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FILTER APPROXIMATION METHODS

This article is concerned with obtaining the transfer function
of an electrical filter that meets certain specifications. These
specifications include discrimination properties, time delay, or
a combination of these. Depending on the complexity and se-
verity of the requirements, one may either find solutions to
these problems in closed form, or one may have to resort to
iterative approximations to find solutions. Once the transfer
function is computed, one must then determine an implemen-
tation of the filter, which will be treated in other articles.

The transfer function of a filter is a real, rational fractional
function of the complex frequency variable s � � � j� usually
given in one of the two forms:

output/input = H(s) = N(s)/D(s)

= n0 + n1s + n2s2 + · · · + nnsn

1 + d1s + d2s2 + · · · + ddsd

= H0

∏n
i=1(s − zi)∏d
j=1(s − pj )

(1)

where the numerator polynomial N(s) is of degree n and the
denominator D(s) is of degree d. If we express these polynomi-
als in terms of their zeros, these zeros (zi) and poles (pj), if
complex, occur in complex conjugate pairs. The zeros and
poles are much more useful in describing the behavior of the
filter than the polynomial coefficients, and all the poles [the
zeros of D(s)] must be inside the left half of the s plane for sta-
bility.

This description is valid for analog filters i.e., those con-
taining resistors, inductors, and capacitors (R, L, and C) or
active R and C components. For infinite-impulse-response
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(IIR) digital filters and microwave filters consisting of equal THE APPROXIMATION PROBLEM
length open- and short-circuited as well as cascaded transmis-
sion line segments, we can still use the preceding expressions, Approximation problems in the design of filters take the fol-

lowing forms:if we replace the variable s by the expression

1. Requirements on the loss only. This is the most common
case and has usually two forms:S = tanh

πs
2ω0

(2)

i. In the passband the loss should be low (near zero) or
of a specified shape.where �0 is half the sampling frequency in the digital case or

ii. In the stopband the loss should be equal to orthe (common) quarter-wave frequency of the transmission
greater than some specified amount (usually as aline segments in the microwave case.
function of frequency).The significant filter performance parameters we are con-

cerned with are the loss, defined as 2. Requirements on the delay only. This covers the prob-
lem of delay equalization and the design of delay lines.

3. Requirements on both the loss and the delay. This is thea = 10 log10 |H( jω)|2 (3)
most complex case and is usually treated by breaking
it up into first dealing with the loss and subsequentlyand the delay
handling the delay, although methods exist to handle
them simultaneously.

4. Requirements on the impulse or step response. Occa-τ = − d
dω

arg[H( jω)] = − d
dω

tan−1 Im[H( jω)]
Re[H( jω)]

(4)
sionally we encounter this type of requirement placed
on the time-domain response of the filter. This may

Occasionally, we need the impulse or step responses of the even be combined with simultaneous requirements on
filter; these can be computed as the inverse Laplace trans- the loss. This is rare, but we shall mention some meth-
forms of H(s) and H(s)/s, respectively. ods of dealing with cases of this type at the end of this

In addition to the restriction on the locations of the poles, article.
the transfer function H(s) must also meet the following crite-
ria to be realizable by an R, L, and C or a microwave network:

CLOSED-FORM SOLUTIONS

|H(s)|s= jω ≤ 1 (5)
The Approximation of Loss

To simplify the problem of loss approximation, we rewrite the
and the polynomial N(s) must be either pure even or pure odd

expression for the transfer function. If the function magni-
(i.e., its zeros must be either pure imaginary or occur in com-

tude is bounded by 1, then we can write
plex quadruplets); furthermore, its degree may not be greater
than that of D(s).

