensated compression, all we seek is a
matching block, even if the match does not correlate well with the actual projected motion. It is for this reason
that faster search algorithms serve video compression applications reasonably well.

Generalized Block-Matching. Block-matching method is based on the motion model of translational
blocks. The spatial transformations [Eqs. (3), (4), and (5)] provide superior motion tracking and rendering,
especially in the presence of rotation and zoom, compared to the translational model [Eq. (2)]. Thus, it is of
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Fig. 8. Mesh connectivity constraints.

interest to extend the concept of block-matching to estimate the parameters of these more sophisticated motion
models. This, of course, leads to increased computational complexity; we now have to perform search in a 6-
or 8-D parameter space (parameters of affine or perspective/bilinear transformation) instead of a 2-D space
(components of the translation vector). Several generalized motion estimation schemes have been proposed,
including a full-search method (11) and fast search method (12).

The full-search method can be summarized as follows: (1) Segment the current frame into rectangular
blocks. (2) Perturb the coordinates of the corners of a matching quadrilateral in the search frame starting
from an initial guess. (3) For each quadrilateral, find the parameters of a prespecified spatial transformation
that maps this quadrilateral onto the rectangular block in the current frame using the coordinates of the
four matching corners. (4) Find the coordinates of each corresponding pixel within the quadrilateral using the
computed spatial transformation, and calculate the MSE between the given block and the matching patch. (5)
Choose the spatial transformation that yields the smallest MSE or MAD. In order to reduce the computational
burden imposed by generalized block-matching, it is only used for those blocks where standard block-matching
is not satisfactory. The displaced frame difference resulting from standard block matching can be used as a
decision criterion.

Mesh-Based Motion Estimation. A 2-D mesh refers to a tesellation of the plane into polygonal
(commonly rectangular or triangular) patches. Each patch is motion compensated by means of an appropriate
spatial transformation such as Eqs. (3), (4), or (5). The parameters of the mapping for a patch are computed
from the motion vectors at the vertices of the respective patch. The main difference between generalized block
matching and mesh-based motion estimation is that the mesh elements are not allowed to overlap with each
other in the reference frame. That is, mesh connectivity constraints must be observed in motion estimation
of vertex points. This is illustrated in Fig. 8. Methods for motion estimation at the vertex points include
block-matching (13) and hexagonal matching (14).

Transform-Domain Motion Estimation. Transform domain motion estimation methods can be clas-
sified as energy-based methods and phase-based methods. Energy-based methods exploit the fact that Fourier
power spectrum of a translating image lies on a plane through the origin of the 3-D spatiotemporal frequency
domain (1). Thus, energy-based methods compute translational velocity by comparing the output energy of a
set of velocity-tuned filters (15,16). Phase-based methods exploit the fact that translation in the image domain
correspond to a linear phase-shift in the 2-D spatial frequency domain. The simplest such method is the phase
correlation method, which consists of: (1) Compute the phase correlation function as
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where Sk(f 1, f 2) is the 2-D Fourier transform of the frame k with respect to the spatial variables x1 and x2,
and ∗ denotes complex conjugation. (2) In the case of a translational motion between frames k and k + 1, the
inverse 2-D Fourier transform of Eq. (23) yields

which is an impulse whose location indicates the displacement (d1, d2). Implementation details are discussed
in Ref. 1. Other phase-based motion estimation methods can be found in Refs. 16 and 17.

Hierarchical Motion Estimation. Hierarchical (multiresolution) representation of video (e.g., in the
form of Laplacian pyramid or wavelet transform of frames), proves useful for motion estimation, especially
to overcome the aperture problem. Although hierarchical estimation improves the performance of any of the
above motion estimation methods, here we only discuss hierarchical block-matching.

The basic idea of hierarchical block-matching is to perform motion estimation successively at different
levels of hierarchy, starting with the lowest resolution level (18). The lower resolution levels serve to determine
a rough estimate of the displacement using relatively larger blocks. Note that the “relative size of the block”
can be measured as the size of the block normalized by the size of the image at a particular resolution level. The
estimate of the displacement vector at a lower resolution level is then passed onto the next higher resolution
level as an initial estimate. The higher resolution levels serve to fine-tune the displacement vector estimate.
At higher resolution levels, relatively smaller window sizes can be used, since we start with a good initial
estimate.

Figure 9 illustrates hierarchical block-matching with 2 levels, where the maximum allowed displacement
M = 7 for level 2 (lower resolution) and M = 3 for level 1 (higher resolution). Here, for simplicity, the pyramid
contains images that are all the same size but successively more blurred as we go to the lower resolution levels.
We simply skip over pixels in the lower resolution images (when computing matching criterion) to simulate
the effect of subsampling. The best estimate at the lower resolution level is indicated by the circled “3.” The
center of the search area in level 1 (denoted by “0”) corresponds to the best estimate from the second level. The
estimates in the second and first levels are [7, 1]T and [3, 1]T, respectively, resulting in an overall estimate of [10,
2]T. Hierarchical block-matching can also be performed with subpixel accuracy by incorporating appropriate
interpolation.

Motion Segmentation, Video Objects, and Video Object Tracking

Up to now, we considered video as a collection of frames without analyzing its content. There are several
applications that motivate content-based analysis of video, which require segmentation of frames into regions
of uniform motion and/or color, or semantically meaningful objects. They are: (1) if a scene contains multiple
moving objects, motion estimation performance can be improved at object boundaries if a segmentation map
is available (unfortunately, this is a chicken-and-egg problem, since automatic object segmentation often re-
quires prior motion estimation); (2) 3-D motion and structure analysis requires segmentation of the scene into
individual rigidly moving objects; and (3) object-based interactivity and manipulation require segmentation of
semantically meaningful video objects.

Motion segmentation refers to labeling of pixels which are associated with different coherently moving
regions. Various approaches exist for motion segmentation which may be classified as segmentation by change-
detection analysis and temporal integration (19), by dominant (global) motion compensation (20,21,22,23), by
affine clustering (24), by Hough transform analysis (25,26), by MRF modeling (27), by mixture modeling (28),
by morphological methods (29,30), and simultaneous motion estimation and segmentation (31). Some of these
methods are summarized below.
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Fig. 9. Example of hierarchical block-matching with 2 levels.

It is difficult to associate a generic figure of merit with a motion segmentation result. If motion segmen-
tation is employed to improve the compression efficiency, then oversegmentation may not be a concern. On the
other hand, if it is used for object definition with application to object-based functionalities (as in the upcoming
MPEG-4 standard), then it is of utmost importance that resulting motion boundaries align with actual object
boundaries. Although it may not be possible to achieve this perfectly in a fully automatic manner, elimination
of outlier motion vector estimates and imposing spatiotemporal smoothness constraints on the segmentation
map improve the chances of obtaining more meaningful segmentation results.

A video object (VO) is defined as a semantically meaningful part of a scene. It is a spatiotemporal quantity
as it relates to a group of pictures of a sequence. Video objects can be extracted using one of the following means:
fully automatic extraction based on motion, color, or other relevant features of the object; semi-automatic
extraction where the first instance of the video object is manually marked and then automatically tracked
until it disappears; a third option is to capture each VO separately against a chroma-keyed background so it
can be easily segmented, as long as the VO does not have any common colors with the background key. This
last process is also referred to as blue-screening, because blue is often used as the chroma key. Extraction
of semantically meaningful objects by fully automatic methods is extremely difficult except for a few special
cases (e.g., foreground/background separation in the case of a static camera). However, automatic methods can
be successfully employed to extract image regions with uniform motion and/or color between pairs of frames.
Integration of these segments for video object definition, as well as tracking, is still an active area of research.
In the following, we summarize recent methods for motion-based video segmentation, and automatic video
object tracking.

Foreground/Background Separation with Stationary Camera. The simplest motion segmentation
problem is separation of moving foreground objects from a stationary background (in the case of a static
camera), which is also known as the motion detection problem. This can be achieved by thresholding or
two-class clustering of successive or accumulative frame differences (19,32). Similar to motion estimation,
motion detection and segmentation are also plagued with two fundamental limitations: occlusion and aperture
problems. For example, pixels in a flat image region may appear to be stationary even if they are moving (due
to the aperture problem); and/or erroneous motion vectors in the vicinity of covered/uncovered image regions
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(due to the occlusion problem) may yield false segmentation boundaries. These problems may be alleviated by
hierarchical processing schemes.

Dominant Motion Estimation and Compensation. In the presence of a moving camera (e.g., zoom,
pan, and/or tilt), the global camera motion must be compensated for before individual moving foreground objects
can be detected. This leads to scene segmentation by dominant motion analysis, which refers to extracting one
object (with the dominant motion) from the scene at a time (21,23). The dominant object may be the background
or a foreground object. Multiple object segmentation can be achieved by repeating the procedure on the residual
image after each object is extracted.

