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Functional expansions are used in every branch of nonlinear
system theory: identification and modelling, realization, sta-
bility, optimal control, stochastic differential equations and
filtering, etc. Almost all the expansions used are of the Volt-
erra type or, in the stochastic case, of the Wiener type. There
exist a great number of publications on these expansions. Let
us here mention only the early works by Wiener (1), Barrett
(2), and George (3) and the two books by Rugh (4) and Schet-
zen (5).

After recalling the definition of the Volterra series expan-
sion and some of its convergence issues, we will study various
methods in order to derive the Volterra kernels and the re-
sponse to typical inputs. The analysis is then applied to the
study of weakly nonlinear circuits in order to derive distortion
rates or intermodulation products.

FUNCTIONAL REPRESENTATION OF NONLINEAR SYSTEMS

Volterra Functional Series

For simplicity of presentation, we shall consider time-invari-
ant systems. If a system is linear and time-invariant, then
the output y(¢) can be expressed as the convolution of the in-
put u(¢) with the system unit impulse response A(¢):

y(@) = / h(tu —1)dr 1)

The system unit impulse response A(¢) completely character-
izes the linear time-invariant system since, once known, the
response to any input can be determined from Eq. (1). A sys-
tem is said to be causal if the output at any given time does
not depend on future values of the input. That is, for any
time ¢,

0
y(t1)=/ h(t)ut; —t)dtr =0

This will be so if and only if
h(z)=0 for <0

The extension of Eq. (1) to nonlinear time-invariant systems
with memory is the Volterra series

yit)=ho+ / / hp(ty, Ty, o T)UE — T)U(E — Ty)
n=1v =% -

ult—)drdr---dry, 2)

This functional form was first studied by Volterra. Much of
his work in this area is summarized in his book (6). The func-
tions A,(7, 7, . . ., T,) are called the Volterra kernels of the
system. A nonlinear system which can be represented by a
Volterra series is completely characterized by its Volterra
kernels. Also, with an argument similar to that of linear sys-
tems, it can be shown that the nonlinear system is causal if

hp(ty,79,...,7,) =0 for rj<0, Jj=1...n
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It is well known that without loss of generality, the kernels

can be assumed to be symmetric. In fact, any kernel A,(7, 7,
., T,) can be replaced by a symmetric one by setting

o Tn) =

1
p} Z hn(til,ri2,...,rin)

LT L..T, )ES
(rl1 Ty Ti, )

AP (T, Ty, - .

where S is the set of all permutations of 7, . . ., 7,.
The multiple Laplace transform L[.] of the nth-order Volt-
erra kernel n > 0 (one-sided in each variable)

o0 o0
Hn(Sl,-.-,Sn)=/ / hn(tq, ..., 1p)e %171
0 0

e rtndr dry - dr,
is called the nth-order transfer function. Since A, (7, . . ., 7,)
is symmetric, so is H,(s1, . . ., Sy).

On the Convergence of Volterra Series

The Volterra series is a nonlinear power series with memory
(7). The nonlinearity can be seen by changing the input by a
gain factor ¢ so that the new input is cu(¢). By using Eq. (2),
the new output is

y(t)=hO+Zc"/ / R (Tq, Ty oo T)UE — TUE — T5)
n=1 - -

ult—1)dydr - -dr,

which is a power series in the amplitude factor c. It is a series
with memory since the integrals are convolutions. As a conse-
quence of its power series character, there are some limita-
tions associated with the application of the Volterra series to
nonlinear problems. One major limitation is the convergence
of this series.

In order to illustrate this let us consider the system of Fig.
1, where the system L is a linear system with the unit im-
pulse response h(¢)

z(t):/ h(tu@ —1)dr 3)

and the system N is a nonlinear no-memory system with the
input-output relation

z(t)

y@) =Nl[z@®)] = m

The Taylor series expansion of this expression is

yt) =Y (=1)"lz@) P+ (4)
n=0

y(t) = Tlu(?)]

S El

T

Figure 1. An example of a nonlinear system.

which converges only for z%(¢) < 1. The Volterra series repre-
sentation of the overall system T is now easily derived by sub-
stituting Eq. (3) for Eq. (4) to obtain

0 ) 2n+1
y(@) = Z(—l)n [/ h(t)u(t — r)dr}
n=0 —o0

in which the Volterra kernels are

o1 (T, Top1) = (=D h(t)h(Ty) .. . A(Tg, 1)

and

hop(t4,...,79,) =0, >0
Since the Taylor series converges only for z%(¢) < 1, the above
Volterra series will diverge at those times for which |z(¢)| = 1.
The Volterra series, thus, is valid only for the class of inputs
u(t) for which the amplitude of z(¢) is less than one.

Now let N be replaced by the following nonlinear, no-mem-

ory system
y(t) = Esign[z(t)]

Clearly, the system T cannot be represented by a Volterra
series. It is, therefore, evident that generally, many types of
nonlinear systems, such as those that include saturating ele-
ments, cannot be characterized by a Volterra series that con-
verges for all inputs.

Proofs are presented in Volterra (6), Brillant (8), and
Blackman (9) which show that under certain conditions, a
functional y(¢) = T[x(¢)] can be approximated to any desired
degree of accuracy by a finite series of the form of Eq. (2).
Such a functional is called continuous. In particular, it is easy
to show that the functional relation between the solution (out-
put) and the forcing function (input) of a nonlinear differen-
tial equation with constant coefficients which satisfies the
Lipschitz condition is continuous. If T[x(#)] can exactly be rep-
resented by a converging infinite series of the form of Eq. (2),
it is called analytic or weak. Conditions for convergence are
discussed by Volterra and Brillant. Brillant also notes that
two special types of systems, for which the functional relation
between input and output is analytic, are a linear system and
a nonlinear no-memory system with a power series relation
between input and output. He then shows that various combi-
nations such as cascading, adding, or multiplying such sys-
tems results in an analytic system.

In practice, most of the analog circuits used in communica-
tion systems, such as modulators, mixers, amplifiers, har-
monic oscillators, etc., are of a weak nature and, therefore,
analyzed and designed in the frequency domain. For such
weakly nonlinear circuits (having, say, distortion components
of 20 dB or more below the fundamental one), the Volterra
series technique can be readily used in the frequency domain
to obtain results both quantitatively and qualitatively.

Given an input-output map described by a nonlinear con-
trol system & = f(x, u) and a nonlinear output y = A(x), Lesiak
and Krener (10) present a simple means for obtaining a series
representation of the output y(¢) in terms of the input u(¢).
When the control enters linearly, & = f(x) + ug(x), the method
yields the existence of a Volterra series representation. The
uniqueness of Volterra series representations is also dis-



cussed in (10). This work generalizes Brockett’s technique
(11), the work of Gilbert (12) and the method described by
Bruni, Di Pillo, and Koch (13) for bilinear systems where ex-
plicit formulas for the calculation of the kernel functions were
given. Later Boyd and Chua (14) show that any time-invari-
ant continuous nonlinear operator can be approximated by a
Volterra series.

Properties of the Multiple Laplace Transform

Before going on, let us recall some properties of the multiple
Laplace transform (4). In the following list of results, one-
sidedness is assumed, and the capital letter notation is used
for transforms.

