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SIGNAL AMPLIFIERS

OPEN-LOOP AMPLIFIERS

Amplification is needed whenever a signal (coming from a
transducer, an antenna, etc.) is too small to be efficiently pro-
cessed. A signal amplifier is primarily intended to operate on
very small input signals with the aim of increasing the signal
energy. For instance, a voltage amplifier works with input
signals in the range of millivolts or even microvolts, and has
to provide a power gain. This last property distinguishes a
voltage amplifier from a transformer. A transformer, in fact,
can provide an output voltage greater than the input (pri-
mary) voltage, but the output power never exceeds the power
supplied by the signal source. The smallest signal which can
be detected and amplified is limited by the noise performance
of the amplifier. In fact, noise masks the signal so that recov-
ery may not be possible. Linearity is another fundamental re-
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the circuit ground. Depending on the signal type to be ampli-
fied and on the desired type of output, amplifiers can be clas-
sified into four categories:

1. Voltage amplifiers, with an open-circuit voltage gain
Avo � Vo/Vi

2. Current amplifiers, with a short-circuit current gain
Aio � Io/Ii

3. Transresistance amplifiers, with an open-circuit trans-
resistance gain Rto � Vo/Ii

4. Transconductance amplifiers, with a short-circuit trans-
conductance gain Gto � Io/Vi

In Fig. 2 circuit models for the four types of amplifier are
illustrated, also accounting for finite input and output resis-
tances. These models are independent of the complexity of the
amplifier, which can be made up of a single stage or of several
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Vi
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Vo
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(a)

(b) stages. Referring to a voltage amplifier connected at the input
to a signal voltage source (Vs with a series resistance Rs) andFigure 1. (a) Amplifier symbol; (b) amplifier with a common termi-
connected at the output to a load resistance, RL, the overallnal (ground).
voltage gain is

quirement for a signal amplifier, in order to ensure that the Av = ri

ri + Rs
Avo

RL

RL + ro
(2)

signal information is not changed and no new information is
introduced. An amplifier providing an output signal linearly It is apparent that in order to preserve the gain, the input
related to the input is characterized by the relationship resistance ri should be much greater than the source resis-

tance Rs and the output resistance ro should be much smallerxo = Axi (1)
than the load resistance RL. For the other three types of am-
plifier a similar result is obtained, which can be summarizedwhere xi and xo are the input and the output signals, respec-
with the concept of mismatched amplifiers. In this case onlytively, which can be either voltage or currents, and A is a
one kind of variable (voltage or current) has to be processedconstant representing the magnitude of the amplification,
and the other is reduced to its minimum possible value.usually termed the amplifier gain.

In general, an amplifier is a two-port network, which can
be represented by the circuit symbol in Fig. 1(a), showing the FEEDBACK AMPLIFIERS
input and output ports as well as the signal flow direction.
The amplifier model considered is unilateral since the signal Although open-loop amplifiers have their own specific range

of applications (e.g., RF amplifiers are always open-loop cir-flow is unidirectional. This usually leads to a good approxima-
tion of real-life amplifiers which, however, also exhibit an un- cuits), an important class of amplifier is constituted by feed-

back stabilized amplifiers.desired reverse transmission. Figure 1(b) illustrates a usual
situation where a common terminal between the input and Negative feedback is widely used in the design of amplifi-

ers, since it allows the gain to be stabilized with respect tothe output port exists and is used as a reference point called

Figure 2. Circuit models for (a) voltage
amplifier; (b) current amplifier; (c) trans-
resistance amplifier; and (d) transconduc-
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active device parameter spreads, power supply variations, 2. Set the input source to zero. This means a short-circuit
voltage source or an open-current source. Replace theand temperature changes. Feedback allows the input and out-

put resistances of the circuit to be modified in any desired critical controlled source by an independent one of
value P. The return ratio, T, coincides with the re-fashion. It improves the linearity of the amplifier, thus reduc-

ing the distortion produced in the output signal. Finally, it sulting controlling quantity with the opposite sign,
�xc.can lead to an increase in the bandwidth of the amplifier.

However, all these features are paid for in terms of a propor- 3. Set the critical parameter to infinity (i.e., P � �). Since
tional reduction in the gain. Moreover, negative feedback can the controlled source is still finite, this is equivalent to
cause the tendency of oscillation to occur in the circuit, and having xc � 0 with the related consequence. The Asymp-
hence frequency compensation is usually mandatory (1–3). totic term, G�, is the transfer function between the in-

The analysis of an ideal feedback system like that shown put and the output under these conditions.
in Fig. 3 is straightforward, and leads to the transfer function

Comparing Eq. (4) with Eq. (3), it is apparent that with a
negligible direct transmission term, G0, the return ratio, T,GF = xo

xs
= A

1 + fA
(3)

and the asymptotic gain, G� are equal to the product between
the amplifier gain, A, and the feedback factor, f , and to the

Unfortunately, for real cases where the blocks, A and f , are inverse of the feedback factor, f , respectively (i.e., T � fA and
made up of active and passive components, the analysis is not G� � 1/f ) (1–4). It is worth noting that the term G� repre-
so simple. Several techniques for the analysis of real feedback sents the ideal transfer function of the feedback network. In-
amplifiers have been reported in Refs. 1–7 and are critically deed, for well-designed feedback amplifiers which have a low
discussed in Ref. 8 and Ref. 9. Each technique has its own G0 and a high T, the transfer function of the feedback circuit
benefits and drawbacks, but from a design point of view, two is well approximated by G�.
of them are the most interesting and powerful. The first was
proposed in 1974 by Rosenstark (10), and was recently redis- Choma Method
covered and formalized using signal flow graphs (2); the sec-

The Choma method starts from the same assumptions madeond was proposed in 1990 by Choma and is based on signal
in the Rosenstark method. After choosing a controlled sourceflow analysis (11).
P inside the feedback, we again have to calculate the return
ratio, T, and the direct transmission term, G0, as described inRosenstark Method
points 1 and 2 of the previous subsection. But now, instead of