The global (dominant) motion is modeled by an affine transformation as

where s(x1, x2, k) denotes image intensity at the pixel (x1, x2) in frame k. The parameters c1, . . ., c6 for the
first dominant object are estimated over the whole frame using a least-squares solution of the optical flow
formulation expressed in terms of the Taylor series expansion of the video signal s(x1, x2, t) (21). Because the
Taylor series expansion assumes a small motion, the algorithm is used iteratively. Bergen et al. (21) made
the interesting observation that the model yields the motion of the dominant object even in the presence of
other moving objects. Given the motion parameter set c1, . . ., c6, the dominant object boundary is identified
by comparing s(x1, x2, k) with the motion compensated frame sMC(x1, x2, k). Clearly, those pixels that are well
compensated by Eq. (25) are marked to belong to the first dominant object. The procedure is then repeated
on the remaining pixels to identify the next dominant object, and so on. Some difficulties with the dominant
motion approach were reported when there is no dominant object in the scene.

Motion Segmentation by Parameter Clustering. Whereas the dominant motion method is a top-
down method, motion segmentation by parameter clustering can be considered a bottom-up approach. It starts
with a large number, N, of seed blocks uniformly distributed over the image, and fits a parametric model to the
estimated motion field (optical flow) within each seed block. Then, the resulting model parameter vectors are
clustered to find representative motion models.

Affine parameter clustering for motion segmentation was first proposed by Wang and Adelson (W–A) (24).
This procedure can be mathematically described as: Given the affine parameter vectors A1, A2, . . ., AN , where

find K cluster centers Ā1, Ā2, . . ., ĀK , where K � N, and the label k, k = 1, . . ., K, assigned to each affine
parameter vector An which minimizes
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The distance measure D between two affine parameter vectors An and Āk is given by

where M is a 6 × 6 scaling matrix.
The solution to this problem can be found by the well-known K-means algorithm, which consists of the

following iteration: (1) Initialize Ā1, Ā2, . . ., ĀK arbitrarily. (2) For each seed block n, n = 1, . . ., N, find k given
by

where s takes values from the set {1, 2, . . ., K}. (3) Define Sk as the set of seed blocks whose affine parameter
vector is closest to Āk, k = 1, . . ., K. Then, update the class means

(4) Repeat steps 2 and 3 until the class means Āk do not change by more than a predefined amount between
successive iterations. Statistical tests can be applied to eliminate some parameter vectors which are deemed
as outliers. Furthermore, the number of clusters can be varied by splitting or merging of clusters between
iterations.

Once the K cluster centers are determined, a label assignment procedure is employed to complete the
motion segmentation. The segmentation label L(i, j) for each pixel (i, j) is determined by

where k is from the set {1, 2, . . ., K}, the operator P is defined as

and v(i, j) is the dense motion vector at pixel (i, j) given by

where vx and vy denote the horizontal and vertical components, respectively. Several postprocessing operations
may be employed to improve the accuracy of the segmentation gap.

The method of clustering in the affine parameter space has some drawbacks: (1) the metric Eq. (28) is not
physically meaningful and clustering results are sensitive to the choice of the weight matrix M, (2) clustering
results are sensitive to small errors in the estimation of affine parameters, and (3) parameter clustering and
label assignment procedures are decoupled; hence, ad hoc postprocessing operations which depend on some
threshold values are needed to clean up the final segmentation map. However, successful results have been
obtained through temporal integration of segmentation maps.
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Fig. 10. A 2-D uniform mesh overlaid on an object with arbitrary shape which is approximated by a quadrilateral.

Combined Motion Estimation and Segmentation. Motion estimation and segmentation are inter-
related since good motion segmentation requires good motion estimation, and vice versa. For example, the
occlusion and aperture problems in motion estimation are usually responsible for misalignment of motion
and actual object boundaries and oversegmentation of the motion field. Furthermore, all pixel-based motion
segmentation methods, including (21,24), suffer from the drawback that the resulting segmentation map may
contain isolated labels.

In recognition of these facts, a Bayesian approach to simultaneous motion estimation and segmentation
that is based on modeling the 2-D motion field as the sum of a parametric field and a residual field has been
proposed by Chang et al. (31). This method iterates between motion estimation and segmentation imposing
mutually consistent constraints within a Bayesian estimation framework. Spatial continuity constraints in
the form of Gibbs random field models have also been introduced in Ref. 27 to obtain smoother segmentation
results. However, the computation cost of these Bayesian motion segmentation algorithms limits their practical
use.

Video Object Tracking. Existing methods for object tracking can be broadly classified as boundary
(shape) tracking, and region tracking methods. Boundary tracking has been addressed by using locally de-
formable (active) contour models (33) [or snakes (34)], and deformable template models (35). Region tracking
methods can be categorized as those that employ global deformation models (36) and those that allow for local
deformations. For example, the region tracking method of Meyer and Bouthemy (37) uses a single affine motion
model within each region of interest and assigns a second-order temporal trajectory to each affine model pa-
rameter. More recently, a 2-D triangular mesh-based object representation has been proposed for tracking local
deformations of objects (14) as well as their global motion. The mesh model describes the dense motion field as
a collection of flexibly connected non-overlapping rigid patches, where the motion of each patch is modeled by
an affine mapping. In the following, we briefly summarize 2-D mesh-based object tracking since it allows for
more general object motions.

Here, in order to define semantically meaningful objects, we assume that the initial contour of the object is
marked by the user manually. In Ref. 14, the boundary of the object is approximated by a polygon with a small
number of vertices, and a 2-D uniform mesh is overlaid on the object, as depicted in Fig. 10. A generalized block
matching method was employed at the vertices of the boundary polygon to predict its location in the next frame.
This is depicted in Fig. 11. The motion of each mesh node point is linearly predicted from the displacements
of the vertices of the boundary polygon under the assumption of “mild” deformations, and then refined by a
connectivity preserving fast search algorithm (14). However, this technique does not account for occlusion of
any node points.

In a subsequent work (38), the boundary of the object has been modeled by an active contour (uniform B-
spline), which is snapped to the actual boundary at each frame using energy minimization for better boundary
tracking. Improved motion estimation and content-adaptive triangulation methods (13) are also employed to
handle occlusions. Triangular mesh-based object mosaics are also introduced to perform texture mapping in the
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Fig. 11. Tracking of the boundary nodes.

presence of partial occlusions. However, robust tracking in the presence of self-occlusion (e.g., object entry/exit,
out-of-plane rotations) or an object covering/uncovering another is still an active area of research.

Image Sequence Filtering

Filtering problems can be broadly classified as standards conversion, noise filtering (de-noising), de-blurring,
and high-resolution filtering. Image sequence filtering (de-noising, de-blurring, and superresolution) becomes
especially important when still images from video are desired. This is because the blur, noise, and aliasing
artifacts become rather objectionable when observing a “freeze-frame,” although they may not be visible to
the human eye at the usual frame rates. Since many video signals encountered in practice are interlaced, we
address the cases of both progressive and interlaced video. Filters used for these tasks may be intraframe/field,
motion-adaptive, or motion-compensated filters. Motion-compensated filters employ explicit estimates of mo-
tion vectors/fields in the filtering operation. Although motion-compensated filtering is optimal when motion
trajectories can be accurately estimated, it is very sensitive to motion estimation errors. This fact, along with
the high cost of hardware implementation of motion estimation, motivates use of suboptimal but more robust
algorithms which do not require explicit estimation of motion such as intraframe/field and motion-adaptive
filters. Intra-frame/field filtering refers to algorithms that employ data from a single frame/field. The form of
motion-adaptive filters depends on the value of a motion detection signal; however, they do not require motion
vector/field estimation.

Standards Conversion. Video signals are usually in different formats for different applications; e.g.,
NTSC and PAL broadcast signals are 2:1 interlaced with 525/60 and 625/50 lines per frame and fields per
second, respectively, and employ rectangular pixels; a typical high-resolution computer monitor is progressive
(non-interlaced) with 1280 pixels × 1024 lines × 72 frames per second and employs square pixels; and movies
are progressively digitized with 4K pixels × 3K lines and 24 frames per second. Standards conversion refers to
spatial and temporal video format manipulations to decouple the source format from the display format. This
allows re-purposing content by, for example, conversion of movies to NTSC or PAL, display of NTSC or PAL
video on progressive computer monitors, and so on.