While the first condition is not necessary for digital and |H(s)|2s= jω = H(s)H(−s)|s= jω = 1
1 + κ( jω)κ(− jω)

(6)

active RC implementations, assuming that it is satisfied does
not restrict the generality at all, since we can always include where the �(s) function is called the characteristic function
an amplifying stage anywhere in the structure and since the and is of the form
function must necessarily be bounded on the imaginary axis;
hence we shall assume this bound to be unity. κ(s) = F(s)/N(s) (7)

For digital filters, the degree of N(s) is not restricted, but
Here N(s) is the numerator of H(s) and F(s) is a completelyagain for simplicity we shall assume compliance, because oth-
arbitrary real polynomial of degree d [same as that of D(s)].erwise difficulties arise. For IIR digital filters with numera-
The only additional restriction is that F(s) and N(s) should betors of degree greater than that of the denominators, please
relative prime (i.e., have no common roots). It is easy to seesee Ref. 1.
that the zeros of N(s) should be in or near the stopband(s),Finally, N(s) being pure even or pure odd is not strictly
while those of F(s) should be in or near the passband. Thenecessary, since zeros may occur in the right half plane and
relationship between the three polynomials is concisely ex-we can always pair them with zeros in the left half plane and
pressed by the celebrated Feldtkeller’s equation:compensate for this by having poles at the same locations. In

any case, these types of zeros are found useful only in com- D(s)D(−s) = F(s)F(−s) + N(s)N(−s) (8)
pensating for delay distortion and, as such, can and will be
treated separately. However, no zeros inside the left half Given an arbitrary F(s) and an even or odd N(s), one can eas-
plane are allowed for passive RLC and microwave circuits, ily find D(s) such that all of its roots are in the left half of the
without matching right-half-plane zeros. s plane.

As far as IIR digital and active RC circuits are concerned,
N(s) is not restricted to being pure even or odd. Nevertheless, Butterworth Filters. Butterworth filters are one of the oldest
we shall assume that it is (except if the microwave filter con- and simplest solutions to the filter problem. The characteris-
tains unit elements), for the simple reason that it makes for tic function for lowpass filters can be written as
a unified treatment of all filter kinds and, furthermore, there

κ(s) = ε(s/ωp)n (9)does not seem to be any advantage in assuming otherwise.
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Figure 1. Butterworth transfer function.

Here �p is a normalization frequency, usually the passband (stop) band width. A bit more general bandpass case could be
obtained using the characteristic functionedge. This filter type will have a maximally flat passband and

a stopband loss that is monotonically increasing as we move
away from the passband. The magnitude of the first few func- κ(s) = k0(s

2 + ω2
0)n/sm with 0 < m < 2n (13)

tions for n � 1 to 6 are shown in Fig. 1. The selection of the
parameters, including the degree n, for a specific set of re- but this does not yield closed-form solutions for the transfer
quirements is nearly trivial. Assuming that a filter requires function poles and will be treated later under the numerical
not more than ap loss (in dB) up to the frequency �p and as approximation methods. As an example, Fig. 2 shows a sixth-
loss from �s to infinity, we compute order filter with 40% bandwidth and m � 6 (the value we get

with the preceding transformation) as well as m � 3. The
second case, which puts three transmission zeros at zero fre-
quency and nine zeros at infinity, yields a much more sym-
metrical response.

L = 100.1ap − 1
100.1as − 1

and n ≥ ln(L)

2ln(ωp/ωs)
; ε2 = 100.1ap − 1

(10)

The resulting transfer function poles can be computed in Chebyshev Filters. Chebyshev filters have the low-pass
closed form, and so can the actual element values implement- characteristic function
ing this filter (although we shall not deal with that part of
the design). The poles can be computed as follows:

κ(s) = εTn(s/ωp) = ε cosh[n cosh−1
(s/ωp)] (14)

where Tn is a polynomial that is varying between �1 in the
passband (s � j�, 0 � � � �p) and � determines the passband

1 + κ(s)κ(−s) = 1 + (−1)nε2(s/ωp)2n = 0 which yields

(s/ωp)2n = (−1)n+1/ε2 = e jπ (n+1+2k)/ε2

ripple ap as before:
Hence, assuming � � 1,

ap = 10 log10(1 + ε2)

The stopband is monotonic, and if we need a loss as at fre-
quency �s, then the necessary degree may be computed from

sk = ωpe jπ (n+1+2k)/2n

= ωp

[
cos

π(n + 1 + 2k)