1. The Laplace transform operation is linear

LIf(zq,....t) +ag(ty, ..., )]
=F(sy,....8n) +aG(s1,....8,),0 €R
2. If f(m,. . ., 7,) can be written as a product of two factors
of the form
fry, . t) =h(ry, ... 1) (T s 0 Tn)
then
F(sy,....80) =H(sy,....,5,)G(5;, 1. - 8n)
3. If f(r, . . ., 7,) can be written as a convolution of the
form

f(rl,...,tn)zf h(o)g(t;—o0,...,tn —o)do
0

then
F(sy,....8n)=H(s;+ - +5,)G(51,...,5)
4. If f(r, . . ., 7,) can be written as an n-fold convolution
of the form
f(‘L’l,...,Tn) =/
0
. / h(t; — 09, ..., Tp — 0n)8(01, ..., 0n)
0
doy...do,
then
F(sq,....sn) =H(sy,....82)G(S1, .-, Sn)
5. If ¢y, . . ., ¢, are nonnegative constants, then

Lif(t;j—cqso.osth — )] =F(sq, ..

—84Cq+—SpC
., Sp)e °1°1 ntn

6. If f(r, . . ., 7,) is given by the product

f(ry, .. t) =h(ty, ..., )8 (11, .. .. Tn)
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then
1 op+ico
Pl = ]
UI+OC
/ ' H(sy—wq,....8p —wp)
UI*LOQ
G(wq,....,wy)dw;---dw,

Restricting our attention to one-sided input signals, and using
the convolution property of the Laplace transform, the input-
output relation for a stationary linear system

o] t
y(t) =/ h(tu® —1)drt =/ h()u —1t)dt
—00 0

can be written in the form
Y(s) =H(s)U(s) (5)

Therefore, if a system transfer function H(s) is known, and
the input signal of interest has a simple Laplace transform
U(s), then the utility of this representation for computing the
corresponding output signal is clear. Let us now consider a
homogeneous system of degree n with one-sided input signals
represented by

y(t):/ / Py (ty, Tgs o T)U (] — T)U(Ey — Ty)

e ulty, —)drydry - dr,

¢ t (6)
=/ / hn (19, Tgs ., T)UE — 1)Ul — 19)
0 0

ult —t)drdry - dr,

Inspection of the above list of properties of the multivariable
Laplace transform yields no direct way to write this in a form
similar to Eq. (5). Therefore, an indirect approach is adopted
by writing Eq. (6) as a pair of equations

t tn

yn(tly--wtn): / hn(fl,f2,..
0 0

ult—t)drdry - dr, (@8

STUE — Ul —19)

YE) =Ynlty. oty =0t )

Now, Eq. (7) yields

Yo (1. 8n) =Hp(s1,....82)U(s7) - -U(sp) (8)

where H,(s1, . . ., s,) = L[h(ty, . . ., t,)] is a (multivariable)
transfer function of the homogeneous system. Therefore,
given H,(s;, . . ., s,) and U(s), it is easy to compute Y,(s;,

., 8,). However, the inverse Laplace transform must be
computed before y(¢) can be found, and often this is not easy.
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Figure 2. Association of three linear systems.

Example: The overall transfer function of the system shown
in Fig. 2 is

H(sy,59,83) = Hy (51 + 55 +53)Hy (51 +55)H3(s1)

RECURSIVE COMPUTATION OF THE KERNELS

Several methods have been developed in the literature for de-
termining the kernels or the associated transfer functions
based on the classical symbolic method of Brillant (8), George
(3), Bedrosian and Rice (15), Bussgang, Ehrman and Graham
(16), Chua and Ng (17), and Flake (18). Among them, the
method of exponential inputs is particularly used. After re-
calling this method, we describe a differential geometry ap-
proach (10) and an algebraic approach based on generating
power series (19) when the system is described by a set of
differential equations. We shall see that the algebraic ap-
proach has the advantage of being easily implementable on a
computer by using algebraic computing software.

Exponential Input Method

Let us consider the Volterra series expansion of a nonlinear
system of the form

o0 ty tn
t) = O R TR N t—
y(t) ;/0 | (T4, Tas ooy TUE — TUE — Tp) ©

cut—t)drdr--dry,
Let the input u(¢) be a sum of exponentials
u(t) — eslt + eszt 4+ eskt

where s, ss, . . ., s, are rationally independent. This means
that there are no rational numbers oy, as, . . ., o such that
the sum a;s; + as; + - - - s, is rational. Then Eq. (9) be-
comes

(10)

00 k k
y(t) _ Z Z Z Hn(Skl’.“’Skn)e(sklﬁ—...ﬁ—skn)t

n=1|ky=1 k=1

If each s; occurs in (s, . . ., 53 ) m; times, then there are

n!
mylmy!.. . my!

identical terms in the expression between brackets. Thus, Eq.
(10) can be written in the form

> n! s, +ots, )t
y<t>=Z;m’%(sklwskn>e(kl L)

n=1

where m under the summation sign indicates that the sum
includes all the distinct vectors (m4, . . ., m;) such that Efﬂ
m; = n. Note that if m; = my, = - -+ = m, = 1, then the
amplitude associated with the exponential component
ettt ) ig simply RIH(sy, . . ., sp). This suggests a recursive
procedure for determining all the nonlinear transfer functions
from the behavior of a system.

Let us apply the method to the simple nonlinear circuit
(16) of Fig. 3 consisting of a capacitor, a linear resistor, and a
nonlinear resistor in parallel with the current source i(¢).

The nonlinear differential equation relating the current ex-
citation i(¢) and the voltage v(¢) across the capacitor is given
by

U+ kvt kv =i (12)
Let i(¢) = e*. Equating the coefficients of e* on both sides of
Eq. (12) after the substitution of (11) for v(¢) we get

Hy(s) = P

In order to determine Hy(sy, s5), let us take i(¢) = e + e% and
identify the coefficient of the term 2!e®1*** after the substitu-
tion of Eq. (11) for v(¢) in both sides of Eq. (12). We obtain
Hy(sy, s5) in term of Hy(s) as follows

Hy(sy.89) = —koH, (s))H, (s9)H{(s1 + 8)

Similarly, the third-order transfer function is obtained by in-
jecting a sum of three exponentials inputs

l(t) — eslt +eszt +esgt
It follows
2
Hj(sq,89.83) = — §[H2(31»32)H1(33) + Hy(s9, s3)H; (s1)
+ Hy (s, $3)H; (s9)1h (51 + 85 + 83)
Repeating this process indefinitely gives higher order nonlin-

ear transfer functions in terms of lower-order nonlinear
transfer functions.

Differential Geometry Approach

Consider a control system X of the general form (10)
= fxu), x0)=x" y=~h)

where the input takes values in R/, the state x is an element
of R™, and the output y takes values in R". The vector field f

®0

v(t)

T .