The Rosenstark method is based on calculation of the return the asymptotic term, G�, we have to evaluate the null return
ratio, T, the asymptotic term, G�, and the direct transmission ratio, TR. Thus the desired exact transfer function between
term, G0. All these quantities, which are functions of the input the input and output of the feedback amplifier (11) is given
source resistance, RS, and output load resistance, RL, must be by
calculated with respect to one and only one controlled source
within the feedback amplifier. The exact transfer function be-
tween the input and output of the feedback amplifier (10) is GF(RS, RL) = G0(RS, RL)

1 + TR(RS, RL)

1 + T(RS, RL)
(5)

thus given by

More specifically, the null return ratio, TR, can be evaluated
by replacing the critical controlled source with an indepen-
dent one of value P, as done in the point 2 of the previous

GF(RS, RL) = G∞(RS, RL)T(RS, RL) + G0(RS, RL)

1 + T(RS, RL)
(4)

subsection, but without nullifying the input source. It will co-
More specifically, to evaluate the three terms, we have to re- incide with the resulting controlling quantity with the oppo-
late a controlled source quantity, xo, to the controlling quan- site sign, �xc, assuming the output voltage to be equal to zero.
tity, xc, by the parameter P (i.e., xo � Pxc) and to follow the The ratio between the return ratio and the null return ra-
steps below: tio, T(RS, RL)/TR(RS, RL), quantifies the degree to which the

local feedback approaches global feedback (11) (when it is �
the feedback is global), and hence gives interesting informa-1. Switch off the critical controlled source setting P � 0
tion regarding the kind of feedback. Of course, both methodsand, to achieve the direct transmission term, G0, com-
presented give the same results, and combining Eq. (3) withpute the transfer function between the input and out-
Eq. (4) the degree to which the local feedback approachesput.
global feedback versus the asymptotic gain is given by

T(RS, RL)

TR(RS, RL)
= G0(RS, RL)

G∞(RS, RL)
(6)

Input and Output Resistances

The driving point input impedance and driving point output
impedance of a feedback amplifier can be simply evaluated by

A

f

xs xoxi

xf

+

–

using the Blackman theorem (12). The same relationships are
obtained using signal flow analysis (11). The input and outputFigure 3. Block scheme of a feedback system.
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resistance are given by since bipolar transistors are modeled with the equivalent-�
circuit, the results can be extended to the MOS transistor
quite simply by setting r� to infinity.Ri = Riol

1 + T(0, RL)

1 + T(∞, RL)
(7)

Series-Shunt Feedback Amplifier

Figure 4(a) depicts the ac schematic diagram (a circuit dia-
Ro = Rool

1 + T(RS, 0)

1 + T(RS,∞)
(8)

gram divorced of biasing details) of a series-shunt feedback
where Riol, and Rool, are the corresponding driving point input amplifier. A portion of the output voltage, vo, sampled by the
and output resistances with the critical parameter P equal to feedback network RE, RF, is compared with the input voltage
zero, and T(0, RL), T(�, RL), T(RS, 0), and T(RS, �) are the vS. The small signal model of the amplifier in Fig. 4(a) is
return ratios under the conditions specified for the source re- shown in Fig. 4(b).
sistance, RS, and load resistance, RL. A practical consideration regarding application of the Ro-

senstark approach is the choice of the critical controlled
source. Although the approach is general, evaluation of theFEEDBACK AMPLIFIER CONFIGURATIONS (13)
terms becomes simpler if one node of the controlled source
is at ground potential. This, in other words, means that forIt follows from the previous discussion that the characteris-
multitransistor amplifiers we have to choose a controlledtics of the four amplifier types can be improved with the use
source associated to a common emitter transistor. Thus weof negative feedback. For each amplifier we have to sample
choose the transconductance gm2, as the controlled source Pthe output signal by a suitable network and transmit a por-
and follow the steps below:tion of this signal back to the input.

There are four basic types of single-loop feedback amplifi-
ers analyzed below: (1) series-shunt, (2) shunt-series, (3) 1. Set P � 0 (gm2 � 0). This, unless there is a load effect

on the collector of T1 due to r�2, means switching offshunt-shunt, and (4) series-series. The four typical amplifiers
are only implemented with bipolar transistors. However, transistor T2 and, hence, the ac schematic diagram is
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RC1

+

–

(a)

Figure 4. (a) Ac schematic of series-
shunt feedback amplifier; (b) small signal
equivalent circuit of the series-shunt feed-
back amplifier in (a), obtained by replac-
ing each transistor with its small-signal
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and neglecting the resistance ro1, we get

ic1

i
= RL

RL + RF

gm1rπ1

gm1rπ1 + 1
(RF + RL)‖RE

(RF + RL)‖RE + rπ1 + RS

gm1rπ1 + 1

≈ RL

RL + RF
(14)

Hence, the return ratio, T, with respect to the critical
parameter gm2 is

RF

Rs

Ri

Ro

RL

Se

T1

vo
vs

RC1

+

–

r  2π

Figure 5. Ac schematic for the evaluation of the direct transmission

T = −gm2
vπ2

i
= (RC1‖rπ2)gm2

ic1

i

= RL

RL + RF
(RC1‖rπ2)gm2

(15)

term for the circuit in Fig. 4(a). On having nullified the transconduc-
tance of T2 in Fig. 4(a), the circuit becomes a simple emitter follower.