Simple Field/Frame Rate Conversion.
“3 to 2 Pull-Down”. The 3:2 pull-down method has long been used for conversion of motion picture sources

to NTSC video. It is a simple frame repetition method, where each odd frame of the digitized motion picture
is repeated three times and each even frame is repeated twice, or vice versa, yielding a 60 Hz field rate from
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Fig. 12. Illustration of the 3:2 pull-down method.

Fig. 13. Illustration of 50–60 Hz field rate conversion by linear filtering.

24 Hz input source. This is depicted in Fig. 12. The 3:2 pull-down method introduces temporal aliasing which
results in jerky motion rendition. This is hardly visible at the spatiotemporal resolution provided by current
NTSC receivers; however, with bigger displays and high-resolution video formats, more sophisticated frame
/field rate conversion algorithms are needed.

The inverse of this procedure, which generates a 24 Hz noninterlaced source from a 60 fields/s interlaced
video, has been adopted by the Moving Picture Experts Group (MPEG) as a preprocessing step for reduncy
reduction in MPEG-2 compression of NTSC video sources which were converted from motion picture by the 3:2
pull-down method (39).

50–60 Hz Conversion. The NTSC standard employs 60 fields/s and 262.5 lines/field, whereas the PAL
uses 50 fields/s and 312.5 lines/field. The conversion from NTSC to PAL may be achieved by dropping a complete
frame (an even and an odd field) every six frames, and spatially interpolating for the missing lines. PAL to
NTSC conversion requires dropping some extra lines per frame, and replicating a complete frame every five
frames. Smoother results can be obtained by interpolating fields in time (rather than dropping or replicating
them) to achieve the desired field rate. Weights of a commonly used two-tap linear interpolation filter for 50 to
60 Hz conversion are shown in Fig. 13.
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Fig. 14. Two-point line averaging.

Scan Rate Doubling. Doubling of the field rate has been adopted by several TV manufacturers in Europe
for commercial 100-Hz receivers to improve visual quality. In digital TV receivers, it is very easy to replicate
each field twice to achieve scan rate doubling. There exists more than one way to repeat the fields. For example,
an odd field may be repeated to form the next even field, and an even field is repeated to form the next odd
field. This method has reasonably good performance in moving scenes, but poor results in stationary regions is
inevitable. Alternatively, one can repeat an even field to form the next even field, and an odd field to form the
next odd field. This strategy is optimal for stationary scenes but fails for moving parts.

Yet another alternative is a line averaging filter, which is depicted in Fig. 14. The solid circles in Fig. 14
denote input pixels, and open circles pointed by the arrows denote the output pixels. The line-averaging filter
provides reasonable performance in moving regions. However, it introduces blurring in stationary image parts
because it is purely a spatial filter. Notice that while the repetition algorithms yield jagged edges, averaging
algorithms provide blurred edges and may introduce ghost artifacts in moving regions. Obviously, none of the
above algorithms alone is satisfactory for both stationary and moving regions of the scene, which motivates
the need for motion-adaptive or motion-compensated filtering schemes.

Motion-Adaptive Field/Frame Rate Conversion. A shift-varying linear filter, with a three-pixel support
as depicted in Fig. 15, where the filter impulse response is determined locally based on a motion detection
function, provides the flexibility needed for obtaining improved results. For example, we can perform averaging
only in the stationary image regions, and replicate pixels or compute a weighted average in the moving regions.
The moving regions can be estimated by using a motion detection function, which may simply be the frame
difference as in change detection (see also the section on Motion-Adaptive De-Interlacing). Because no optimal
strategy exists to determine the filter weights in terms of the motion detection function in the moving areas,
some researchers suggested the use of spatiotemporal median filtering.

Median filtering is known to be edge-preserving in intra-frame image processing. Considering the effect
of motion as a temporal edge, spatiotemporal median filtering should provide motion adaptivity. Three-point
median filtering has been used in prototype improved-definition TV receivers for field rate doubling. The support
of the filter, for even and odd fields, is as shown in Fig. 15. Several modifications including a combination of
averaging and median filters have been proposed for performance improvements (40).

Simple De-Interlacing. De-interlacing refers to up-conversion from an interlaced to a progressive sam-
pling lattice at the same temporal rate.
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Fig. 15. Three-point filtering for field rate doubling.

Fig. 16. Two-field filtering for de-interlacing.

Field Merging. The simplest de-interlacing method is merging the even and odd fields of a frame, that is,
copying samples as shown by the horizontal arrow in Fig. 16. This method yields N/2 progressive frames from
N fields. The resulting frames are known as composite frames. Composite frames provide perfect resolution in
stationary image regions, but they may suffer from serious motion artifacts.

Linear Intrafield De-Interlacing. Motion artifacts can be avoided by interpolating each field individually.
If only N/2 progressive frames are desired from N fields, all even or all odd fields may be dropped. Intraframe
de-interlacing can employ line repetition, line averaging, or more sophisticated interpolation filtering. The
projection of two frames of an interlaced video on the (x2, t) coordinates is shown in Fig. 17, where each circle
denotes the cross-section of a complete line of video. The shaded circles denote lines that are available, and
the open circles show the lines to be interpolated. Similar to the case of frame/field rate conversion, the line
repetition algorithm results in jagged edges, while the line-averaging algorithm causes undesired blurring.
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Fig. 17. Intrafield filtering.

Edge-Adaptive Intrafield De-Interlacing. Edge-adaptive spatial interpolation methods have been pro-
posed to avoid blurring edges (41,42,43). In the edge-adaptive approach, each line of video in a given frame t0
is modeled as a horizontally displaced version of the previous line in the same frame given by

where d denotes the horizontal displacement between two consecutive even or odd lines. This model suggests
a 1-D motion compensation problem where x2 takes the place of the time variable. The displacement d at each
pixel can be estimated by either using symmetric line segment matching about (x1, x2) in order to minimize
the summed absolute difference (SAD) given by (41)

or through the relation (45,46)

which is the equivalent of the optical flow equation in this case. Then an edge-adaptive contour interpolation
filter can be defined as

where e and o denote even and odd fields, respectively. This filter seeks those two pixels in the two neighboring
lines that most likely belong to the same image structure, i.e., on the same side of the edge, and averages them.
The fact that it is capable of preserving a 45 degree edge, unlike the linear averaging filter, is demonstrated in
Fig. 18. The crucial step here is the accurate estimation of the local displacement values.
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Fig. 18. Demonstration of (a) linear versus (b) edge-adaptive interpolation.

Intraframe filtering methods lead to simple hardware realizations. However, they are not well suited to
de-interlacing in stationary regions, where spatial averaging usually causes blurring of image details; hence,
the need for motion-adaptive de-interlacing.

Motion-Adaptive De-Interlacing. Motion-adaptive filtering refers to employing different filtering strate-
gies in the presence and absence of motion without motion estimation. For example, in de-interlacing, in the
absence of motion, the best strategy is to merge even and odd fields, which simply doubles the vertical resolu-
tion. However, in the presence of motion this technique would suffer from motion artifacts. Explicit schemes
make use of a motion-detection function and apply different filters depending on the value of this function.

In order to obtain an acceptable performance in both the moving and stationary regions, we may consider
motion-adaptive interframe filtering, which switches between merging and intraframe interpolation (41) or
linearly blends them (44), based on a motion detection function. Two examples of a three-point motion-adaptive
filter, whose support is depicted in Fig. 16, are the three-point weighted averaging filter,

and the three-point median filter (40)

where α and β are determined based on the value of a motion detection function, and the parameter d, computed
from Eq. (35) or Eq. (36), allows for edge-adaptive intraframe interpolation.

We can employ a three- or four-field motion detection function. The three-field motion detection function is
obtained by thresholding the difference between two fields of the same polarity (even-even or odd-odd), whereas
the four-field motion detection function takes the logic OR of the thresholded differences of the respective even-
even and odd-odd fields. The coefficients α and β may be given by

Motion adaptive methods provide satisfactory results, provided that the scene does not contain fast-moving
objects. In the presence of fast-moving objects some sort of motion-compensated filtering, as described next, is
needed for the best results.

Global-Motion-Compensated De-Interlacing. Motion-compensated filtering, in general, requires a dif-
ferent motion trajectory at each pixel. However, in practice, reliable estimation of these vectors at each pixel
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Fig. 19. Motion-compensated/adaptive de-interlacing.

Fig. 20. Illustration of judder: (a) no judder; (b) judder present.

poses serious problems. To this effect, we propose a hybrid de-interlacing method, where we compensate for
a single global motion, which is due to camera pan or shake, and then employ a motion-adaptive filter on
the globally compensated image to account for any residual motion. The block diagram of a three-field hybrid
de-interlacing filter is depicted in Fig. 19, where the three consecutive fields are assumed to be an even field
E1, an odd field O1, and an even field E2.