Figure 3. A simple nonlinear circuit.




and the output function A are assumed to possess a sufficient
degree of smoothness. The input function u belongs to L([0,
T1, RY), the space of absolutely integrable functions on [0, 71,
or belongs to L*([0, T'1, RY), the space of bounded and measur-
able functions on [0, 7. In either case, the output is a mem-
ber of the space of continuous functions C°([0, 71, R"). There-
fore, it is natural to associate with 2 the input-output map

®:LY([0,TL,RY) or L>*(0,T],R")— C°(0,T],R")

Definition: ® has a Volterra series representation if there
exists a set of kernels Ay, Ay, hy, . . . such that

1. Ay is defined on [0, T, and A;, i = 1, 2, . . ., is defined

On{(t’Tb' . 57-1)|0§TLS S'TlStSTV}
2. Each h;,;i = 0,1, 2,. . .1is continuous on its domain of
definition

3. There exists a § > 0 such that whenever [u| < &

00 t 7q Ti_1
q>(u)(t):h0(t)+2/0/0 fo it 1y, .. Tu(Ty)
i=1

u(r)dy - dry

The series converges in norm topology on C%([0, 71, R") for all
]l < 6.

Theorem: Let f, g be analytic vector fields and A~ an ana-
lytic function. If x = f(x), and x(0) = x° has a solution on [0,
T], then ® has a Volterra series representation, and it is
unique.

The proof of this theorem is given by Lesiak and Krener in
(10). Let us sketch the idea. For simplicity of notation, the
input and output are taken to be scalar valued. Let y(¢, 7, x)
denote the solution of the differential equation

d
ayo(t’ st) = f(y()(t! Tsx))
such that
Yo(T,7,%) =%

Given u, let y,(¢, 7, x) be the solution of the differential equa-
tion

d
E)’u(t, 7,x%) = f(yu(t, 7, %) +u®)g(vu(t, v, %))
satisfying
Yu(T,7,%) =x

For a fixed ¢, the curve p(7) = 7yt 7, v.(7, 0, x°)) satisfies
p(0) = y,(2, 0, x°) and p(t) = v,(¢, 0, x°). Further, for any smooth
function A, the fundamental theorem of calculus yields

¢
h(vu(t,0,x°)) = R(y,(t. 0,2°)) +/ ;—Th(p(r))dr (13)
0

Direct calculations yield

dh (y,y(t, r,x))g -

d
d_‘[h(p(t)) =u(r) [ o ( ):|x=yu(r.0.x0)
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Given
ho () = h(y,y(t, 0,x%))

and

dh(yy(t, T, x))g .

wq(t,T,x) = [ e ( )] .
x=yy (1,0,xY)

Eq. (13) can be reduced to
t

R(ya(t, 0.5%)) = ho(6) + / w(e)wy (£ 7y, va(rp, 0.2%)) dry (14)
0

Replacing A(.) by w(t, 71, .) and applying Eq. (13) yields

wq(tty, yu(tl,O,xO))

1
=h.t, 1)+ / U(ty)wy (t, Ty, Ty, Yu (g, 0,x%)) d1y
0

where
hy(t, 7)) = wy (¢, 7y, vo(7q, 0,4°))
and

w,(t, ty, yo(t, 7y, %)
1¢ 1. ¥ 1 )g(x
0x

)

Wy (t, 71, 79, X) =
Hence, Eq. (14) becomes
t
h(ru(t, 0,2)) = hy(t) +/ hytepu(ry) dr,
0

t 121
+/ / wy (t, 1y, To, )/0(12,0,:)(30))
0 JO

u(tu(ry)drydr

After k repetitions of this process, we obtain the output repre-
sentation

k t o7y T
h(yu(t,0,x%)) :ho(t)+2/0 /0 ./o h@t, T, T, T;)
i=1

u(ry)---u(y)dr;---dr

t 121 7,
+/ / / wk+1(t771,---7fk+1)7
0 JO 0

Yo (Ta, O,xo))u(fl)u(rz) (T ) ATy g

with
hi@, 1.7, ....7) =w; ¢, 1, ..., T, Vo(Tq, O,xo))
and
ow, (t,tq,...,7,_+, T,_1, T, X
wi(t,rl,.,,,ri,x): L,1( 1 5x1 VO(L 1% ))g(x)

Continuing indefinitely, we generate the Volterra series rep-
resentation in Eq. (13).
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Algebraic Approach

Fliess’ algebraic framework (19) summarized below allows de-
riving an explicit expression of the Volterra kernel by using
an algebraic computing software.

Let us recall some definitions and results from this alge-
braic approach (20). Let wu(t), ux(¢), . . ., u,(t) be some
piecewise continuous inputs and Z = {z;, z;, . . ., 2,,} be a
finite set called alphabet. We denote by Z* the set of words
generated by Z. The algebraic approach introduced by Fliess
may be sketched as follows. Let us consider the letter z; as an
operator which codes the integration with respect to time and
the letter z;, i = 1, . . ., m, as an operator which codes the
integration with respect to time after multiplying by the in-
put u;(¢). In this way, any word w € Z* gives rise to an iter-
ated integral, denoted by I{w}, which can be defined recur-
sively as follows:

t
/ dtI*{v}
0

¢ )

/ui(r)drlt{v} ifw=zv
0

'ipy=1

ifw =z (15)

I'{w) = eZ*

Using the previous formalism and an iterative scheme, the
solution y(¢) of the nonlinear control system

{x(t) =f@®) + X u;@)g; @), x(0)=x, (16)
y@) = hx@))
may be written (20)
y&) =h@x)+y. > Ly
W0 jouipeaiv=0 ’ (17)
...ijszjlh(xO)I‘{zjozjl oz )

with the series converging uniformly for a small ¢ and small
[u(n],0 = 7=t¢t;i=1,. . . m. This functional expansion is
called the Fliess fundamental formula or Fliess expansion of
the solution. To this expansion, it can also be associated (20)
with an absoluting converging power series for small ¢ and
small ju(7)|,0 =7=<¢i=1,. . ., m,called the Fliess generat-
ing power series or Fliess series denoted by g of the following
form

g=hGx)+y > Ly

o . Jv Jv
V0 jo.JpsnJv=0

(18)

'-»LfJéLfJ_lh(aco)zjozj1 sz

This algebraic setting allows us to generalize the Heaviside
calculus for linear system to the nonlinear domain. This will
clearly appear in the next section devoted to the efficient com-
putation of the Volterra series.

Links Between Volterra and Fliess Series

The following result (19) gives the expression of the Volterra
kernels of the response of the nonlinear control system [Eq.

(16)] in terms of the vector fields and the output function de-
fining the system,

00 t 79 Tn
t) = )+ I (8 n
y(t) = wy(t) ;/O/O fo wa(t, T T)u(t,) (19)

u(ry)d, - --dr

where the kernels are analytic functions of the form

tv
w(t) => 0 L“fh(xo)g = ethh(xO)

v

0

VT
—1) 11

wq, T
1t m) vy 1!

v v (t
= ZUO,UIO LfOLgLflh(xO)

= e e h(x,)

Wyt Ty Tyqs oo Ty) = D OL;OLgL;l . -LgL‘}’c"h(xO)

VgVis-aln

_ Vn 0]
(t—1p) ...1'1

vpl.vg!