3. Now evaluate the closed loop asymptotic gain, G�, by
setting the parameter gm2 infinitely large. By inspection
of Fig. 4(b), to be the current of generator gm2v�2 finite,
the voltage v�2 must be zero and this holds only if the

the one in Fig. 5, which is a voltage follower whose current generator ic1 is zero which, in turn, means v�1 �
transfer function, assuming the transistor output resis- 0. Therefore, vb1 � vS (where b1 is the base of T1), and
tance, ro1, to be much greater than RC1�r�2, is given by all the input voltage is found across the resistance RE

ve

vS
= (gm1rπ1 + 1)[RE‖(RL + RF)]

(gm1rπ1 + 1)[RE‖(RL + RF)] + rπ1 + RS
≈ 1 (9)

where ve is the voltage on the emitter of T1. Thus, in-
cluding the term RL/(RL � RF), which takes into account
the voltage partition at the output of the voltage buffer,
we get the gain, G0, under the special condition of zero
feedback

G0 = vo

vS

∣∣∣∣
gm2=0

≈ RL

RL + RF

ve

vS
≈ RL

RL + RF
(10)

It is apparent that this contribution is always lower
than one. Since closed-loop resistances are evaluated

RE

RS

T1

RL i

RF

RC1r  2π v  2π

(a)
with P � 0, we can compute the corresponding driving
point input and output resistances, Riol, and Rool, given
by

Riol = rπ1 + (gm1rπ1 + 1)[RE‖(RL + RF)] (11)

Rool = RF + rπ1 + RS

gm1rπ1 + 1
‖RE ≈ RF (12)

2. Set vs to zero and replace the original controlled current
generator, gm2v�2, with an independent current source,
i, of value P. Again, transistor T2 can be considered to
be switched off while transistor T1 is in a common base
configuration [Fig. 6(a)]. Then, by introducing a Norton
equivalent generator at the input, as shown in Fig. 6(b),

v  1πr  1π v  2π RC1



r  2π

(RF + RL)   RE

Rs

v  1πgm1

ro1

i'

(b)
where the current i
 is given by

Figure 6. (a) Ac schematic for the evaluation of the return ratio for
the circuit in Fig. 4(a). On nullifying the input signal and replacing
the controlled generator of T2 with an independent current source i,
T1 becomes a common-base transistor. (b) Small-signal circuit of (a).

i′ = RL

RL + RF
i (13)
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Thus, the null return ratio is given by

TR = −gm2vπ2

i
= gm2

RE + RF

RE
(RC1‖rπ2) (22)

It is apparent that the relationship displayed in Eq. (6) is ver-
ified.

RF

RE RL

vo

vel

Figure 7. Equivalent circuit for the evaluation of the asymptotic
Shunt-Series Feedback Amplifiergain for the circuit in Fig. 4(a). The transconductance of T2 in Fig.

4(a) has been made infinitely large. While the series-shunt feedback circuit functions as a voltage
amplifier, the shunt-series configuration, whose ac schematic
diagram is depicted in Fig. 9(a), is best suited as a current
amplifier. In the subject circuit, the current through the emit-(i.e., the typical virtual short-circuit condition). Ac-
ter of transistor T2, which is approximately equal to the out-cording to Fig. 7, which follows from these considera-
put signal current, io, is sampled by the feedback networktions,
formed on the resistance, RE and RF. The sampled current is
fed back as a current to a current-driven input port. Thus
the resulting driving point output resistance is large, and the
driving point input resistance is small. These characteristics

G∞ = vo

vS

∣∣∣∣
gm2→∞

= 1 + RF

RE
(16)

allow for a closed-loop current gain, Gi(RS, RL) � io/is, which
The final closed-loop gain is obtained by substituting G0, T, is relatively independent of the source and load resistances
and G�, into Eq. (14). In order to calculate the input and out- and insensitive to transistor parameters.
put resistance, according to Eqs. (7) and (8), since the rela-
tionship of the return ratio in Eq. (15) is independent of the
source resistance, it is necessary to introduce the exact ex-
pression of Eq. (14) into Eq. (15), before evaluating the terms
T(0, RL) and T(�, RL). The four return ratios needed are

T(0, RL) = RL

RL + RF
(RC1‖rπ2)gm2 (17a)

T(∞, RL) = T(RS, 0) = 0 (17b)

T(RS,∞) = (RC1‖rπ2)gm2 (17c)

And, hence, the input and output resistances are

Ri = Riol

[
1 + RL

RL + RF
(RC1‖rπ2)gm2

]
(18)

i

RS

RE

RF

T1
RC1r  2π

vs

+

–

(a)
Ro = Rool

1 + (RC1‖rπ2)gm2
(19)

To follow the Choma method, one must replace point 3 with
the following step, in order to evaluate the null return ratio
TR.

First substitute the original controlled current generator,
gm2v�2, with an independent current source, i. By inspection of
Figure 4(b), to have an output voltage equal to zero means
that the critical current, i, is forced to flow through the resis-
tance RF. Hence, the equivalent circuits in Fig. 8 can be used.
Under the assumption that the voltage on the emitter of tran-
sistor T1 follows the input source voltage (i.e., ve � vS), the
voltage on the collector of T1 and the critical current i, are,
respectively,

RE

i

v  2πr  2πv  1πr  1π

Ri

RF

RC1

RS
vs

ve

iz1

+

–
v  1πgm1

(b)

Figure 8. (a) Ac schematic for the evaluation of the null return ratio
vπ2 = gm1rπ1

1 + gm1rπ1

RC1‖rπ2

RE‖RF
vS ≈ RC1‖rπ2

RE‖RF
vS (20)

for the circuit in Fig. 4(a). The controlled generator of T2 is replaced
by an independent current source i. (b) Small-signal circuit of Fig.
8(a).

i = − vS

RF
(21)
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ro2
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v  1πr  1π r  2π v  2π
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Figure 9. (a) Ac schematic of shunt-series feedback amplifier; (b) small-signal equivalent circuit
of the shunt-series-shunt feedback amplifier in (a), obtained by replacing each transistor with its
small-signal model.

To analyze the circuit in Fig. 9(a), consider its small signal which is always lower than one. The corresponding in-
put and output resistance, Riol, and Rool, are given bymodel shown in Fig. 9(b), and assume the transconductance

gm1 as the critical parameter P.