In the first stage, a global-motion vector between the fields E1 and E2 is estimated using the phase
correlation method over four rectangular windows that are located near the borders of the fields, so that they
are most likely affected by global motion only. Next, the fields O1 and E2 are motion-compensated with respect
to E1 to generate O

′
1 and E

′
2, respectively. The motion compensation step aims to create three consecutive

fields, E1, O
′
1, and E

′
2, that represent the interlaced video if no global motion were present. Subsequently,

the three-field motion-adaptive weighted averaging filter, described above, is applied to the field sequence E1,
O

′
1, and E

′
2. Finally, a judder post-processing step, proposed by Zaccarin and Liu (45), has been included.

Judder, illustrated in Fig. 20, refers to edge misalignment artifacts caused by incorrect motion vectors. In the
postprocessing stage, the motion vectors at the pixels where judder is detected are deemed unreliable, and the
corresponding pixels are replaced by spatially interpolated values.

Motion-Compensated Filtering. Motion-compensated filtering is the optimal standards up-conversion
approach, provided that the motion trajectories can be accurately estimated. The basic concept of motion-
compensated filtering is the same for frame/field rate up-conversion and de-interlacing; that is, to perform
filtering along the motion trajectories passing through the missing pixels (46). The two problems differ only
in the spatiotemporal locations of the missing samples. The procedure consists of: (1) motion estimation, (2)
postprocessing of motion vectors, and (3) filter design. The reader is referred to (1) for filter design issues.

Motion Estimation. Several motion estimators have been proposed for use in standards conversion (47,
48). In motion-compensated up-conversion, we need to estimate motion trajectories that pass through missing
pixel locations. A simple method that achieves this is the symmetric block matching, which is illustrated in Fig.
21(c). Unlike the forward or backward block matching [shown in Fig. 21(a) and 21(b)], in this scheme, blocks
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Fig. 21. (a) Forward, (b) backward, and (c) symmetric block matching.

in the two existing neighboring frames/fields k and k − 1 are moved symmetrically so that the line connecting
the centers of these two blocks always passes through the missing pixel of interest (x1, x2) (49).

Postprocessing of Motion Estimates. The accuracy of the motion estimates is probably the most important
factor in the effectiveness of motion-compensated interpolation. Thus, some kind of postprocessing is usually
applied to the estimated motion vectors to improve their accuracy. An easy method to detect unreliable motion
vectors is to test the DFD between the frames k and k + 1. All vectors yielding a DFD that is above a prespecified
threshold are discarded. The unreliable motion vectors can be replaced by a set of candidate motion vectors
if any of the candidate vectors yields a DFD that is less than the threshold. The candidate vectors can be
determined based on the analysis of the histogram of the reliable motion vectors, where the dominant peaks
of the histogram indicate background motion or the motion of large objects in the scene (50). If no reliable
replacement motion vector can be found at a pixel, it is marked as a motion estimation failure, where a
motion-adaptive or an intraframe filter is employed.

Image Sequence Estimation. Digital video recorded by consumer camcorders, still cameras, or even
broadcast-quality video cameras and motion-picture cameras are degraded by some amount of noise. Noise
sources include film grain, sensor, quantization, and compression noise. Image sequence estimation refers to
estimating noise-free images by means of statistical modeling and filtering. It should be rather obvious that
exact separation of variations in image intensity which are due to noise from genuine image detail is impossible.
To this effect, both the image and noise will be characterized by statistical models. In general, the noise can
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be modeled as additive or multiplicative, signal-dependent or signal-independent, and white or colored. For
example, photon noise and film-grain noise are signal-dependent, whereas CCD sensor noise and quantization
noise are usually modeled as white, Gaussian distributed, and signal-independent. Here, we assume a simple
additive noise model given by

where s(n1, n2, k) and v(n1, n2, k) denote the ideal video and noise at frame k, respectively.
Noise filters can be classified as spatial (intraframe) and spatio-temporal (interframe) filters. In intraframe

filtering, there is a tradeoff between noise reduction and spatial blurring of the image detail. Spatiotemporal
filters are 3-D filters, which utilize not only the spatial correlations, but also the temporal correlations between
the frames. We classify spatio-temporal filters as motion-adaptive and motion-compensated filters. Motion-
adaptive filtering utilizes motion-detection, but does not require explicit estimation of interframe motion
vectors. This is distinct from motion-compensated filtering schemes, which operate along motion trajectories,
thus requiring exact knowledge of the trajectories at each pixel.

Estimation of the Noise Variance. Since we model the noise by a zero-mean, white Gaussian random
process that is uncorrelated with the image, it is completely characterized by its variance. The variance of the
noise is commonly estimated by the sample variance computed over a low-contrast local region of the observed
image. As will be seen in the following, the noise variance plays an important role in defining constraints for
image estimation and restoration algorithms.

Intraframe Filtering. We can classify intraframe noise filters into three categories: (1) linear, shift-
invariant (LSI) filters, such as the weighted averaging filters and linear minimum mean square error (LMMSE)
filters, also known as Wiener filters, (2) nonlinear filters, such as median filters and other order statistics filters,
and (3) adaptive filters, such as directional smoothing filters and local (space-varying) LMMSE filters.

LMMSE (Wiener) Filter. The Wiener filter gives the minimum mean square error estimate of the ideal
image among all linear filters, based on the model that the noise is image-independent, and image and noise
are wide-sense stationary (that is, their means are constant and their correlation functions are shift-invariant).
The frequency response of the Wiener filter is then given by (1)

where Pss(f 1, f 2) and Pvv(f 1, f 2) denote the power spectra of the image and noise, respectively. The mean of the
image and noise are taken to be zero without loss of generality, since any nonzero mean can be removed prior to
filtering. We observe that the Wiener noise filter is a low-pass filter, since the image power spectrum diminishes
at high frequencies, which implies that the filter frequency response goes to zero at those frequencies. A
realizable approximation to the filter (Eq. 41) can be obtained by a technique known as frequency-sampling
design, where the filter frequency response H(f 1, f 2) is sampled in the frequency domain using N1 × N2 samples.
The samples can be efficiently computed using a N1 × N2 fast Fourier transform (FFT).

Adaptive (Local) LMMSE Filtering. Linear shift-invariant filters are limited in their ability to separate
genuine image variations from noise, because they are based on wide-sense stationary (homogeneous) image
models. In order to develop an easily implementable adaptive filter that preserves image detail, Kuan et al.
(51) proposed a simple space-varying image model, where the local image characteristics are captured in a
space-varying mean, and the residual after removing the local mean was modeled by a white Gaussian process.
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The LMMSE estimator, based on this image model, can be expressed as (1)

where g(n1, n2) and ŝ(n1, n2) denote the noisy observation and the estimate, µs(n1, n2) and σ2
s(n1, n2) are the

local mean and variance of the original image, respectively, and σ2
v is the variance of the noise. The resulting

filter, which has a predictor-corrector structure, is easy to implement, yet avoids excessive blurring in the
vicinity of edges and other image detail.

Note that the adaptive LMMSE filter (Eq. 42) requires the estimation of the mean µs(n1, n2) and the
variance σ2

s(n1, n2) at each pixel. We estimate the local sample mean and sample variance over an M × M
window, W, as

and

We have

so that σ2
s is always nonnegative. It is assumed that the variance of the noise σ2

v is either known or can be
estimated from a uniform image region.

It is interesting to note that when σ2
s is small, the second term in Eq. (42) is negligible, and the adaptive

LMMSE filter approaches a direct averaging filter. On the other hand, when σ2
s is large compared with σ2

v, the
filter is turned off. Because large σ2

s usually indicates presence of edges, the adaptive LMMSE filter preserves
edges by effectively turning the filter off across edges. Consequently, some noise is left in the vicinity of edges
which may be visually disturbing.

Directional Filtering. Directional filtering is an edge-preserving de-noising approach that aims to reduce
the noise also in the vicinity of the edges. This is achieved by filtering along the edges, but not across them. In
particular, possible edge orientations are generally quantized into four: 0◦, 45◦, 90◦, and 135◦; and five FIR filter
kernels, one for each orientation and one for nonedge regions, are defined. The supports of the edge-oriented
FIR filters are depicted in Fig. 22.

There exist two approaches for directional filtering. The first is to select the most uniform support out of the
five at each pixel according to a criterion of uniformity or by edge-detection (52). The variance of pixels within
each support can be used as a selection criterion. Then, the edge-kernel with the lowest variance indicates the
most likely edge orientation at that pixel. Filtering can be performed by averaging the pixels in the direction
of the smallest variance. The second approach is to apply an edge-adaptive filter, such as the adaptive LMMSE
filter, within each kernel at each pixel, and cascade the results (53). Recall that the local LMMSE filter is
effectively off within those supports with a high variance. Thus, we expect that effective filtering is performed
only over those kernels with a small variance. This method avoids an explicit support selection step. It offers
satisfactory noise reduction around edges, since at least one of the filters should be active at every pixel.
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Fig. 22. Directional filtering kernels.