— etlLnge(fz_rl)Lf .. .Lge(t_T")th(xo)
(20)

In order to show this, let us use the fundamental formula [Eq.
(17)]. The zero order kernel is the free response of the system.
Indeed, from Eq. (17) we have

t
wot) =h@)+y, Y. iju-“Lf,,Lf,-lh(xo)/O 85,985,

V0 jg v =0

dE.

J

which can also be written
; t!
y) = ZZth(xO)ﬁ
5 !

or using a formal notation,
() =e"rhx,)

This formula is nothing else than the classical formula given
by Grébner (21).

For the computation of the first-order kernel, let us con-
sider the terms of Eq. (17) which contain only one contribu-
tion of the input u. Therefore,

¢
/(; wq (¢, 1u(r)dry

¢
= Z LOLL' h(xg) | dé---d&ydE dg,---d&,
f f 0 —— ———

Yo-V10

vy —times vy —times

But the iterated integral inside can be proved to be equal to

t(t—1y)170
/ﬁu(q)dq
0

11!



So, the first order kernel may be written as

(¢ —rl)vlrluo

) = 3 Bt S

vy,v10

L.y t-t)L
= e Lge" V" h(xg)

For the computation of the second order kernel, let us regroup
the terms of Eq. (17) which contain exactly two contributions
of the input u; therefore,

t 79
/ / wy (t, 71, To)u(1)u(ty) dry diy
o Jo

2

t Ty
LL,L"'L,L"2h(x )/ /
uo,ul,vzo f ¢ f ‘ r 0 0 JO
dg,---dEydE, dg, - - - dEydE, dE, - - dE,
~——— —_— —_—_—

vy —times vy —times v, —times

The iterated integral inside this expression can be proved to
be equal to

t prty (f — Vg — vy Y0
/ /2( )" (% 'Tl) il u(t)u(ty)dry dry
0o Jo

voluy !

Thus, the second-order kernel may be written as

_ v _ vy Y0
t—1)2(rp—1) "1y

wy(t, 7y, 1) = Y LOLgL'3LeLi?h(xo)

vo,vl,uzo

L (17 —79)L t—1,)L
=e2"fLge' " 2 Lee" " M h(xy)

vy vy lyg!

The higher-order kernels are obtained in the same way.
Using the Campbell-Baker-Hausdorff formula (21)

0o i
oL —oL o i
e’“fLge ""fh(xy) = E 1 i—!adeLg
iz

the expressions for the kernels Eq. (20) may be written

wy() = ethh(xO)

w,(t, 1)) = e rLe " hx,)

[o¢]

l

= %ad‘Lngethh(xo) (21)
-1 v

Wyt TniTy 1o 7)) =1 Loe(ty— rl)Lnge(F@)th(xO)
Sl B
= Z i—!ﬁadeLgadinge rh(xg)
i,j=1
(22)

These kernel expressions lead to techniques which can, for
example, be used in singular optimal control problems (22).
This will be sketched in a next section.

However, efficient computation remains an open problem
for the moment. Indeed, the computation of the operator

LOLGLY - L h () (23)
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is very heavy in general. Let us consider, for instance, the
Duffing equation,

y+ay+by+cy® =u)

or

Xy = —axy — bx; —cxd + u(t)

<
Il
8]

<

Here,

el a
L, :xza — (axy + bx, —}—clxi’)a—x2

and

In the following, we will show, through a simple example, how
to obtain the algebraic expression of the terms of the Volterra
series and how to derive the expression of the Volterra
kernels.

Efficient Computation of Volterra Kernels

Let us consider the system (4),
FO) + (@ +u@®)y®)=0, t>=0, y0)=0, y(0)=1

After two integrations, we obtain
t T t T
y(t)+a)2/ / y(a)dadr—i—f / u(o)y(o)dodt —t=0
o Jo o Jo

The associated algebraic equation for g is
1+ 0?22)g +292:8 —29 =0

In order to solve this equation, let us use the following itera-
tive scheme

g=g +8 +8+ +g~+

where g; contains all the terms of the solution g having ex-
actly i occurrences in the variable z,

g, = (1+w0%22) 1z,
g = —(1+ %) 22,8, = —(1 + 0?22) 202, (1 + 0?22) 12,
g, =—(1 —l—wzz%)_lzozlgl

1+ 0?22) 202, (1 4 0?22) 202, (1 + 0?22) 72,

Eachg;,i=0,1,2,. . .is a (rational) generating power series
of analytic causal functionals y;,,i = 0, 1, 2, . . . which repre-
sents the ith order term of the Volterra associated with the
solution y(¢). Let us now compute y;(¢), 0.
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First,

1 . _ 1 . _
gy = _ZJ—'w(l + jwzg) !t + z]—.w(l—szo) !

and

Yo®) =wo(@) = —ie_j’”t + ——elot = 1 sin(wt)
0 0 2jw 2jw w

The power series
g, =—1+ a)zzg)_lzozl(l + wzzg)_lzo

after decomposing into partial fractions the term on the right-
hand side and on the left-hand side of z;,

1 . _ 1 . _
|:2J—w(1+_]6!)20) 1 Zl—w(l_JwZO) 1] 21

1 1 o

or

1 . _ . _
g = m[(1 + jwzg) 121(1 + jwz,) 1
— (1 + jwzg) "2, (1 — jwzy) ™!
— (11— jozg) 'z, (1 + jozy) !
+ (1 — jozy) 2, (1 — jwzy) '
In order to obtain the equivalent expression in the time do-
main, we need the following result (23).
The rational power series can be written as
(24)

(1 —agzg)Pozy(1 —ayzg) P12y ...27(1 —a;zq) 7Pt

where ay, ay, . . ., a; € C, py, p1, . . ., p; € N, in the symbolic

representation of

t 7 Ty
/O /O /0 ff(? t—1)... ffll:11 (tg — rl)ffll (rpu(ry) 25)
cou(tdr...dy

where f2(t) denotes the exponential polynomial

)
p—1 -1

e

From the previous example, we can see

®) /t 1 —jot—1) (1) -1 —Jjot + 1 Jot d
= —€ u(t —e€ — € T
N1 o 2w 2w 2w

S -1 . 1 .
— _= pJolt-1) _ = jot —— elot| ¢
/0 2w’ u(r)|:2ja)e NET7N ] 4

Therefore,
1
Y1) = / w; @, Du(r)dr
0

with wy(¢, 7) = —1/w? sin [w(t — 7)] sin wt

The higher-order kernel can be computed in the same way
after decomposing into partial fractions each rational power
series. A recent implementation of this algorithm can be
found in (24).

COMPUTATION OF THE RESPONSE TO TYPICAL INPUTS

The next objective is to show how the Volterra series can be
used to determine the output of a system subject to various
deterministic excitations (steps, slopes, harmonics, etc.). In
the linear case, Laplace and Fourier transforms are system-
atic and powerful tools of operational calculus. A direct gener-
alization of these techniques to the nonlinear domain leads
to multidimensional Laplace and Fourier transforms, but the
computation based on these transforms is often tedious, even
for low-order Volterra kernels, and seems difficult to imple-
ment on a computer. An alternative method, presented here,
based on noncommutative variables and on the properties of
iterated integrals leads to a simple nonlinear generalization
of Heaviside symbolic calculus and to an easy implementation
on a computer. It is compared with the association of vari-
ables introduced by George (3) and which we shall now
briefly recall.