1. Set P � 0 (gm1 � 0), which means switch off transistor Riol = rπ2 + RC1

gm2rπ2 + 1
‖R′

S (26)

T1; then, taking into account the input resistance of T1
which still exists, the circuit has the ac schematic dia- Rool = ro2 + (1 + gm2ro2)[R′

S‖(RC1 + rπ2)] (27)
gram depicted in Fig. 10(a), and the small signal model
shown in Fig. 10(b) where the resistance R
S and the cur- 2. Set is to zero and replace the original controlled current
rent i
s are given by generator, gm1v�1, with an independent current source,

i. Now, as shown from the equivalent ac circuit shownR′
S = (RF + RS‖rπ1)‖RE (23)

in Fig. 11, transistor T2 works as a voltage follower,
and the voltage v�1 is a portion of the emitter voltage of
T2. Therefore, since ro2 is usually much higher than RL

i′s = RS‖rπ1

RF + RS‖rπ1
is (24)

and RE, and assuming RC1 to be lower than the equiva-
lent resistance at the base terminal of T2, the loop gainThe circuit in Fig. 10 represents a common base con-
isfiguration; from it one obtains

T = gm2rπ2

gm2rπ2 + 1 + rπ2

RE‖(RF + RS‖rπ1)

RS‖rπ1

RS‖rπ1 + RF
gm1RC1

≈ RS‖rπ1

RS‖rπ1 + RF
gm1RC1 (28)

Go = io

iS

∣∣∣∣
gm1=0

= R′
S

R′
S + RC1 + rπ2

gm2rπ2 + 1

gm2rπ2

gm2rπ2 + 1
RS‖rπ1

RF + RS‖rπ1

≈ RS‖rπ1

RF + RS‖rπ1
(25)
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ses, one can model the circuit with the one shown in
Fig. 12, and by inspection we find that the current en-
tering into the emitter of transistor T2 is equal to

ie2 =
�

1 + RF

RE

�
iS (29)

Hence, neglecting the resistance ro2, one obtains

G∞ = io

is

∣∣∣∣
gm→∞

= gm2rπ2

1 + gm2rπ2

�
1 + RF

RE

�
≈ 1 + RF

RE
(30)

Therefore, combining Eqs. (25), (28), and (30) the exact
expression of the closed-loop gain of a shunt-series feed-

Rs r  1πRE

RL

RC1

RF

is

io

T2

(a)

back amplifier can be found quite simply. For common
values, the loop gain is much greater than one and the
closed-loop gain is equal to the asymptotic one.

Finally, the resulting input and output resistances
are given by Eqs. (7) and (8), where the return ratios
are

T(0, RL) = 0 (31)

T(∞, RL) = rπ1

rπ1 + RF
gm1RC1 (32)

T(RS, 0) = RS‖rπ1

RS‖rπ1 + RF
gm1RC1 (33)

R'S

RL

RC1

i's

io

v  2π

v  2πr  2π ro2

gm1

(b)

Figure 10. (a) Ac schematic for the evaluation of the direct transmis-
sion term for the circuit in Fig. 9(a). On having nullified the input

T(RS,∞) = RS‖rπ1

RS‖rπ1 + RF
gm1

{RC1‖[rπ2 + RE‖(RF + RS‖rπ1)]} (34)
signal and the transconductance of T1, the circuit acquires a common-
base configuration. (b) Small-signal equivalent circuit of the circuit in
(a). The current generator i
S and resistor R
S represent the Norton

Shunt-Shunt Feedback Amplifierequivalent seen by the emitter of T2.

The ac schematic diagram of the third type of the single-loop
feedback amplifier, the shunt-shunt triple, is drawn in Fig.

3. Now evaluate the closed-loop asymptotic gain, G�. By 13(a). A cascade interconnection of three transistors, T1, T2,
inspection of Fig. 9(b), setting the parameter gm1 infi- and T3, forms the open loop, while the feedback subcircuit is
nitely large leads to v�1, equal to zero which, in turn, a single resistance, RF. This resistance samples the output
means that all the input current, is, enters the feedback voltage, vo, and feeds it back as current to the input port.
resistance, RF. Moreover, since a finite value for the cur- Therefore, both the driving point input and output resistance
rent gm1v�1 determines a v�1 other than zero, the term are very small. Accordingly, the circuit operates best as a
gm1v�1 itself must be equal to zero. Under these hypothe- transresistance amplifier, in that its closed-loop transresis-

gm1v  2π
r  2

ie2

is

io

π

v  2π

RC1

RL

RF RE

ro2

RF

RS

RL

RE

RC1

T2

v  1πr  1π

gm1v  1πi =

Figure 11. Ac schematic for the evaluation of the return ratio for Figure 12. Equivalent circuit for the evaluation of the asymptotic
gain for the circuit in Fig. 9. The transconductance of T1 has beenthe circuit in Fig. 9. On replacing the controlled generator of T1 with

an independent current source i, T1 becomes an emitter follower. made infinitely large.
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T1 T2 T3
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vo

is RC1 RC2 RL
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(a)

vo

is RC1 RC2

RF
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v  1πr  1π v  2πr  2π v  3πr  3π

v  1πgm1 v  2πgm2

v  3πgm3
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Figure 13. (a) Ac schematic of shunt-shunt feedback amplifier; (b) small-signal equivalent cir-
cuit of the shunt-shunt feedback amplifier, obtained by replacing each transistor in (a) with its
small-signal model.

tance, RM(RS, RL) � vo/is, is nominally invariant with source Series-Series Feedback Amplifier
resistance, load resistance, and transistor parameters.

Figure 14 reports the ac schematic diagram of the series-se-
Considering the equivalent small signal model of the ries feedback amplifier. Three transistors, T1, T2, and T3, are

shunt-shunt circuit shown in Fig. 13(b), we can arbitrarily embedded in the open-loop amplifier. Although it is possible
choose the transconductance gm1 as the parameter P (other to achieve series-series feedback via emitter or source degen-
choices do not lead to any substantial differences). Setting eration of a single-stage amplifier, the series-series triple of-
gm1 � 0, the feedforward transresistance and the correspond- fers substantially more loop gain and thus a better desensiti-
ing input and output resistances are zation of the forward gain with respect to both transistor

parameters and source and load termination. Of course, these
benefits are paid for in terms of frequency response.