Median and Weighted Median Filtering. The median filter computes the median of pixel intensities
within the support of the filter. The median filter is implicitly edge-preserving because it can reject outlier
intensities; thus, avoiding blurring across edges (54). Fast algorithms for one- and two-dimensional (separable)
median filtering exist for real-time implementations (55). In median filtering each sample in the filter support
is given an equal emphasis. The weighted median filter is an extension of the median filter, where each sample
(i1, i2) is assigned a weight wi1,i2 . The weighting is achieved by replicating the (i1, i2)th sample wi1,i2 times. The
properties of the filter vary, depending on how the weights are assigned. The reader is referred to Ref. 56 and
the references therein for other generalizations of median filtering, including order statistic and multistage
order statistic filters.

Motion-Adaptive Filtering. Interframe noise filtering may provide several advantages over intraframe
filtering, such as avoiding spatial blurring. In this section, we discuss motion-adaptive noise filters where there
is no explicit motion estimation. These filters are applied over a fixed spatiotemporal support at each pixel. We
start with direct filtering where the adaptivity is implicit in the filter design. Next, we cover filter structures,
where some coefficients vary as a function of a so-called “motion-detection” signal.

Direct Filtering. The simplest form of direct filtering is frame averaging, where there is no motion adap-
tivity. Direct temporal averaging is well suited to stationary parts of the image, because averaging multiple
observations of essentially the same pixel in different frames eliminates noise while resulting in no loss of
spatial image resolution. In purely temporal filtering a large number of frames may be needed for effective
noise reduction, which requires a large number of frame stores. Spatiotemporal filtering provides a compromise
between the number of frame stores needed for effective noise reduction and the amount of spatial blurring
introduced. Although direct temporal averaging serves well for stationary image regions, it may lead to smear-
ing and chrominance separation in the moving areas. These degradations may be avoided if the filter makes
use of interframe motion information.

Motion-adaptive filtering is the temporal counterpart of edge-preserving spatial filtering in that frame-
to-frame motion gives rise to temporal edges. A fundamental question is how to distinguish the temporal
variations due to motion from those due to noise. It follows that spatiotemporal noise filters that adapt to
motion can be obtained by using structures similar to those of the edge-preserving filters. Examples of such
filters include directional filters and order statistic filters, including median, weighted median, and multistage
median filters (56). For instance, Martinez and Lim (57) proposed a cascade of five one-dimensional finite
impulse response (FIR) linear minimum mean square error (LMMSE) estimators over a set of five hypothesized
motion trajectories at each pixel. These trajectories correspond to no motion, motion in the +x1 direction, motion
in the −x1 direction, motion in the +x2 direction, and motion in the −x2 direction. Due to the adaptive nature
of the LMMSE estimator, filtering is effective only along hypothesized trajectories that are close to actual ones.
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Fig. 23. Estimation of the motion trajectory (n = 5).

This approach has been reported to be successful in cases where one of the hypothesized motion trajectories is
close to the actual one.

Motion-Detection Based Filtering. Motion-detection based noise filtering is analogous to motion-adaptive
frame/scan rate conversion and de-interlacing algorithms, except that in standards conversion the “present
pixel” does not have an observation and it needs to be interpolated from its neighbors, whereas in noise filtering
the “present pixel” has a noisy observation and it needs to be estimated. Both FIR and IIR filter structures
can be employed in motion adaptive filtering. The selected filter structure has parameters which can be tuned
according to a motion-detection signal, such as the frame difference, which tends to turn the filtering off when
a large motion is detected in an attempt to prevent artifacts. The FIR structure has limited noise-reduction
ability, especially when used as a purely temporal filter with a small number of frames, because the reduction in
the noise variance is proportional to the number of samples in the filter support. IIR filters are more effective
in noise reduction, but they generally cause Fourier phase distortions. Several implementations of motion-
adaptive noise filters have been proposed in the literature, which generally differ in the way they compute the
motion-detection signal. Use of motion-adaptive IIR filters in practical systems have been demonstrated by
McMann et al. (58) and Dennis (59).

Motion-Compensated Filtering. The motion-compensated approach is based on the assumption that the
variation of the pixel gray levels over any motion trajectory is due mainly to noise. Thus, noise in both the
stationary and moving areas of the image can effectively be reduced by low-pass filtering over the respective
motion trajectory at each pixel. Motion-compensated filters differ according to (1) the motion estimation method,
(2) the support of the filter, (e.g., temporal versus spatiotemporal) and (3) the filter structure (e.g., FIR versus
IIR, adaptive versus nonadaptive).

The concept and estimation of a motion trajectory are illustrated in Fig. 23. Suppose we filter the kth
frame of an image sequence using N frames k − M, . . ., k − 1, k, k + 1, . . ., k + M, where N = 2M + 1. The first
step is to estimate the discrete motion trajectory at each pixel (n1, n2) of the kth frame. The discrete motion
trajectory is depicted by the solid line in Fig. 23 for the case of N = 5. The displacement vectors are usually
estimated in reference to the frame k as indicated by the dotted lines. The trajectory in general passes through
subpixel locations, where the intensities can be determined via spatial or spatiotemporal interpolation. The
support Sn1,n2,k of a motion-compensated spatiotemporal filter is defined as the union of predetermined spatial
neighborhoods (e.g., 3 × 3 regions) centered about the pixel (subpixel) locations along the motion trajectory.
In temporal filtering, the filter support Sn1,n2,k coincides with the motion trajectory. Clearly, the effectiveness of
motion-compensated spatiotemporal filtering is strongly related to the accuracy of the motion estimates.

Various filtering techniques, ranging from averaging to more sophisticated adaptive filtering, can be
employed given the motion-compensated filter support. In the ideal case, where the motion estimation is
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perfect, direct averaging of image intensities along a motion trajectory provides effective noise reduction
(6,570). In practice, motion estimation is hardly ever perfect, due to noise and sudden scene changes, as well as
changing camera views. As a result, image intensities over an estimated motion trajectory may not necessarily
correspond to the same image structure, and direct temporal averaging may yield artifacts. In the case of
spatiotemporal filtering, there may also be spatial variations within the support; hence the need for adaptive
filter structures over the motion-compensated filter support. Here, we consider two adaptive filter structures:
the adaptive LMMSE filter, which is aimed at reducing the amount of filtering whenever a nonuniformity is
detected within the motion-compensated support, and the adaptive weighted averaging (AWA) filter, which
is aimed at weighting down the effect of the outliers that create the nonuniformity and achieving effective
filtering by concentrating on the remaining similar image intensities.

Spatio-Temporal Adaptive LMMSE Filtering. The motion-compensated adaptive LMMSE filter (61,62) is
an extension of the edge-preserving spatial filter proposed by Lee (63) and Kuan et al. (51) to the spatiotemporal
domain, where the local spatial statistics are replaced by their spatiotemporal counterparts. Then, the estimate
of the pixel value at (n1, n2, k) is given by

where the sample mean µ̂g(n1, n2, k) and variance σ̂2
g(n1, n2, k) are computed within the support Sn1,n2,k as

and

and L is the number of pixels in Sn1,n2,k. Then

in order to avoid the possibility of a negative variance estimate. Depending on whether we use spatiotemporal
or temporal statistics, this filter will be referred to as the LMMSE-ST or the LMMSE-T filter, respectively.

The adaptive nature of the filter can be observed from Eq. (46). When the spatiotemporal signal variance
is much smaller than the noise variance, σ̂>2

s(n1, n2, k) ≈ 0, that is, the support Sn1,n2,k is uniform, the estimate
approaches the spatio-temporal mean, µ̂g = µ̂s. In the extreme, when the spatio-temporal signal variance is
much larger than the noise variance, σ̂2

s(n1, n2, k) � σ̂2
v(n1, n2, k), due to poor motion estimation or the

presence of sharp spatial edges in Sn1,n2,k, the estimate approaches the noisy image value to avoid blurring.
A drawback of the adaptive LMMSE filter is that it turns the filtering down even if there is a single outlier

pixel in the filter support, thus often leaving noisy spots in the filtered image. An alternative implementation,
called the switched LMMSE filter (LMMSE-SW), may maintain the advantages of both the spatiotemporal and
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the temporal LMMSE filtering by switching between a selected set of temporal and spatiotemporal supports at
each pixel, depending on which support is the most uniform (64). If the variance σ̂2

g(n1, n2, k) computed over
Sn1,n2,k is less than the noise variance, then the filtering is performed using this support; otherwise, the largest
support over which σ̂2

g(n1, n2, k) is less than the noise variance is selected. In the next section, we introduce an
adaptive weighted averaging (AWA) filter, which employs an implicit mechanism for selecting the most uniform
subset within Sn1,n2,k for filtering.