2n
+ j sin

π(n + 1 + 2k)

2n

] (11)

and those inside the left half plane are the poles we need.
For other than lowpass filter types, we use the well-known

frequency transformation procedure by replacing the normal-

n ≥ cosh−1L−1

cosh−1
(ωs/ωp)

where cosh−1
(x) = ln(x +

p
x2 − 1)

(15)
ized frequency s/�p by

and L is given by Eq. (10). Fig. 3 shows the computed re-
sponse of a few low-pass filters with n � 1 to 6 and about 1 dB
passband ripple. For other filter types, the transformations of
Eq. (12) are used again. In the bandpass case, the characteris-

ωp/s for high-pass filters
(s2 + ω2

0 )/δs for bandpass filters and
δs/(s2 + ω2

0 ) for band-reject filters
(12)

tic function will have nth order poles at both zero and infinite
frequencies; a more general case would distribute these un-In the latter two expressions �0 � (�A�B)1/2 is the center fre-

quency of the pass (stop) band and � � (�B � �A) is the pass equally.
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Figure 2. Butterworth bandpass function.
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The resulting transfer function singularities can be found and consequently
explicitly again, and so can the element values needed to im-
plement the filter. For the poles, we can write

cosh[n cosh−1
(s/ωp)] = ± j/ε

and therefore

sk/ωp = cosh{(1/n)[sinh−1
(1/ε) + jπ(1 + 2k)/2]}

= cos
π(1 + 2k)

2n
cosh

�1
n

sinh−1
�1

ε

��

± j sin
π(1 + 2k)

2n
sinh

�1
n

sinh−1
�1

ε

�� (16)

Inverse Chebyshev Filters. Inverse Chebyshev filters are ob-
tained simply by using the characteristic function

κ(s) = k0/Tn(ωs/s) (17)

for lowpass filters. We note that this function will vary be-

n cosh−1
(s/ωp) = cosh−1

( j/ε)

= ln

�
1
ε

+
r

1 + 1
ε2

�
+ jπ(1 + 2k)/2

= sinh−1
(1/ε) + jπ(1 + 2k)/2

Figure 3. Chebyshev transfer function.
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Figure 4. Inverse Chebyshev transfer function.

tween k0 and � in the frequency range �s � � � �, which is using the method of arithmetic-geometric mean (2). These ex-
pressions correspond to our usual normalization � � �/�p;therefore the stopband. The passband will be maximally flat.

Fig. 4 displays the magnitude of a few low-pass filters with other normalizations yield slightly different expressions.
The function in Eq. (19) yields a normalized rational frac-inverse Chebyshev characteristics. These were designed for a

stopband loss of about 20 dB and degrees 1 through 5. If we tion of the form
need a passband loss not more than ap up to frequency �p and
a stopband loss of at least as, the necessary degree can be
computed from exactly the same expression as in the Cheby-
shev case, except that k0 is given by

κ(s) = ε

n/2∏
j=1

s2 + 
2
z j

1 + 
2
p js

2 where


z j = cd
�

(2 j − 1)K
n

, k
�

and 
p j = k
z j

(22)

k0 =
p

100.1as − 1 (18)

The poles and zeros are at inverse locations with respect toThe element values of the RLC implementation can no longer
the halfway point in the transition band. The preceding ex-be expressed explicitly, especially since multiple implementa-
pression is for the even degree case; for the odd case, the up-tions exist.
per limit on the product is only (n � 1)/2 and there is an extra
s multiplier in front. The odd degree case is directly usable,Elliptic (Cauer) Filters. If the filter loss requirements are
but in the even degree case the loss will be finite and nonzerouniform in both the passband and stopband(s), the most effi-
at both zero and infinite frequencies. If that is not acceptable,cient design is obtained by the use of the Jacobian elliptic
a simple frequency transformationfunctions. The corresponding characteristic function for a low-

pass is given by

κ( j
) = ε cd(nuK1, k1) where 
 = cd(uK, k) (19)
s2 → s2

1 − 
2
p1s2 or s2 → s2 − 
2

z1

and where cd(x, k) is one of the Jacobian elliptic functions (2) or a combination, where �p1 and �z1 are the lowest of the val-
of parameter k. K and K1 are the complete elliptic integrals ues, may be used to shift the highest pole to infinity or the
belonging to k and k1, respectively, while K� and K�1 are the lowest zero to zero, respectively, but with an attendant in-
same and belong to the parameters k� � �1 � k2 and k�1 � crease in the transition bandwidth (3). Note also that the nat-
�1 � k2