One can conveniently choose the transconductance gm2 as
Rfo = vo

is

∣∣∣∣
gm1=0

= RS‖rπ1

RS‖rπ1 + RF + RL
RL (35)

the parameter P. Hence, assuming ideal behavior for the
transistor working as a current or voltage follower, the funda-Riol = (RF + RL)‖rπ1 (36)

mental relationships are given byRool = RF + RS‖rπ1 (37)

The return ratio is
G0 = io

vS

∣∣∣∣
gm2=0

≈ − 1
RF

(40)

T = gm1(RC1‖rπ2)gm2(RC2‖rπ3)gm3
RL

RL + RF + RS‖rπ1
RS‖rπ1

(38) Riol = rπ1 + (gm1rπ1 + 1)

[
RE1‖

�
RF + RE2‖

RC2 + rπ3

gm3rπ3 + 1

�]
(41)

and the asymptotic transresistance is

Rf ∞ = vo

is

∣∣∣∣
gm1→∞

= −RF (39)

Rool = ro3 + (gm3ro3 + 1)

[
(rπ3 + RC2)‖RE2‖

�
RF + RE2

∥∥∥∥ RS + rπ3

gm3rπ3 + 1

�]
(42)

Hence, substituting Rfo, T and Rf� into Eq. (4), we get the
closed-loop transresistance Rcl.

T = RC1gm2
RC2

RF
(43)

Finally, the input and output resistance can be simply ob-
tained by properly evaluating the particular return ratio by
using Eq. (38).

G∞ = io

vS

∣∣∣∣
gm2→∞

≈ −
�

1
RE1

+ 1
RE2

+ RF

RE1RE2

�
(44)
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Figure 14. Ac schematic of series-series feedback am-
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RC1 RC2 Ri

Rovs
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+

–

T1 T2 T3

plifier.

Since the loop gain generally has a very high value, the plied. Moreover, it is equal to the maximum bandwidth
achieved with a unitary feedback factor, f � 1 (i.e., with theclosed-loop transconductance is almost equal to the asymp-

totic one, G�. Moreover, the particular return ratios needed amplifier in a unity gain feedback configuration).
to calculate the input and output resistance, assuming ro1 to
be a very high resistance, are Two-Pole Amplifier

Real amplifiers have transfer functions with more than one
pole and instability problems arise. Consider now an ampli-T(0, RL) = T(RS, 0) = RC1gm2

gC2

RF
(45)

fier with a two-pole transfer function
T(∞, RL) ≈ 0 (46)

A(s) = A0�
1 + s

p1

��
1 + s

p2

� (51)TS(RS,∞) ≈ (RC1‖rπ2)gm2
RC2

RC2 + rπ3 + RE2‖RF

RE2

RE2 + RF
(47)

Its closed-loop transfer function is
STABILITY

In order show the increase in bandwidth of a feedback ampli-
fier, consider an amplifier having the following single-pole

GF(s) = GF0

1 + 2
ξ

ω0
s + s2

ω2
0

(52)

transfer function

where �o is the pole frequency and � is the damping factor,

ω0 =
√

p1 p2(1 + fA0) (53)
A(s) = A0

1 + s
p1

(48)

Assuming a pure resistive feedback network, the closed-loop
transfer function is

ξ = p1 + p2

2ω0
≈ 1

2
�

T0

�r
p1

p2
+
r

p2

p1

�
(54)

Normalizing the closed-loop transfer function to �0, the fre-
quency and step responses for different values of � are those
plotted in Fig. 15(a) and Fig. 15(b), respectively. The behavior

GF(s) = GF0

1 + s
(1 + fA0)p1

≈ GF0

1 + s
T0 p1

(49)

is overdamped, critically damped, or underdamped if the �
where GF0 is the dc closed-loop gain equal to value is greater than, equal to, or lower than 1, respectively.

The underdamped condition (i.e., with two complex poles) is
critical since overshoot occurs in both the frequency and the
time domain and, to keep the peak in both the frequency and

GF0 = A0

1 + fA0
≈ G∞ (50)

step responses below the desired value, the parameter � must
be properly set.Hence, the resulting pole is shifted to a higher frequency by

a factor equal to the dc gain of the return ratio, T0. It is worth According to Eq. (54), to avoid overshoot one needs an am-
plifier, A, with widely spaced poles. More specifically, in ordernoting that, when a feedback amplifier can be modeled with

the scheme in Fig. 3, the gain-bandwidth product of the open- to avoid an excess of underdamping, open-loop amplifiers are
designed with a dominant-pole behavior and a second pole atloop amplifier is equal to that of the closed-loop amplifier.

Thus the gain-bandwidth product is an invariant amplifier a frequency higher than the gain-bandwidth product, �GBW, of
the return ratio transfer function (i.e., p2 � T0 p1). Thus it isparameter which is independent of the degree of feedback ap-
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frequency �T. For a two-pole system it is

� = 180◦ − arctg
ωT

ω1
− arctg

ωT

ω2
= arctg

ω1

ωT
+ arctg

ω2

ωT
(56)

Since for a dominant-pole amplifier the gain–bandwidth prod-
uct, �GBW, is about equal to the transition frequency, �T, and
arctg (�1/�T) � 0, from Eqs. (55) and (56) one obtains

K ≈ tan φ (57)

Hence, for a required phase margin one obtains the value of
the separation factor needed during the compensation design
step. Of course, there is the well-known rule that the phase
margin must be greater than 45� to avoid excessive under-
damped behavior. Moreover, the underdamped natural fre-
quency and the damping factor can be represented as

ω0 = p1

√
KT0(1 + T0) ≈ ωGBW

√
K (58)

10
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/  0ω ω
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ζ = 0.5

ζ = 0.7

ζ =1

(a) ξ = 1
2

1 + KT0√
KT0

≈
√

K
2

(59)

and hence the closed-loop transfer function is

GF(s′) = GF0

1 + s′ + s′2

K

(60)

where the complex frequency s
 is the complex frequency s
normalized to �GBW. This is a useful representation of a closed-
loop amplifier, since it is simple and depends on K (or the
phase margin) and �GBW, which are two fundamental parame-
ters in amplifier design. The frequency and step responses for
different values of K are those plotted in Fig. 16(a) and Fig.
16(b), respectively. The overshoot in the frequency domain of
the transfer function in Eq. (60) occurs at a frequency �cp

given by

ωcp = ωGBW

�
K − K2

2
(61)
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Figure 15. (a) Frequency-response module for a two-pole feedback It is apparent that for values of K greater than 2 peaking is
amplifier in the traditional representation. Overshoot arises for � avoided in the frequency domain. In order to optimize the
lower than 1/�2. The overshoot is around the pole frequency �0. (b) closed-loop amplifier time response (15), useful information
Step response for a two-pole feedback amplifier in the traditional rep- for the designer is the time, tpcl, at which the first peak occurs
resentation. and its overshoot, D, given by

tp = 2π

ωGBW

√
4K − K2

(62)

useful to define the separation factor, K, between the second
pole and the gain-bandwidth product of the return ratio T D = e−π

q
K

4−K (63)
(observe that the return ratio transfer function has the same
pole as the amplifier transfer function) (14) For example, having the minimum settling time at 0.1%, Eq.