Adaptive Weighted Averaging Filter. The adaptive weighted averaging (AWA) filter computes a weighted
average of the image values within the spatiotemporal support along the motion trajectory. The weights are
determined by optimizing a criterion functional, and they vary with the accuracy of motion estimation as well
as the spatial uniformity of the region around the motion trajectory. In the case of sufficiently accurate motion
estimation across the entire trajectory and spatial uniformity, image values within the spatiotemporal filter
support attain equal weights, and the AWA filter performs direct spatiotemporal averaging. When the value of
a certain pixel within the spatiotemporal support deviates from the value of the pixel to be filtered by more than
a threshold, its weight decreases, shifting the emphasis to the remaining image values within the support that
better matches the pixel of interest. The AWA filter is therefore particularly well suited for efficient filtering
of sequences containing segments with varying scene contents due, for example, to rapid zooming and changes
in the view of the camera.

The AWA filter can be defined by

where

are the weights within the support Sn1,n2,k and K(n1, n2, k) is a normalization constant, given by

The quantities a (a > 0) and ε are the parameters of the filter. These parameters are determined according to
the following principles:

(1) When the differences in the intensities of pixels within the spatiotemporal support are merely due to
noise, it is desirable that the weighted averaging reduces to direct averaging. This can be achieved by
appropriately selecting the parameter ε2. Note that, if the square of the differences are less than ε2, then
all the weights attain the same value K/(1 + aε2) = 1/L, and ŝ(n1, n2, k) reduces to direct averaging. We set
the value of ε2 equal to two times the value of the noise variance, i.e., the expected value of the square of
the difference between two image values that differ due to the presence of noise only.
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(2) If the square of the difference between the values g(n1, n2, k) and g(i1, i2; l) for a particular (i1, i2, l) ∈ Sn1,n2,k
is larger than ε2, then the contribution of g(i1, i2; l) is weighted down by w(i1, i2; l) < w(n1, n2, k) = K/(1 +
aε2). The parameter a is a “penalty” parameter that determines the sensitivity of the weight to the squared
difference [g(n1, n2, k) − g(i1, i2; l)]2. The “penalty” parameter a is usually set equal to unity.

The effect of the penalty parameter a on the performance of the AWA filter can be best visualized
considering a special case, where one of the frames within the filter support is substantially different from
the rest. In the extreme, when a = 0, all weights are equal. That is, there is no penalty for a mismatch, and
the AWA filter performs direct averaging. However, for a large, the weights for the 2M “matching” frames are
equal, whereas the weight of the nonmatching frame approaches zero. Generally speaking, the AWA filter takes
the form of a “limited-amplitude averager,” where those pixels whose intensities differ from that of the center
pixel by not more than ±ε are averaged. A similar algorithm is K nearest neighbor averaging (65), where the
average of K pixels within a certain window whose values are closest to the value of the pixel of interest are
computed.

Image Sequence Restoration. In addition to being contaminated by noise, digital images and video
may also be blurred due to out-of-focus imaging systems, relative motion between the scene and camera,
atmospheric turbulence, and so on. Filtering for image enhancement and restoration has received significant
attention over the last three decades. Image enhancement generally refers to methods that aim to obtain
visually pleasing images, including elimination of noise and sharpening of image detail, without mathematical
modeling of the image formation and degradation processes. The reader is referred to Ref. 43 for a detailed
discussion of image-enhancement techniques such as contrast adjustment by histogram equalization and
unsharp masking, and edge-detection methods.

The goal of image sequence restoration is to estimate each image (frame or field) as it would appear
without any degradations, by first modeling the degradation process, and then applying an inverse procedure.
Unlike image-enhancement algorithms, every image-restoration/superresolution algorithm is based on an
observation model, which relates the observed degraded image(s) to the desired “ideal” image, and possibly a
regularization model, which conveys the available a priori information about the ideal image. The success of
image restoration depends on how good the assumed mathematical models fits the actual application. Image-
restoration algorithms can also be classified as intraframe and multiframe restoration methods. A concise
discussion of early results on intraframe image restoration can be found in the books by Andrews and Hunt (66)
and Gonzalez and Woods (67). More recent developments are summarized in the review papers by Meinel (68),
Demoment (69), Sezan and Tekalp (70), and Kaufman and Tekalp (71). For most cases, intraframe/intrafield
restoration may be sufficient, although there are cases where multiframe methods provide some advantages.
The following covers a summary of most popular restoration methods.

Observation Model. The observed blurred and noisy image can be modeled as

where g, f , and v denote vectors representing lexicographical ordering of the samples of the observed image,
ideal image, and a particular realization of the additive (random) noise process, respectively. The operator D is
called the blur operator. The response of the image sensor to light intensity is represented by the memoryless
mapping s(·), which is, in general, nonlinear. This nonlinearity has often been ignored in the literature for
algorithm development. The noise is generally approximated by a zero-mean, white Gaussian random field,
which is additive and independent of the image signal. In fact, it has been widely acknowledged that more
sophisticated noise models do not, in general, lead to significantly improved restorations.
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The blur may be space-invariant or space-variant. For space-invariant blurs, D becomes a convolution
operator, which has block-Toeplitz structure; and Eq. (53) can be expressed, in scalar form, as

where d(m1, m2) and Sd denote the kernel and support of the operator D, respectively. The kernel d(m1,
m2) is the impulse response of the blurring system, often called the point spread function (PSF). In case of
space-variant blurs, the operator D does not have a particular structure; and the observation equation can be
expressed as a superposition summation

where Sd(n1, n2) denotes the support of the PSF at the pixel location (n1, n2).
Multiframe observation models can be obtained by stacking a number of single frame/field observation

vectors. The resulting multiframe blur operators generally have block-diagonal structures, which facilitate
development of fast multiframe restoration algorithms (72).

Blur Identification. Blur identification, which refers to estimation of both the support and parameters of
the PSF {d(n1, n2) : (n1, n2) ∈ Sd} from one or more frames of the blurred video, is often the first step in image
restoration, since this information is generally unknown. It is also a crucial step, because quality of restored
images are highly sensitive to the accuracy of the estimated PSF (73). An early approach to blur identification
has been based on the assumption that the original scene contains an ideal point source, and that its spread
(hence the PSF) can be determined from the observed image (74). These approaches are of limited use in
practice, because a scene may not contain an ideal point or line source and the observation noise may not allow
the measurement of a useful spread.

Physical modeling allows certain types of PSF (e.g., out-of-focus and motion blur PSF), be represented by
parametric models with a few parameters. Further, these parameters can be easily identified in the Fourier
domain. Spectral and cepstral (Fourier transform of the logarithm of the power spectrum) analysis have been
successfully applied in many cases to identify out-of-focus and motion blurs from the location of the zero-
crossings of the power spectrum of a blurred image or negative spikes in the cepstrum (75,76). Alternatively,
Chang et al. (77) proposed a bispectrum analysis method, which is motivated by the fact that bispectrum is not
affected, in principle, by the observation noise. However, the bispectral method requires much more data than
the method based on the power spectrum. Note that PSFs which do not have zero crossings in the frequency
domain (e.g., Gaussian PSF modeling atmospheric turbulance) cannot be identified by these techniques. An
alternative approach is the maximum likelihood (ML) PSF estimation. The ML approach aims to find those
parameter values (including, in principle, the observation noise variance) which have most likely resulted
in the observed image(s). Different implementations of the ML image and blur identification are discussed
under a unifying framework (78). Later, Pavlović and Tekalp (79) proposed a practical method to find the ML
estimates of the parameters of a PSF, based on a continuous domain image formation model.

In multi-frame image restoration, blur identification using more than one frame at a time becomes
possible. For example, the PSF of a possibly space-varying motion blur can be computed at each pixel from an
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estimate of the frame-to-frame motion vector at that pixel, provided that the shutter speed of the camera is
known (80).

Intraframe Space-Invariant Restoration. When the mapping s(.) is ignored, it is evident from Eq. (53)
that image restoration reduces to solving a set of simultaneous linear equations. If the matrix D is nonsingular
(i.e., D− 1 exists) and the vector g lies in the column space of D (i.e., there is no observation noise), then
there exists a unique solution which can be found by direct inversion (also known as inverse filtering). In
practice, however, we almost always have an underdetermined (due to boundary truncation problem) (73) and
inconsistent (due to observation noise) set of equations. In this case, we report to a minimum-norm least-
squares solution. A least-squares (LS) solution (not unique when the columns of D are linearly dependent)
minimizes the norm-square of the residual

Least-squares solution(s) with the minimum norm (energy) is (are) generally known as pseudo-inverse solu-
tion(s) (PIS).