Transfer Function Approach: Association of Variables

If the Volterra kernels are known for a system, then the out-
put y(¢) for a given input u(¢) could be obtained. Let us con-
sider relation Eq. (8), and let us assume that the nth-order
Laplace transform of y,(¢;, . . ., t,), denoted Y,(sy, so, . . .,
s,), is given. The question is how to derive y,(t)? Obviously,
one can perform the nth-order inverse Laplace transform of
Y.(s1, Sa, . . ., Sp)

1 op+ioo
) = —=———
w) (27-[1)71 -/onfioo

al+ioo
/ Y, (51,89, -
o

1—100

yn(tp ..

., Sp)eftiittenin do L dg,

(26)

and set ¢, = t, = - - - = ¢, = t. However, this computation is
often unwieldy. In order to bypass this difficulty, George (3)
developed a method whereby the ¢; variables can be set equal
or associated without leaving the transform domain, leading
to a one-dimensional Laplace transform Y,(s). Indeed, let us
consider a two variable transform Y,(sy, s,); setting ¢, = ¢, = ¢
in Eq. (26) yields

0g+ico |: 1 o +ico
(27[” 09 —i0o (27”) o1 —ico

x e%2! ds,

Yo (2, 0) Y, (sq, 89)e1! dsli|



Changing the variable of integration s; to s = s; + s, gives

0y +i00

Yot t) = Y, (s — 89, 85)e°52f dsi|

0g+ico 1
@D Js, i | @D

x e*2! ds,

[71*100

or by interchanging the order of integration

1 oq+ico 1 0g+i0o ;
t,t) = —— - Y, (s —s9,89)e° 2" ds
72 @) Joy i | @) oy 2T B 2
es2l ds
Thus, the associated transform Y,(s) is
1 02+i:>o et
Y,(s) = @ i Y, (s — sg,89)e° 2" dsy (27

Similarly, a transform of any order can be reduced to a first-
order transform by successive pairwise associations. For ex-
ample, let us consider the third-order term

1
(51 +8g+s3+a)(s;+a)(sy+a)(sg+a)

Associating the variables s, and s; yields

1
(81 +s9+a)(s;+a)(sy+2a)

Then, associating s; and s, yields

1
(s+a)(s—+ 3a)

The procedure for computing Y,(s) from Y,(s;, s, . . ., 8,) is
called association of variables. Although an explicit formula
for performing the associating operation in a large class of
Laplace transforms has been obtained in the literature (see
Rugh (4) and the references herein), this technique has sel-
dom been used. The main reason for this seems to be the te-
dious manipulations involved and the difficulty in decompos-
ing them onto a computer.

Algebraic Approach

In this part, we show how to compute the response of nonlin-
ear systems to typical inputs. This method, based on the use
of the formal representation of the Volterra kernels Eq. (24),
is also easily implementable on a computer using formal lan-
guages like AXIOM (24). These algebraic tools for the first
time enable one to derive exponential polynomial expressions
depending explicitly on time for the truncated Volterra series
associated with response (19) and, therefore, lead to a finer
analysis than pure numerical results.

To continue our use of algebraic tools, let us introduce the
Laplace-Borel transform associated with a given analytic
function input

tn
ut) = ans
w0 n:
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Its Laplace—Borel transform is

g, = E anzg
no

Example:

coswt = = e/ 4 Z eIt

2

Its Borel transform is given by
1 ; 1 ; -1 2,2\-1
g, = 5(1 — Jjotzy) " + 5(1 + jotzg)” T = (1 + w°z;)

Before seeing the algebraic computation itself in order to com-
pute the first terms of the response to typical inputs, let us
introduce a new operation on formal power series, the shuffle
product.

Given two formal power series,

g, = Z (g, ww and g, = Z (89, W)W

weZ* weZ*

The shuffle product of two formal power series g, and g, is
given by

Z (81, W1) (8, W)W T Wy

wq Wy EZ*

8108y =

where the shuffle product of two words is defined as follows:

e lwl=1
VzeZ, lwz=zwl=z
*Vz,2' €Z, Yw,w' € Z*
zwwz'w' = zZlwwz'w'] + 2'[zwow’]

This operation consists in shuffling all the letters of the two
words by keeping the order of the letters in the two words.
For instance,

202102120 = 2202320 + 20212021 + 21202120 + 212521

It has been shown that the Laplace-Borel transform of expres-
sion Eq. (24), for a given input u(¢) with the Laplace-Borel
transform g,, is obtained by substituting from the right each
variable z; by the operator z)[g,@ - 1.

Therefore, in order to apply this result, we need to know
how to compute a shuffle product of algebraic expressions of
the form

=1 4+agz) 2z, (14+aq2y) 'z
g ( 0%0) ’1( 120) &) (28)
...(1+an_120)_12in(1+an20)_1

where i, i, . . ., i, € {0, 1}.
This computation is very simple; it amounts to adding
some singularities. For instance,

(1+azy) 'o(1+bzy) P =1+ (@+b)zy) !
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Consider two generating power series of the form Eq. (28)

g =01+ aozo)’lzil(l + alzo)’lziz

(14 ap_lzo)*lzip (1+apzy) ™
and

g, =1+ bozo)’lzj1 1+ blzo)’lzj2
G bq_lzo)*lzjq (1+b4zy) !

where p and ¢ € N, the indices iy, iy, . . ., i, € {0, 1}, jy1, Jjo,
. »Js €10, 1}, and a;, b; € C. The shuffle product of these
expressions is given by induction on the length

808 = 8yg, 12, (1+ap + by)ze) !
+8, 10852 (1+ (ap + bg)zg)

See (25) for case-study examples and some other rules for
computing directly the stationary response to harmonic in-
puts or the response of a Dirac function, and see (26) for the
algebraic computation of the response to white noise inputs.
This previous computation of the rational power series g and
of the response to typical entries has been applied to the anal-
ysis of nonlinear electronics circuits (27) and to the study of
laser semi-conductors (28) and (29).

Application to Nonlinear Circuits

Description of Nonlinear Circuits. Most of the nonlinear
electronic circuits encountered can be described in terms of
elementary nonlinear components such as nonlinear resistors,
capacitors, inductors, and independent sources which are usu-
ally represented as shown in Fig. 4, where v and i denote,
respectively, the voltage across a branch of the circuit and the
current flowing in it; v, and i, are respectively, a voltage and
a current controlling variable. Representations 1 and 2 corre-
spond, respectively, to impedance and admittance descrip-
tions of the nonlinear element.