(63) gives a K equal to 2.75 (i.e., a phase margin of 70�); then
from Eq. (62) the amplifier gain-bandwidth product needed to
achieve the required settling time can be found.

K = p2

ωGBW
= p2

T0 p1
(55)

Three-Pole AmplifierA well-known parameter which gives the degree of stability
of a feedback system is the phase margin, �, defined as 180� For amplifiers with more than two poles, more accurate rela-

tionships have to be used during compensation. Of course, aplus the phase of the return ratio evaluated at the transition
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Hence, remembering that tan(a � b) � tan(a) � tan(b)/1 �
tan(a) tan(b) and tan(a � 90�) � �1/tan(a), one obtains

1
ω2

GBW

− tan(φ)

�
1
ω2

+ 1
ω3

�
1

ωGBW
− 1

ω2ω3
= 0 (66)

By solving Eq. (66) the required gain-bandwidth product for
a fixed phase margin is obtained:

1
ωGBW

= tan(φ)

2

�
1
ω2

+ 1
ω3

�[
1 +

�
1 + 4

tan2(φ)

ω2ω3

(ω2 + ω2)2

]

≈ tan(φ)

�
1
ω2

+ 1
ω3

�
(67)

It is worth noting that compensation of a three-stage ampli-
fier can be performed like that of a two-pole amplifier, where
the equivalent time constant of the second pole is equal to the
sum of the second and third pole time constants of the three-
pole amplifier.

POLE SPLITTING COMPENSATION

10

0.1
0.1 1 10

1

K = 0.04

K = 0.36

K = 1

K = 4

K = 1.96

GBW/ω ω

(a)
Generally, the return ratio of amplifiers used in negative
feedback is not characterized by a dominant-pole frequency
response. Therefore, compensation is needed to achieve the
required phase margin. Compensation can be simply per-
formed by increasing the capacitance at the node which deter-
mines the lower pole. However, except in the case of a one-
stage amplifier, such as a cascade amplifier, a more efficient
approach based on pole splitting compensation can be used.

Open-Loop Amplifier

The return ratio of a two-stage feedback amplifier such as the
series-shunt and the shunt-series feedback amplifiers in Fig.
4(a) and Fig. 9(a), can be evaluated with the simplified
scheme plotted in Fig. 17, which is composed of two equiva-
lent transconductances and two equivalent resistances with
the associated parasitic capacitances. More specifically, Ci is
the equivalent capacitance at the interstage node, the capaci-
tance Co is the equivalent one at the output node, and Cr is
the equivalent capacitance across the two stages (CC is the
capacitor used to achieve compensation). Moreover, for the se-
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Figure 16. (a) Frequency-response module for a two-pole feedback
amplifier in the proposed representation. Overshoot arises for values
of K lower than 2. (b) Step response for a two-pole feedback amplifier
in the proposed representation. Rise time and settling time increase
for values of K greater than 2.

dominant-pole behavior is mandatory to achieve stability.
Consider an amplifier with three separate poles:

A B

Ci Co

CC

Cr

Reqo

Reqi

vo

v'

Gmeq2v'

Gmeq1vo

A(s) = A0�
1 + s

p1

��
1 + s

p2

��
1 + s

p3

� (64)

Figure 17. Small-signal equivalent circuit for the evaluation of the
If �1 is the dominant pole, the phase margin is equal to generalized loop gain frequency behavior of two-stage amplifiers. The

two stages are represented by Gmeq1, Reqi and by Gmeq2, Reqo. Since we
assume the amplifier in unity-gain configuration, the output voltage
vo drives the input stage.

φ ≈ arctg
ω2

ωGBW
+ arctg

ω3

ωGBW
− 90◦ (65)
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ries-shunt amplifier Gmeq2 is equal to gm2 and Gmeq1; Reqi and crease in the internal feedback capacitance, Cr, moves the
dominant pole and the second pole to lower and higher fre-Reqo are about equal to 1/RF, RC1//r�2, and RLT//RF, respectively.

For the shunt-series amplifier Gmeq2 is equal to gm1 and Gmeq1, quencies, respectively. Thus, in order to improve the separa-
tion of the two poles it is efficient to increase Cr since its con-Reqi and Reqo are about equal to 1/(RS//r�1 � RF), RS//r�1 and

RC1, respectively. tribution is magnified by the gain factor (1 � Gmeq2Reqo).
Actually, this is the technique followed to perform compensa-Referring to Fig. 17, the return ratio, T(s), can be written

in the form tion (i.e., to obtain a phase margin greater than 45� or K �
1), which allows the amplifier to be connected in a closed loop
without an excess of underdamped behavior. In this case one
adds to the internal feedback capacitance Cr a compensation
capacitance, Cc and, since the Miller effect becomes the domi-
nant capacitive contribution, Eqs. (73) can be further simpli-

T(s) = T0

1 − s
zr

1 +
�

1
p1

+ 1
p2

�
s + s2

p1 p2

(68)

fied:
where

T0 = Gmeq1ReqiGmeq2Reqo (69)

The dashed branch containing the capacitor CC, which will be

P1c ≈ 1
RoeqiGmeq2ReqoCp

(74a)

p2c ≈ Gmeq2

Co + Ci
(74b)

addressed later, is the pole splitting compensation element.
where the capacitance Cp, which is the sum of Cr and Cc, hasThe frequency, zr, of the right half-plane zero due to the for-
been assumed to be greater than Ci or Co. After compensationward path through the feedback capacitance, Cr, to the output
the value of the second pole given by Eq. (74b) finds an intu-is given by
itive justification. At the frequency at which it occurs, the ca-
pacitance Cp can be considered short-circuited, and Eq. (74b)
can be simply obtained by inspection of the circuit in Fig. 17.zr = Gmeq2