Restoration by pseudo-inversion is often ill-posed, owing to the presence of observation noise (73). This
follows because the pseudo-inverse operator usually has some very large eigenvalues. For example, a typical
blur transfer function has zeros; and thus, its pseudo-inverse attains very large magnitudes near these singu-
larities as well as at high frequencies. This results in excessive amplification at these frequencies in the sensor
noise. Regularized inversion techniques [e.g., the singular value decomposition method (1)], attempt to roll-off
the transfer function of the pseudo-inverse filter at these frequencies to limit noise amplification. It follows
that the regularized inverse deviates from the pseudo-inverse at these frequencies, which leads to other types
of artifacts, generally known as regularization artifacts (73). Popular strategies for regularized inversion (and
how to achieve the right amount of regularization) are summarized in the following.

Iterative Filtering (Landweber Iterations). Several image-restoration algorithms are based on variations
of the so-called Landweber iterations (81,82,83,84,85,86).

where R is a matrix that controls the rate of convergence of the iterations. There is no general way to select the
best C matrix. If the system Eq. (53) is nonsingular and consistent (hardly ever the case), the iterations Eq.
(57) will converge to the solution. If, on the other hand, Eq. (53) is underdetermined and/or inconsistent, then
Eq. (57) converges to a minimum-norm least squares solution, also known as the pseudo-inverse solution (PIS).
The theory of this and other closely related algorithms are discussed by Sanz and Huang (82) and Tom et al.
(83). Kawata and Ichioka (84) are among the first to apply the Landweber-type iterations to image restoration,
which they refer as “reblurring” method.

Landweber-type iterative restoration methods can be regularized by appropriately terminating the it-
erations before convergence, since the closer we are to the pseudo-inverse, the more the noise amplification.
A termination rule can be defined on the basis of the norm of the residual image signal (87). Alternatively,
soft and/or hard constraints can be incorporated into iterations to achieve regularization. The constrained
iterations can be written as (86,88)

where C is a nonexpansive constraint operator, i.e., ‖C(f 1) − C(f 2)‖ ≤ ‖f 1 − f 2‖, to guarantee the convergence
of the iterations. Application of Eq. (58) to image restoration has been extensively studied (see Refs. 85 and 86,
and the references therein).
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Constrained Least-Squares Filtering. Regularized image restoration can be formulated as a constrained
optimization problem, where a functional ‖Q(f )‖2 of the image is minimized subject to the constraint ‖g − Df ‖2

= σ2. Here σ2 is a constant, which is usually set equal to the variance of the observation noise. The constrained
least squares (CLS) estimate minimizes the Lagrangian (89)

where α is the Lagrange multiplier. The operator Q is chosen such that the minimization of Eq. (59) enforces
some desired property of the ideal image. For instance, if Q is selected as the Laplacian operator, smoothness
of the restored image is enforced. The CLS estimate can be expressed, by taking the derivative of Eq. (59) and
setting it equal to zero, as (66)

where H stands for Hermitian (i.e., complex-conjugate and transpose). The parameter γ = 1/α (the regularization
parameter) must be such that the constraint ‖g − Df ‖2 = σ2 is satisfied. It is often computed iteratively (70).
A sufficient condition for the uniqueness of the CLS solution is that Q− 1 exists. For space-invariant blurs, the
CLS solution can be expressed in the frequency domain as (89)

where ∗ denotes complex conjugation. Another well-known approach that employs constrained optimization is
the maximum entropy method (90,91,92,93).

Statistical (Wiener) Filtering. Statistical estimation methods, such as linear minimum mean square error
(LMMSE) or maximum a posteriori probability (MAP) estimation, have also been applied to image restoration.
The LMMSE method finds the linear estimate which minimizes the mean square error between the estimate
and ideal image, using up to second-order statistics of the ideal image. Assuming that the ideal image can be
modeled by a zero-mean homogeneous random field and the blur is space-invariant, the LMMSE estimate, in
the frequency domain, is given by (1)

where σ2
v is the variance of the observation noise (assumed white) and |P(u, v)|2 stands for the power spectrum

of the ideal image. This estimator is commonly known as the Wiener filter. The power spectrum of the ideal
image is usually estimated from a prototype. It can be easily seen that the CLS estimate Eq. (61) reduces to
the Wiener estimate by setting |L(u, v)|2 = σ2

v/|P(u, v)|2 and γ = 1.
A Kalman filter determines the causal (up to a fixed lag) LMMSE estimate recursively. It is based on

a state-space representation of the image and observation models. In the first step of Kalman filtering, a
prediction of the present state is formed using an autoregressive (AR) image model and the previous state of
the system. In the second step, the predictions are updated on the basis of the observed image data to form
the estimate of the present state. Application of 2-D Kalman filtering to image restoration has been studied in
Refs. 71 and 94,95,96.

The MAP restoration, maximizes the a posteriori probability density function, i.e., the likelihood of a
given estimate being the same as the ideal image given the observed degraded image data. Trussel and Hunt
(97) used nonstationary a priori pdf models, and proposed a modified form of the Picard iteration to solve the
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nonlinear maximization problem. They suggested using the variance of the residual signal as a criterion for
convergence. Geman and Geman (98) proposed using a Gibbs random field model for the a priori pdf of the
ideal image. They used simulated annealing procedures for the maximization. It should be noted that the MAP
procedures usually require significantly more computation compared with, for example, the CLS or Wiener
solutions.

Set-Theoretic Methods. In set-theoretic methods, first, a number of “constraint sets” are defined such that
their members are consistent with the observations and/or some a priori information about the ideal image. A
set-theoretic estimate of the ideal image is, then, defined as a feasible solution satisfying all constraints, i.e.,
any member of the intersection of the constraint sets.

Set-theoretic methods vary according to the mathematical properties of the constraint sets. In the method
of projections onto convex sets (POCS), the constraint sets Ci are closed and convex in an appropriate Hilbert
space H. Given the sets Ci, i = 1, . . ., M, and their respective projection operators Pi, a feasible solution is
found by performing successive projections as

where f 0 is the initial estimate (a point in H). The projection operators are usually found by solving constrained
optimization problems. In finite-dimensional problems (which is the case for digital image restoration), the
iterations converge to a feasible solution in the intersection set (99,100,101). It should be noted that the
convergence point is affected by the choice of the initialization. However, as the size of the intersection set gets
smaller, the differences between the convergence points obtained by different initializations become smaller.
Trussell and Civanlar (102) applied POCS to image restoration. For examples of convex constraint sets that
are used in image restoration see Ref. 103. A relationship between the POCS and Landweber iterations were
developed in Ref. 97. A special case of POCS is the Gerchberg-Papoulis type algorithms, where the constraint
sets are either linear subspaces or linear varieties (104).

Restoration of Images Recorded by Nonlinear Sensors. Image sensors and media may have nonlinear
characteristics that can be modeled by a pointwise (memoryless) nonlinearity s(.). Common examples are
photographic film and paper, where the nonlinear relationship between the exposure (intensity) and the silver
density deposited on the film or paper is specified by a “d − log e” curve. The modeling of sensor nonlinearities
was first addressed by Andrews and Hunt (66). However, it was not generally recognized that results obtained
by taking the sensor nonlinearity into account may be far more superior to those obtained by ignoring the
sensor nonlinearity, until the experimental work of Tekalp and Pavlovic (105,106). Their results show that
accounting for the sensor nonlinearity may dramatically improve restoration results (105,106).

Intraframe Restoration of Space-Varying Blurred Images. Implementation of some of the above al-
gorithms becomes computationally formidable in the case of space-varying PSFs, because Fourier transforms
cannot be used to simplify large matrix operations (such as inversion or singular value decomposition). There
are three practical approaches for space-variant image restoration: (1) sectioning; (2) coordinate transforma-
tion; and (3) adaptive filtering.