1, respectively. These parameters are defined as fol- ural modes can again be calculated in closed form, but this is
lows: usually ignored, since the computation of these poles will

need extensive numerical computation in any case and there-
fore direct root extraction methods are just as convenient.k = (ωp/ωs) and k2

1 = 10ap/10 − 1
10as/10 − 1

= L (20)
The �j values of Eq. (22), can be readily computed by using
the ascending Landen transformation (2), which converts theand, furthermore, the following condition must be satisfied:
elliptic functions into hyperbolic functions, or the descending
one, which converts the elliptic functions into circular ones.
A particularly detailed description of elliptic functions in the

nK ′

K
= K ′

1

K1
(21)

design of filters is available in Ref. 4. Fig. 5 shows the magni-
tude of an elliptic low-pass transfer function of degree 7, withwhich can be used to determine the necessary degree n of the

filter. The complete elliptic integrals may be easily computed 10% transition bandwidth. These functions are not easy to
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Figure 5. Elliptic transfer function.
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compute, and if one has no access to some filter design soft- zero frequency is �0 � n/�0, where �0 is the normalization fre-
quency. Fig. 6 shows the magnitude of the Bessel transferware (5), then many tables of Butterworth, Chebyshev, and

elliptic transfer functions (and element values) can be found, function for degrees 1 through 6, and the corresponding delay
curves are shown in Fig. 7. These functions were all normal-the most extensive being that in Ref. 6, followed closely by

those in Refs. 7 and 8. Inverse Chebyshev functions are tabu- ized to �0 � 1. Tables of Bessel polynomials can be found in
many texts (see Ref. 10, for instance).lated in Ref. 8.

Rather than using Eq. (21), we may calculate the neces- These characteristics can be combined with an equal-
minima type stopband, using the technique of Temes and Gyisary degree for a set of filter specifications by the (approxi-

mate, but very accurate) closed-form expressions (11) (see also Ref. 12) described in detail in Appendix A.
As shown in Fig. 6, the resulting filters have an increasing

loss in the passband; therefore it would be desirable to com-
bine this delay with a flat passband of specified flatness. Con-
sider the general low-pass transfer function H(s) �
N(s)/D(s), where D(s) is given and we wish to select an even

ε1
∼= L

16

�
1 + L

2

�
; ε2 = 1

2
1 − k1/2

1 + k1/2 and

n ≥ f (ε1) f (ε2) where

f (ε) ∼= (1/π) ln(ε + 2ε5 + 15ε9 + 150ε13)

(23)

N(s) such that the passband (i.e., the region around � � 0) is
flat. If D(s) is of the formSince �2, L, and consequently �1 are usually very small, and

therefore we hardly ever need more than the first term in the D(s) = d0 + d1s + d2s2 + d3s3 + · · · + dnsn (25)
expansion of either �1 or f (�), these expressions can be re-
arranged easily in several ways to be able to compute any of then we can generate the polynomial
the four quantities ap, as, �p/�s � k and n, if the other three
are specified. G(s) = D(s)D(−s) = g0 + g1s2 + g2s4 + · · · + gns2n (26)

Functions for other filter types may be easily generated by
the familiar frequency transformation method. Note, how- where the coefficients can be computed using
ever, that in the bandpass case, this approximation usually
does not yield optimal performance. For that, the iterative
method described later is preferable. gj =

2 j∑
k=0

(−1)kdkd2 j−k (27)

The Approximation of Delay
Next we compute the square root of this function:

Bessel Filters (Maximally Flat Delay). The nth degree Bessel
polynomial is defined by the recursion formula M(s) = (G(s))1/2 = m0 + m1s2 + m2s4 + · · · + mis

2i + · · · (28)

where the mi coefficients can be computed recursively asBn(s) = (2n − 1)Bn−1(s) + s2Bn−2(s)

= b0 + b1s + b2s2 + · · · + bnsn
(24)

with starting points B0(s) � 1 and B1(s) � 1 � s.
m0 = (g0)1/2 and mi = 1

2

�
gi −

i−1∑
k=1

mkmi−k

�
(29)

The transfer function H(s) � b0/Bn(s) can be shown to pro-
vide a delay function that is maximally flat at zero frequency Truncating this infinite series to a polynomial of degree less

than that of D(s) will yield the required numerator N(s). Fig.(i.e., the first n derivatives of the delay with respect to the
frequency are all zero; see Ref. 9). The value of the delay at 8 shows both the delay and the loss characteristics of a sev-
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Figure 6. Bessel (linear phase) transfer function.

enth-order Bessel (maximally flat delay) transfer function. ceding equation, compared to the ninth-degree case obtained
by the method described previously, both having an eighth-Curve a shows the loss when the numerator is a constant.

Curve b illustrates the case when we introduce a fourth-order order numerator. The Rhodes design has a somewhat steeper
stopband but cannot exchange passband flatness for stop-numerator to flatten the passband using the aforementioned

procedure. Finally, curve c is what we obtain by the use of band selectivity.
the Temes–Gyi procedure, when the stopband starts at the
normalized frequency of 0.5. Maximally Flat Delay for Digital and Microwave Filters. One

Rhodes (13) has provided another way of combining flat cannot use the Bessel polynomials for the design of digital or
delay and flat magnitude in a low-pass filter. His expression microwave filters because of the frequency transformation of
for the overall transfer function for odd degrees is as follows: Eq. (2), which will negate the flat delay. However, Thiran (14)

has developed a set of polynomials for generating the equiva-
lent behavior in digital filters (see also Ref. 15). He derived
the transfer function in terms of the variable z � ej� as

H(s) = Ev{Bn(−s)[2Bn+1(s) − Bn(s)]}
Bn(s)[2Bn+1(s) − Bn(s)]

(30)

where Bn(s) is the nth order Bessel polynomial and the overall
degree will be 2n � 1 and Ev�. . .� designates the even part
of the polynomial inside the curly brackets. For the derivation
and the even degree case, refer to the literature. As a compar-
ison, Fig. 9 shows a ninth-degree filter designed by the pre-

H(z) = H0∑n
k=0 bkz−k

where

bk = (−1)k n!
k!(n − k)!

n∏
i=0

2τ + i
2τ + k + i

(31)
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Figure 7. Bessel (linear phase) transfer function.
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Figure 8. Bessel transfer function with various nu-
merators.
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and where the delay at zero frequency is �0 � �t0, � being an mial in z, without affecting the maximally flat delay property
of the filter, except that this adds another t0n/2 flat delay,integer and t0 the sampling time. The disadvantage of this

procedure is that the delay can only be set to discrete values. where n is the degree of the selected numerator. We may se-
lect this polynomial to provide either an equal-minima typeThe value of H0 is selected to set the loss at zero frequency to

zero, yielding stopband using the Temes–Gyi procedure, or a flat passband
using the procedure outlined previously for the Bessel polyno-
mial case. The way to do this is to apply the inverse bilinear
z transform first:

H0 =
n∑

k=0

bk = (2n)!
n!