Note that elements that operate in a monotonic region of
their characteristic possess both representations. These com-
ponents generally operate in a region where their behavior is
described by a power series expansion on their quiescent or
DC points. These expansions can be expressed in one of the
following general forms which correspond to the Taylor
expansions of the functions f, g, w, r, and «a:

w(t) = Zanz"(t)

n>1
t n
wit) = an |:/0 z(r)dr] (29)
n>1
d n
w(t) = 7 |:nz>:1 Ccn2 (t)i|

Depending on the nonlinear element considered and on its
representation (impedance or admittance), w and z may rep-
resent either a current or a voltage incremental variable. z is
called the controlling variable and w the controlled one. Note
that even when both representations 1 and 2 exist for an ele-
ment, it may be preferable to use the one of which the power

Nonlinear resistor: 1. Current-controlled: v = f(i) i
2. Voltage-controlled: i = g(v)
1%
Nonlinear capacitor: 1. Current-controlled: v = f(Ji) i
2. Voltage-controlled: i = C%(v)
v I
Nonlinear inductor: 1. Current-controlled: v = (%f(i) L
2. Voltage-controlled: i = g(Jv)

Controlled sources: Voltage-controlled voltage-source

Current-controlled voltage-source

Voltage-controlled current-source

Current-controlled current-source
i=p(v,)

Figure 4. Representation of lumped electronic nonlinear elements.

series expansion Eq. (29) is more rapidly convergent. Separat-
ing the summations in Eq. (29) into a linear part plus second-
and higher-order terms suggests that each nonlinear element
may be seen as a parallel (if w is a current) or a cascade (if w
is a voltage) combination of a linear element (n = 1) and a
strictly nonlinear element (n = 2). This leads to an equivalent
representation of the nonlinear elements given in Fig. 5.

Let us first consider these strictly nonlinear elements as
independent sources and modify the circuit by imbedding the
linear component of each nonlinear element into the linear
circuit. This results in a linear circuit called the modified lin-
ear circuit. Using Kirchhoff’s current and voltage laws, a
standard linear analysis can be carried out.

To avoid dealing with certain types of networks whose
functional representation may fail to exist, we shall assume
that the networks meet certain requirements.

Consider each nonlinear capacitor (inductor) described by
an admittance (impedance) representation and its associated
nonlinear independent current (voltage) source. Let i and v
denote, respectively, the source current and its branch volt-
age. Assume that all the other independent current (voltage)
sources, inputs and sources associated with the other nonlin-



Admittance
representation

Impedance
representation

gnL()

(%gNL(U)

gNL(-[U)

glx) =gyx + gnL(x)

@ T1Uy
(D) ras)

r(x) = rx + ry(x)

ﬁ1ix

—()— =

v = p(vy)

i

Hx) =pqx + py(x)

—— -

i=g(v,)

an(v) _®_ =

i =p(vy)

BnL()

Blx) = Byx + Bi(x)

Figure 5. Equivalent representation of the nonlinear elements.

8(x) =gx + gnL(x)

ear elements, are open circuited (short circuited), and that
all independent voltage (current) sources, inputs and sources
associated with nonlinear elements, are short circuited (open
circuited); then, the linear transfer function linking i and v
and associated with the resulting linear circuit must be
strictly proper. Recall that in linear system theory, a rational
function G(s) is said to be strictly proper if G(«) = 0.
Circuits which do not satisfy H, or H, depend on an infinite
number of higher-order derivatives of some inputs. An exam-
ple of this situation is provided by considering the circuit of
Fig. 6. For the modified linear circuit associated with this cir-

d02

==
dt

Figure 6. Example of a nonlinear circuit.
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v(t)

0@

Figure 7. Modified linear circuit.

cuit (shown on Fig. 7), the nonlinear capacitor, which consists
only of a strictly nonlinear element, has been replaced by an
independent current source. In order to show that the hypoth-
esis H, is not verified (the capacitor being described in an
admittance form), the independent voltage source is short cir-
cuited, and the linear transfer function, linking the current i
through the current source and the voltage across it, must be
searched for: here (v/i) = R, which is obviously not a strictly
proper rational function. The nonlinear differential equation
describing the behavior of this circuit is

e+uvv=v (30)
which can be solved iteratively following the Picard iterative
scheme

vyp=e, Up=e+V, U, 4, n=>1

yielding

v=e+eé+2e(€)? +e2 4 (31)

Expression Eq. (31) makes explicit the dependency of v on
the derivatives of the voltage input e. On the other hand, Eq.
(30) can be solved analytically, at least for a constant input
voltage e. One finds

v—l—elog(l—%):t

which must be considered only for ¢ = 0. This formula shows
that the solution has a nondefined first-order derivative at
zero which is a sufficient condition for the nonexistence of a
Volterra analytical functional expansion of the solution v(¢).

The modified linear circuit must be well-behaved. This
means that the modified linear circuit possesses a unique de-
fined solution, and that, in particular, no circuit variable
tends to infinity with the input frequency. For example, the
nonlinear circuit of Fig. 8 with its linear modified linear asso-
ciated circuit shown on Fig. 9 does not satisfy H;.

Us GDLS U2 = U3

i

Figure 8. A nonlinear circuit: v; = f(iy); v = h(iy); vs = r([ is).
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Figure 9. Circuit obtained from that of Figure 8 by imbedding the
linear part of the nonlinear elements into the linear circuit.

Note that in practical circuits, H;, H,, and H; are gener-
ally fulfilled.

Descriptive Equations. Any lumped circuit obeys three basic
laws: Kirchhoff’s voltage law (KVL), Kirchhoff’s current law
(KCL), and the elements’ law (branch characteristics). Let
each passive nonlinear element (resistor, capacitor, inductor)
be described by its controlling variable: current, if it has an
impedance representation, or voltage for the admittance. Let
the current sources be described by the voltages across their
branches and the voltage sources by the currents flowing in
their branches. For a nonlinear circuit containing p branches
and n nodes, one may then write n — 1 KCL equations and
p — (n — 1) KVL equations. Finally, if one keeps in these
equations only the descriptive variables using the branch
characteristics, one gets p equations linking the p unknown
variables. These equations are of three types:

E;: Dynamical equations. These are generally integro-
differential equations linking a set, as reduced as possi-
ble, of variables of the circuit to be described totally.

E,: Output equations. These are functions connecting
variables described by the dynamical equations to the
remaining variables.

E;: Reduction equations. These equations are linear;
they allow the number of unknowns in the previous set
of equations to be reduced. They correspond to

1. KCL at nodes joining only passive elements de-
scribed in an admittance form or independent cur-
rent input sources or dependent voltages sources if
the current flowing through their branch appears as
a controlling variable of another element.

2. KVL for loops containing only passive elements de-
scribed in an impedance form or independent voltage
input sources or dependent current sources if the
voltage across their branch appears as a controlling
variable of another element.

For example, let us consider again the nonlinear circuit of
Fig. 8. This circuit is described by the following set of equa-
tions derived as shown previously:

E, — h(iy) +7([iz) =0
Ez — Us = f(i1) +h(i2)

Using E;, E; and E, can be written:

h(iz) + r(f(i2 —i5))=0
Us = f(ls) +h(i2)

(32)

Derivation of the Generating Power Series Associated with Non-
linear Circuits. Using the algebraic approach described earlier,
it is not difficult to derive the generating power series associ-
ated with the unknown variables of the set of equations ob-
tained from Es, E,, and E,. Instead of showing this in general,
let us here illustrate the main ideas through the above ex-
ample of Fig. 8. Given

fay=)_ fui"
n>1

@) = Zhni"
n>1

and

r(fiy =) ra(fi)"

n>1

If g, and g, denote the generating power series associated re-
spectively with i, and i, from Eq. (32), we obtain the following
set of algebraic equations

D1 hn85 "+, 01T (X8 —x)7" =0
8s = anl hngzgvn + an1 fngzm

(33)

where g™ = gw . . . wg (n-times). From the algebraic rules
defined earlier, we can derive iteratively the expressions for
[gl;, the power series containing exactly i occurrences of the
letter x, in g.