Cr
(70)

From Eqs. (69) and (74a), the gain-bandwidth product is
and the lower pole frequency, p1, and the higher pole fre-
quency, p2, derive implicitly from ωGBW = Bmeq1

Cp
(75)

Sometimes the large transconductance, Gmeq2, allows the zero
1
p1

+ 1
p2

= Reqo(Co + Cr) + Reqi[Ci + (1 + Gmeq2Reqo)Cr] (71)
which is now given by Eq. (70) substituting Cp for Cr to be
neglected. Otherwise, the right half-plane zero determines aand
negative contribution on the phase margin, and it must be
compensated as discussed in the next subsection to achieve
the required phase margin.

1
p1 p2

= ReqiReqoCo

[
Ci +

�
1 + Ci

Co

�
Cr

]
(72)

Considering the return ratio of a two-stage amplifier com-
pensated by using the Miller effect, where the zero has also

Pole Splitting Analysis been compensated, it is apparent that the bandwidth perfor-
mance of the amplifier is only set by the frequency of secondUnder the assumption that the amplifier has a dominant-pole
pole given in Eq. (74b), and the separation factor, K, isbehavior (fundamental to use the amplifier in feedback), one

can neglect the term 1/p2 in Eq. (71) with respect to the term
1/p1. Consequently, the following pole expressions are ob- K = Gmeq2

Gmeq1

Cp

Co + Ci
(76)

tained:

Hence, one has to choose the compensation capacitance, Cc, to
provide the value of K (always greater than 1) which gives
the required frequency- or time-domain behavior.

The compensation technique is extensively used in the de-
sign of two-stage amplifiers. Moreover, for off-the-shelf bipo-
lar amplifiers including a voltage buffer output stage, com-
pensation is still achieved by means of the Miller effect by
using Eq. (67). It is worth noting that when using three-stage
gain amplifiers such as the shunt-shunt feedback amplifier in
Fig. 13, the series-series feedback amplifier in Fig. 14, or
CMOS power amplifiers, low-voltage signal amplifiers, and so
forth, nested Miller, employing two or more compensation ca-

p1 ≈ 1
Reqo(Co + Cr) + Reqi[Ci + (1 + Gmeq2Reqo)Cr]

≈ 1
Reqi[Ci + (1 + Gmeq2Reqo )Cr]

(73a)

p2 ≈ Reqo(Co + Cr) + Reqi[Ci + (1 + Gmeq2Reqo)Cr]

ReqiReqoCo

[
Ci +

�
1 + Ci

Co

�
Cr

]

≈ Ci + (1 + Gmeq2Reqo)Cr

ReqoCo

[
Ci +

�
1 + Ci

Co

�
Cr

] (73b)

pacitors, is mandatory (16,17).

It is worth noting that the above approximations hold since,
Zero Compensation Techniquesin practical cases, the Miller effect represented by the term (1

� Gmeq2Reqo)Cr leads to an input dominant pole. From Eqs. (73) Various techniques for compensation of the right half-plane
zero have been proposed for two-stage MOS opamps. They arethe pole splitting due to Miller effect it is apparent. An in-
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based on the concept of breaking the forward path through Figure 18(b) shows the compensation branch with a volt-
age buffer. Use of an ideal voltage buffer (i.e., with zero out-the compensation capacitor by using active or passive compo-

nents. The original of these was first applied in an NMOS put resistance) to compensate the right half-plane zero gives
the same second pole as Eq. (74b) without the dependence onopamp (18) and then in a CMOS opamp (19). It breaks the

forward path by introducing a voltage buffer in the compensa- the interstage capacitance, Ci and, hence, about the same
�GBW. On the other hand, the finite output resistance of a realtion branch. Then a compensation technique was proposed

which uses a nulling resistor in series with the compensation voltage buffer leads to a left half-plane zero, which can be
efficiently exploited to perform a pole-zero compensation andcapacitor (20). Another solution works like the former but

uses a current buffer to break the forward path (21). Finally, to increase the amplifier gain-bandwidth (24). Following this
last compensation strategy the second pole is given byboth current and voltage buffers can be used for compensation

of the right half-plane zero (22).
The most popular compensation technique is that based on

the nulling resistor, since it can be implemented using only a p2 = Gmeq2

Co

CC − Cb

Ci + Cb
(79)

MOS transistor biased in the triode region (which approxi-
mates a linear resistor) and does not reduce the input or out- where Cb is the feedforward capacitance of the voltage buffer.
put dynamic range of the original amplifier. It is achieved by After solving Cc by substituting Eq. (79) into Eq. (55), the
introducing the resistance Rc in series with the compensation gain-bandwidth product is
capacitor, as shown in Fig. 18(a). Neglecting the capacitance
Cr (usually much lower than CC), the zero is now at a fre-
quency of ωGBW ≈ Gmeq1

Cb

2
+
s

Gmeq1

Gmeq2
K(Ci + Cb)Co

(80)

The resulting �GBW has a higher value than that given by Eq.

zr = 1�
1

Gmeq2
− Rc

�
Cc

(77)

(78), and, apart from the small contribution of Cb, is inversely
dependent on the geometric mean of Ci � Cb and Co.and is moved to infinite frequency by setting Rc equal to

Compensation based on a current buffer, as shown in Fig.1/Gmeq2. Thus from Eqs. (55), (74), and (75) assuming Cp �
18(c), is very efficient both for the gain-bandwidth (25,26) andCc, one gets
the PSRR performance (21,27,28). Moreover, unlike the volt-
age buffer, it does not have the drawback of reducing the am-
plifier output swing.