Sectioning methods assume that a blurred image with a space-varying PSF can be restored by applying
space-invariant filters to predefined local image regions (80,107). A drawback of sectioning methods is gener-
ation of artifacts at the region boundaries. Overlapping of regions somewhat reduces these artifacts, but does
not completely avoid them. Most space-varying PSF vary continuously from pixel to pixel; thus, violating the
basic premise of the sectioning methods. To this effect, Robbins and Huang (108) and Sawchuck (109) proposed
a coordinate transformation (CTR) method such that the blur PSF in the transformed coordinates is space-
invariant. Then, the transformed image can be restored by a space-invariant filter and then transformed back
to obtain the final restored image. However, the CTR method is applicable to a limited class of space-varying
blurs.
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The lack of generality of sectioning and CTR methods motivates adaptive approaches, such as iterative
methods, Kalman filtering, and set-theoretic methods, which can be applied to space-varying de-blurring in a
computationally feasible manner. Angel and Jain (110) propose solving the superposition Eq. (55) iteratively,
using a conjugate gradient method. Application of constrained iterative methods was discussed in Ref. 88. More
recently, Ozkan et al. (111) developed a robust POCS algorithm for space-varying image restoration, where
they defined a closed, convex constraint set for each observed blurred image pixel (n1, n2), given by:

and

is the residual at pixel (n1, n2) associated with y, which denotes an arbitrary member of the set. The quantity
δ0 is an a priori bound reflecting the statistical confidence with which the actual image is a member of the
set Cn1,n2 . Since r(f )(n1, n2) = v(n1, n2), the bound δ0 is determined from the statistics of the noise process so
that the ideal image is a member of the set within a certain statistical confidence. The collection of bounded
residual constraints over all pixels (n1, n2) enforce the estimate to be consistent with the observed image.
The projection operator onto this set can be found in Ref. 111. The algorithm starts with an arbitrary initial
estimate, and successively projects onto each Cn1,n2 until convergence. Additional constraints, such as bounded
energy, amplitude, and limited support, can be utilized to improve the results.

Multiframe Image Restoration. The sequential nature of images in a video source can be used to better
estimate the PSF parameters, regularization terms, and the restored image. The first multiframe restoration
filter was the motion-compensated multiframe Wiener filter (MCMF) proposed by Ozkan et al. (72), who
considered the case of frame-to-frame global translations. Then, the auto power spectra of all frames are the
same and the cross spectra are related by a phase factor, which can be estimated from the motion information.
Multiframe restoration of a group of pictures provides a significant improvement over intraframe restoration
of individual frames sequentially if the blur PSF varies from frame to frame while the scene content stays
relatively unchanged (except for small displacements). This is because each PSF has then slightly different
zero-crossing locations, and frequencies which are zeroed-out in a frame can be reconstructed by those of other
frames.

High-Resolution Filtering. Most electronic cameras have limited spatial resolution determined by
the characteristics of the sensor array, resulting in blurring and/or aliasing. Recall that the highest spatial
frequency that can be represented is one half of the sampling (Nyquist) frequency. Superresolution refers to
estimating an image at a resolution higher than that of the imaging sensor. Recently, printing high-quality still
images from video sources has become an important application for multi-frame restoration and superresolution
methods.
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Fig. 24. Illustration of the discrete system PSF.

Modeling. Each observed low-resolution image (frame or field) can be related to the desired high-
resolution ideal still-image through the superposition summation (1)

where the support of the summation over the high-resolution grid (m1, m2) at a particular observed pixel
(n1, n2; k) depends on the motion trajectory connecting the pixel (n1, n2; k) to the ideal image, the size of the
support of the low-resolution sensor PSF ha(x1, x2) with respect to the high-resolution grid, and whether there
is additional optical (out-of-focus, motion, etc.) blur. Because the relative positions of low- and high-resolution
pixels in general vary from pixel to pixel, the discrete sensor PSF is space-varying. The support of the space-
varying PSF is indicated by the shaded area in Fig. 24, where the rectangle depicted by solid lines shows the
support of a low-resolution pixel over the high-resolution sensor array. The shaded region corresponds to the
area swept by the low-resolution pixel due to motion during the aperture time (1).

In summary, the model states that each observed pixel (n1, n2; k) can be expressed as a linear combination
of several desired high-resolution pixels (m1, m2), such that (n1, n2; k) is connected to (m1, m2) by a sub-pixel
motion trajectory. Note that this model is invalid in case of occlusion. We assume that occlusion regions can be
detected a priori using a proper motion estimation/segmentation algorithm.

The Principle. When the interframe motion is subpixel, each frame contains some “new” information,
that can be utilized to achieve superresolution. Superresolution refers to high-resolution image expansion,
which aims to remove aliasing artifacts, blurring due to sensor PSF, and optical blurring given the observation
model Eq. (66). Provided that enough frames with accurate subpixel registration are available, the observation
model becomes invertible. It can be easily seen, however, that superresolution from a single observed image
is ill-posed, since we have more unknowns than equations, and there exist infinitely many expanded images
which are consistent with the model Eq. (66). Therefore, single-frame nonlinear interpolation (also called
image expansion and digital zooming) methods for improved definition image expansion employ additional
regularization criteria, such as edge-preserving smoothness constraints (112,113). (It is well known that no
new high-frequency information can be generated by LSI interpolation techniques, including ideal band-limited
interpolation, hence the need for nonlinear methods.)
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Methods. Motion-compensated (multiframe) superresolution methods that are based on the model Eq.
(66) can be classified as those which aim to eliminate (1) aliasing only, (2) aliasing and LSI blurs, and (3)
aliasing and space-varying blurs. In addition, some of these methods are designed for global translational
motion only, while others can handle space-varying motion fields with occlusion. Multiframe superresolution
was first introduced by Tsai and Huang (114), who exploited the relationship between the continuous and
discrete Fourier transforms of the undersampled frames to remove aliasing errors, in the special case of global
motion. Their formulation has been extended by Kim et al. (115) to take into acocunt noise and blur in the
low-resolution images, by posing the problem in the least-squares sense. A further refinement by Kim and Su
(116) allowed blurs that are different for each frame of low-resolution data, by using a Tikhonov regularization.
However, the resulting algorithm did not treat the formation of blur due to motion or sensor size, and suffers
from convergence problems.

Inspection of the model Eq. (66) suggests that the superresolution problem can be stated in the spatio-
temporal domain as the solution of a set of simultaneous linear equations. Suppose that the desired high-
resolution frames are M × M, and we have L low-resolution observations, each N × N. Then, from Eq. (66), we
can set up at most L × N × N equations in M2 unknowns to reconstruct a particular high-resolution frame.
These equations are linearly independent, provided that all displacements between the successive frames are
at subpixel amounts. (Clearly, the number of equations will be reduced by the number of occlusion labels
encountered along the respective motion trajectories.) In general, it is desirable to set up an overdetermined
system of equations, i.e., L > R2 = M2/N2, to obtain a more robust solution in the presence of observation noise.
Because the impulse response coefficients hik(n1, n2; m1, m2) are spatially varying, and hence the system matrix
is not block-Toeplitz, fast methods to solve them are not available. Stark and Oskoui (117) proposed a POCS
method to compute a high-resolution image from observations obtained by translating and/or rotating an image
with respect to a CCD array. Irani et al. (22,23,118) employed iterative methods. Patti et al. (119) extended the
POCS formulation to include sensor noise and space-varying blurs. Bayesian approaches were also employed
for superresolution (120). The extension of the POCS method with space-varying blurs is explained in the
following.

The POCS solution described here addresses the most general form of the superresolution problem based
on the model Eq. (66). The formulation is quite similar to the POCS approach presented for intraframe
restoration of space-varying blurred images. In this case, we define a different closed, convex set for each
observed low-resolution pixel (n1, n2, k) (which can be connected to the desired frame i by a motion trajectory)
as

where

and δ0 represents the confidence that we have in the observation and is set equal to cσv, where σv is the
standard deviation of the noise and c ≥ 0 is determined by an appropriate statistical confidence bound. These
sets define high-resolution images which are consistent with the observed low-resolution frames within a
confidence bound that is proportional to the variance of the observation noise. The projection operator which
projects onto Cn1,n2;i,k can be deduced from Eq. (67) (1). Additional constraints, such as amplitude and/or finite
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support constraints, can be utilized to improve the results. Excellent reconstructions have been reported using
this procedure (72,119).

A few observations about the POCS method are in order: (1) While certain similarities exist between the
POCS iterations and the Landweber-type iterations (22,118), the POCS method can adapt to the amount of the
observation noise, while the latter generally cannot. (2) The POCS method finds a feasible solution, that is, a
solution consistent with all available low-resolution observations. Clearly, the more observations (more frames
with reliable motion estimation) we have, the better the high-resolution reconstructed image ŝ(m1, m2) will be.
In general, it is desirable that L > M2/N2. Note however that, the POCS method generates a reconstructed
image with any number L of available frames. The number L is just an indicator of how large the feasible set
of solutions will be. Of course, the size of the feasible set can be further reduced by employing other closed,
convex constraints in the form of statistical or structural image models.
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