These computations are easily implementable on a com-
puter using a formal computing software. In the same way,
we can systematically derive the response to typical inputs as
we previously described. In the last two parts, we use these
Volterra series expansions in a time domain in order to derive
physical quantities like signal distortions or intermodulation
products.

DISTORTION ANALYSIS

In this part, we are interested in the analysis of the response
of weakly nonlinear systems driven by harmonic inputs.
When the input signal is of the form sin(w?), its response is
in general also periodic, but the output signal contains compo-
nents with a multiple integer of the input pulsation. When
the signal input is composed of two harmonics of pulsation
w; and w,, respectively, then the output signal is a sum of
harmonics with pulsation pw, + qw,, where p and g are nega-
tive or positive integers.

The study of the harmonic components of the response is
of great importance in the study of distortions existing in non-
linear circuits, like the transistors, the amplifiers, the modu-
lators, ete. One can cite, for instance, the works of Bedrosian
and Rice (15), Goldman (30), Narayanan (31,32), Bussgang,
Ehrman and Graham (16) and Crippa (33). A Volterra series
offers an efficient tool for this study because for weakly non-



linear systems, often only first, second, and third terms of the
Volterra series are sufficient in order to obtain significant
quantitative results.

Harmonic Analysis

Let us consider a stationary nonlinear system described by
the Volterra series

o0 ty tn
y(t):Z/o | hp — 1,8 —Tg, ...t — Tp)U(ty)U(Ty)
n=1

...u(ty)drydry, ... d, (34)

The output of this system driven by the input is
1 iwqt —iwqt
u(t) = 1A | cos(wit + ¢1) = §(Ale 114+ A _je7'1’)

where A; = A* = |A|e'* is given by
y@&) =y1@) +y. &)+ + Y @)+
with

1 +1 +1 l(wj +...+wj )
yn(t):_2n 2 E Ajl...Ajan(wjl,...,“’jn)e 1 n
J1=— Jn=-

(35)

where H,(w;, . . ., ®;) is the multidimensional Laplace trans-
form of h,(t;, t5, . . ., t,). The Laplace transform H, is, like
h,, a symmetric function. This allows regrouping identical
terms in expression Eq. (35). In order to do so, let us denote
by mi(m_,) the occurrence number of the pulsation w(w_;) in

(@j, - . ., w;). Equation (35) may also be written
mO =0 Y T apraaym
" on | (m_p)lmy ! !
1

meM,m:(ml,m_

H,(w_{,....,0_1,0q, ..., wl)ei(ml_mfl)’”lt (36)

where M represents the set of the couples (m,, m_;), such that

m, + m_; = n. By regrouping conjugate complexes in Eq. (36),
we obtain

1 n!
1) = —— E A, |mogtmy)
In ) 2n-1 (m_l)!m1!| 1l
1

meMﬁmlzm_

|Hn((U,1, ce, W_q, W, ..
—
m71 ml

+ (my —m_y)¢, + Arg|H, (m)))

Lwp)| cos((my —m_y)wit (37)

For a signal input with pulsation w,, the response of a weakly
nonlinear system is, therefore, periodic, and it is composed of
multiple integer terms of this pulsation.

More generally, it can be shown that for a multi-pulsation
input signal of the form

K k=K

1
u(t) = Z |A, | cos(wyt + ¢p,) = 5
k=1

iw,t
Ae'r
h=—K.k#0
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with A, = |A;le%, the response of the system is given by

YO =31 +yo @) A O+

with
Yu(®) = Z S — |A,|0m-1tm)
ol o molmh)
ATk | H ()] oS (0t + m + ArglH, (Q)])
(38)

where

Q= (wg,...,0g,...0g,...0g)

~— ~———
m_g mg

Wy = (mK — me)qu + -+ (ml - m_1)¢1

and m = (m_g, . . ., m_, my, . . ., mg) is such that m_g +
-+ m_+my+ - + mg = n. Therefore, in the terms of
y, with n = 1 we find

* Terms with the same pulsation as the input one

* Terms with a pulsation equal to an integer multiple of
one of the input pulsations (harmonic terms)

* Terms resulting in an interference between several input
pulsations (intermodulation terms)

Nonlinear Distortions

The analysis of the resulting spectrum is of great importance
in numerous electronic applications. In order to characterize
nonlinear circuit performances, several nonlinear distortion
rates have been introduced in the literature depending on the
application considered. The most popular are described in the
following sections.

Distortion Rate. Let us consider the signal input
u(t) = |E;| cos wyt

of a weakly nonlinear system described by Eq. (34). As pre-
viously discussed, the first terms of the output are of the form

Ay + A | cos(wqt + @) + |Ag| cos(2w it + ¢g) + - -

The amplitude of the various harmonic terms is not really
significant. On the other hand, their ratio with respect to the
amplitude of the fundamental frequency of the input signal
may serve as a distortion measure. The distortion ratio of the
k-th harmonic is defined as

Harmonic Distortion Rate. The value of this rate indicates
the global relative importance of the output harmonic level
with respect to the fundamental frequency term. It is defined
by

A, 2
Ayl + AP+
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Gain Distortion. Let us consider again the input signal
u(t) = |E;| cosw;t
and the fundamental frequency output
|A;|cos(wit + ¢;)

Given a linear system A; = E \H,(iw,), where H, is the transfer
function, the ratio

1A, | .
— = |H,(w,)
B4 G )]

is a classic definition of the linear gain. For a nonlinear sys-
tem, the contributions to the fundamental frequency of the
higher-order Volterra kernel are nonzero in general. For a
fixed input frequency, the gain is no longer constant but de-
pends on the amplitude of the input:

ﬁ = |H; (o) + Z|E1|2H3(_lw1’ tog, ) + -

Intermodulation. Let us now consider an input of the fol-
lowing form

u(t) = |E;| cosw;t + |E,y| cos wyt

The 2nd-order intermodulation ratio (IMR2) is defined as the
difference (dB) between the level of the output signal at the
fundamental frequency and the level of the distortion term at
the frequency w; + w; or w; — w,. The 3rd-order intermodula-
tion ratio (IMR3) is defined in the same way, that is, the dif-
ference of the level of the output signal at the fundamental
frequency and the level of the distortion term at the fre-
quency 2w, + wy or w; + 2w, or 2w; — w, Or w; — 2wy, and so
on. In general, the measure of the intermodulation terms is
taken by choosing the input with the same amplitude |E|,

\E| = E,y| = |E|
and neighboring pulsations,
w;~w and wy >

From the previous part it is not difficult to see that, for in-
stance,
|H 1 ()]

IMR2 + = - 7
R2(01 % 02) = FIH o 2a)]

and

4|H, ()]
3IE|?|H;3 (o, 0, )|

IMR3(2w; + wy) =

Transmodulation. In order to analyze the transmodulation,
that is the effect that a modulation is transferred from one
signal to another through a weakly nonlinear system, the fol-
lowing input signal is considered

u(t) = |E|(1+ mcos wnt) cos wit + |E| cos wyt

Technical results on the output signal may be found in the
paper by Meyer, Shensa and Eschenbach (34).