ωGBW ≈ Gmeq1

K(Co + Ci)
(78)

Considering an ideal current buffer in the compensation
branch, the second pole is given byHence the gain-bandwidth product is inversely proportional

to the sum of the output and interstage capacitance.
The resistance Rc can also be set to compensate the second

pole giving a new second pole 1/(RcCc), as proposed in (23),
but this approach has a worse �GBW than the other optimized

p2 = Gmeq2

Ci

�
1 + Co

CC

� (81)

compensation strategies described below.

which leads to the gain-bandwidth product

ωGBW ≈ Gmeq1

Gmeq1

2Gmeq2
KCi +

s
Gmeq1

Gmeq2
KCiCo

(82)

Since usually Cb � Ci � Co and Gmeq1 � Gmeq2, the first term of
the denominator of Eq. (82) is negligible and, hence, the per-
formance obtainable with an ideal current buffer is slightly

A

RC CC

B

(a)

Av = 1A

CC

Cb

B

(b) better than that obtained using an optimized design based on
a voltage buffer. However, compensation with a real current
buffer (i.e., with finite input resistance) is not as straightfor-
ward as other compensation approaches. As shown in Ref. 29,
in order to achieve compensation, one needs to guarantee that
the input resistance of the current buffer, Rb, must be equal
to or lower than half 1/Gmeq1. Moreover, the condition

Ai = 1A

CC

B

(c)

Figure 18. (a) Compensation network with nulling resistor. The Rb = 1
2Gmeq1

(83)
technique allows one to modify the zero zr according to Eq. (77). (b)
Compensation network with voltage buffer that breaks the feedfor-

allows compensation based on a current buffer to be opti-ward path. (c) Compensation network with current buffer: another
way to break the feedforward path. mized. Under the condition of Eq. (83) one obtains the follow-
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ing gain-bandwidth product: given by

ωGBW ≈ Gmeq1

Gmeq1

2Gmeq2

2K − 1
2 + K

Ci +
s

Gmeq1

Gmeq2

�2K − 1
2 + K

+ 1
2

�
CoCi

(84)

Thus, �GBW is at least 20% higher than that obtained with an

HD2 f l = 1
2

a2

a1

1
(1 + T0)2

Xs = 1
2

a2

a2
1

1
1 + T0

Xo (89a)

HD3 f l = 1
4

a3

a1

1 − 2 fa2
2

a3(1 + T0)

(1 + T0)3
X 2

s = 1
4

a3

a3
1

1 − 2 fa2
2

a3(1 + T0)

1 + T0
X 2

o

(89b)
ideal current buffer (29). On the other hand, for the same
gain-bandwidth product this kind of compensation needs The third harmonic distortion can be further minimized by
more area and/or power than that based on a voltage buffer. canceling its numerator, according to the following relation:

DISTORTION IN CLOSED-LOOP AMPLIFIERS f
1 + T0

= a3

2a2
2

(90a)

To characterize the effects of nonlinearity in circuits and sys-
tems used as linear blocks, harmonic distortion terms are of- which with high return ratios, T0, simplifies to
ten used. More specifically, consider the open-loop amplifier
to be nonlinear with its transfer function, A(xi), well repre-
sented by the first three terms of a power series a1 = 2a2

2

a3
(90b)

xo = A(xi) ≈ a1xi + a2x2
i + a3x3

i (85)
Moreover, according to Eq. (89b) for amplifiers where the
term a3 is negligible, the third harmonic is still determined

Assuming that the incremental input voltage is a pure sinus- by the term a2.oidal tone xi � Xi cos(�1t), one obtains the following output:

Nonlinear Feedbackxo = b0 + b1 cos(ω1t) + b2 cos(2ω1t) + b3 cos(3ω1t) (86)

Considering a feedback amplifier where the feedback path is
where terms bi up to the third order are also nonlinear and is represented by the following relation:

xf = F(xo) = f1xo + f2x2
o + f3x3

o + · · · (91)

it is demonstrated in (32) that, assuming the return ratio,
To, to be much greater than 1, the second and third harmonic
distortion coefficients are respectively given by

b0 = a2

2
X 2

i (87a)

b1 = a1Xi + 3
4

a3X 3
i (87b)

b2 = a2

2
X 2

i (87c)

b3 = a3

4
X 3

i (87d)

and hence the second and third harmonic distortion factors
are given by

HD2 f = 1
2

�
1

Toa1
a2N − f2N

�
Xo (92a)

HD3 f = 1
4

[
1

Toa2
1

(a3N − 2a2
2N ) − ( f3N − 2 f 2

2N )

− 4
1

Toa1
a2N f2N

]
X 2

o (92b)

where a2N and a3N represent the amplifier terms normalized

HD2o = |b2|
|b1|

≈ 1
2

a2

a1
Xi = 1

2
a2

a2
1

Xo (88a)

HD3o = |b3|
|b1|

≈ 1
4

a3

a1
X 2

i = 1
4

a3

a3
1

X 2
o (88b)

to the amplifier gain a1, and f 2N and f 3N represent the feedback
terms normalized to the feedback gain f 1. It is apparent thatin which the gain compression, which arises in term b1 and is
feedback does not reduce the nonlinearity of the feedback net-due to term a3 (30), has been neglected. In order to allow a
work. Thus one cannot obtain an amplifier having a nonline-simple comparison with the closed-loop case, the harmonic
arity lower than that of the feedback network, and even smallfactors refer to the output voltage magnitude.
nonlinearity terms of feedback networks cannot be neglected,
but must be taken into account during harmonic distortionLinear Feedback
evaluation. It is also worth noting that for negative feedback,

If we close the amplifier in a loop with a linear feedback, f distortion due to the feedback network has an opposite sign
(which means a return ratio T0 � fa1), the harmonic distortion to that due to the amplifier. A more compact and clear repre-
terms given by Eq. (88) must be reduced by the factors (1 � sentation of the harmonic distortion in a nonlinear amplifier
T0)2 and (1 � T0)3, respectively. This implies a reduction, ap- with nonlinear feedback is
proximately equal to the return ratio T0, in the harmonic dis-
tortion terms referring to the output signal magnitude.

As reported in Ref. 31, a more accurate analysis shows that
the harmonic distortion terms for a closed-loop amplifier are

HD2f = HD2 f l + HD2fn (93a)

HD3f = HD3l + HD3fn + 4HD2 f lHD2fn (93b)
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