Note that the algebraic framework described earlier allows
us to easily compute all the previous distortion rates (35).

BIBLIOGRAPHY

1. N. Wiener, Nonlinear Problems in Random Theory, New York:
Wiley, 1958.

2. J. Barrett, The use of functionals in the analysis of nonlinear
physical systems, J. Electronics Control, 15: 567—615, 1963.

3. D. George, Continuous nonlinear systems, MIT RLE Technical
Report No. 355, 1959.

4. W. J. Rugh, Nonlinear System Theory, Baltimore, MD: John Hop-
kins Univ. Press, 1981.

5. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Sys-
tems, New York: Wiley, 1980.

6. V. Volterra, Theory of Functionals (translated from the Spanish),
London: Blackie, 1930 (reprinted by Dover, New York, 1959).

7. M. Schetzen, Nonlinear system modeling based on the Wiener
theory, Proc. IEEE, 69 (12): 1981.

8. M. Brillant, Theory of the analysis of nonlinear systems, MIT
RLE Technical Report No. 345, 1958.

9. J. Blackman, The representation of nonlinear networks, Syracuse
University Research Institute, Report No. 81560 for Air Force
Cambridge Research Center, Cambridge, Mass,

10. C. Lesiak and A. J. Krener, The existence and uniqueness of Volt-
erra series for nonlinear systems, IEEE Trans. Autom. Control,
23: 1090-1095, 1978.

11. R. W. Brockett, Volterra series and geometric control theory, Au-
tomatica, 12: 167-176, 1976. R. W. Brockett and E. G. Gilbert,
An addendum to Volterra series and geometric control theory,
Automatica, 12: 635, 1976.

12. E. G. Gilbert, Functional expansions for the response of nonlinear
differential systems, IEEE Trans. Autom. Control, 22: 909-921,
1977.

13. C. Bruni, G. Di Pillo, and G. Koch, On the mathematical models
of bilinear systems, Ricerche di Automatica, 2 (1): 1971.

14. S. Boyd and L. O. Chua, Fading memory and the problem of ap-
proximating nonlinear operators with Volterra series, IEEE Cir-
cuits Syst., 32 (11): 1150-1161, 1985.

15. E. Bedrosian and S. Rice, The output properties of Volterra sys-
tems (nonlinear systems with memory) driven by harmonic and
Gaussian input, Proc. IEEE, 59: 1688—1707, 1971.

16. J. Bussgang, L. Ehrman, and J. W. Graham, Analysis of nonlin-
ear systems with multiples inputs, Proc. IEEE, 62: 1088—1119,
1974.

17. L. O. Chua and C. Y. Ng, Frequency domain analysis of nonlinear
systems: general theory, Electronics Circuits and Systems, 3 (4):
165-185, 1979 and Frequency domain analysis of nonlinear sys-
tems: formulation of transfer functions, Electronics Circuits and
Systems, 3 (6); 257-269, 1979.

18. R. H. Flake, Volterra series representation of nonlinear systems,
IEEE Trans. Ind. Appl., 81: 330—-335, 1963.

19. M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue, Algebraic
approach to nonlinear functional expansions, IEEE Circuits Syst.,
30: 550-570, 1983.

20. M. Fliess, Fonctionnelles causales non linéaires et indéterminées
non commutatives, Bull. Soc. Math. France, 109: 3—40, 1981.

21. W. Grébner, Die Lie-Reihen und ihre Anwendungen (2¢ édition),
VEB Deutscher Verlag der Wissenschaften, Berlin: 1967.



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

F. Lamnabhi-Lagarrigue and G. Stefani, Singular optimal control
problems: On the necessary conditions for optimality, SIAM J.
Contr. Optim., 28: 823—840, 1990.

F. Lamnabhi-Lagarrigue and M. Lamnabhi, Détermination algé-
brique des noyaux de Volterra associés certains systémes non lin-
éaires, Ricerche di Automatica, 10: 17-26, 1979.

A. Martin, Calcul d’approximations de la solution d’'un systéme
non linéaire utilisant le logiciel SCRATCHPAD, in G. Jacob and
F. Lamnabhi-Lagarrigue (eds.), Algebraic Computing in Control,
Lect. Note Contr. Inform. Sc., Springer Verlag, 165, 1991.

F. Lamnabhi-Lagarrigue, Analyse des systéemes non linéaires, Ed.
Hermes, 1994.

M. Fliess and F. Lamnabhi-Lagarrigue, Application of a new
functional expansion to the cubic anharmonic oscillator, J. Math.
Physics, 23: 495-502, 1982.

S. Baccar, F. Lamnabhi-Lagarrigue, and G. Salembier, Utilisa-
tion du calcul formel pour la modélisation et la simulation des
circuits électroniques faiblement non linéaires, Annales des Télé-
communications, 46: 282—288, 1991.

L. Hassine et al., Volterra functional series expansions for semi-
conductor lasers under modulation, IEEE J. Quantum Electron.,
30: 918-928, 1994.

L. Hassine et al., Volterra functional series for noise in semicon-
ductor lasers, IEEE J. Quantum Electron., 30: 25634—2546, 1994.

J. Goldman, A Volterra series description of crosstalk interfer-
ence in communications systems, Bell Syst. Tech. J., 52: 649—
668, 1973.

S. Narayanan, Transistor distortion analysis using Volterra se-
ries representation, Bell Syst. Tech. J., 46: 991-1024, 1967.

S. Narayanan, Application of Volterra series to intermodulation
distortion analysis of a transistor feedback amplifier, IEEE
Trans. Circuit Theory, 17: 518-527, 1970.

G. Crippa, Evaluation of distortion and intermodulation in non-
linear transmission systems by means of Volterra series expan-
sion, Alta Frequenza, 38: 332—336, 1969.

R. G. Meyer, M. J. Shensa, and R. Eschenbach, Cross-modulation
and intermodulation in amplifiers at high frequencies, IEEE
Solid State Circuits, 7: 16—23, 1972.

M. Fliess and M. Lamnabhi, Application d'une technique nouvelle
de calculs de développements fonctionnels a la détermination de
distortions non linéaires, Proc. Huitiéme Colloque sur le Traite-
ment du Signal et ses Applications, Nice, 1981.

FRrRANCOISE LAMNABHI-LAGARRIGUE
Laboratoire des Signaux et Systémes
Centre National de la Recherche
Scientifique
Ecole Supérieure d’ Electricité
(Supelec)

VOLT-OHM METERS. See MULTIMETERS.
VOLT RAMP GENERATION. See RAMP GENERATOR.

VOLUME VISUALIZATION

373