1∏2n
i=n+1(2τ + i)

(32)

An example of this transfer function is shown in Fig. 10,
which displays the loss and the delay of a ninth-order func-

z = 1 − st0/2
1 + st0/2

(33)

tion with a delay of five samples. Note that this filter will
have a finite loss at half the sampling frequency due to the where t0 is again the sampling time, and use the resulting

numerator as the starting polynomial D(s) in Eq. (25) or inconstant numerator. We can, of course, introduce an arbitrary
numerator as long as it is a symmetric or antimetric polyno- the Temes–Gyi procedure. Once we have the proper numera-

Figure 9. Low-pass with both flat loss and flat
delay.
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Figure 10. Maximally flat delay digital filter.

tor, we can return to the z domain using the standard bilinear also obtain flat delay for high-pass filters, which in the micro-
z transform. Fig. 11 shows the same ninth-order denominator, wave case are also bandpasses. The way to do this is to invert
combined with three different numerators. One (curve a) has the singularities of a low-pass filter by changing the signs of
a numerator with all zeros at z � �1 (the Nyquist rate), the the real parts of the poles and zeros in the z domain. For
next (curve b) with only five zeros there and four zeros com- instance, doing that to the basic filter displayed in Fig. 11, we
puted to make the passband flat, and finally the third (curve get the high-pass shown in Fig. 12.
c) with a numerator to provide an equal-minima type stop- Thiran has also formulated the problem for obtaining
band from 0.15 in normalized frequency. Note that the delay equal-ripple type delay in digital low-pass filters (16), but the
(also shown) is now 9.5 (�5 � 9/2) times the sampling time. equations presented have to be solved iteratively since no

This procedure applies equally well for the design of micro- closed-form solution is known.
wave filters with maximally flat delay, except that t0 here is Mainly as a curiosity, we must also mention that there is
one-quarter of the inverse of the quarter-wave frequency. a class of microwave filters with exactly linear phase. This is
Furthermore, this flat delay may be combined with an equal- true for a transfer function of the form (17):
minima type stopband or a flat passband, exactly the same
way as in the digital filter case; the only difference is that the
delay will now be independent of the numerator. As opposed
to analog filters, in the digital or microwave case, one may

H(s) = N(s)
(1 + s)d (34)

Figure 11. Maximally-flat delay digital filter with
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Figure 12. Maximally flat delay digital high-pass.
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where N(s) is an arbitrary even or odd polynomial of degree using the bilinear z-transform method, they will become finite
impulse response (FIR) filters, which helps to explain theirnot more than d and s is as in Eq. (2). The value of the delay

will be � � dt0/4, where t0 is the inverse of the quarter-wave constant delay property.
The Bessel polynomials as well as those developed byfrequency in Hz, as before. Again, N(s) may be selected to

provide either a flat passband or an equal-minima type stop- Thiran may also be used for the approximation of delay lines
with maximally flat delay. This may be simply obtained byband. If the circuit is selected to consist of d unit elements,

then N(s) � [�(1 � s2)]d, which will yield �H(�)� � 1 and the using a transfer function of the form
circuit will consist of d unit elements, all of the same charac-
teristic impedance, in cascade (which, of course, has constant
delay). Other numerators can be used to provide flatter pass-

H(s) = Bn(−s)
Bn(s)

or H(z) = z−nBn(z−1)

Bn(z)
(35)

band or equal-minima stopband. Also available are high-pass
(actually bandpass) filters of various kinds. Fig. 13 shows the where Bn(s) is the nth degree Bessel polynomial and Bn(z) the

equivalent Thiran polynomial. The resulting delay at zero fre-loss of four versions of a seventh-order filter with a flat delay
of 1.75 s. The discrimination properties of these filters leave quency will be twice that calculated previously, and the mag-

nitude of H(s) and H(z) will be unity, of course, at real fre-a lot to be desired. One interesting feature of this group of
transfer functions is that converting them into digital form, quencies.

Figure 13. Constant delay microwave filter trans-
fer functions.
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ITERATIVE SOLUTIONS the expression for z to obtain the �(s) characteristic function.
For a real z0, it has a multiple zero inside the passband, and

All of the results presented so far are closed-form solutions if all zj values are also real, it has poles in the stopbands. The
range � � z � 1 is off limits for the poles. We can select z0 in(i.e., solutions that can be computed exactly in a finite num-

ber of steps). In many situations, we do not have closed-form such a manner that the function values at the ends of the
passband (0 and �, respectively, in terms of z) are equal:solutions and must rely on iterative optimization procedures.

We will find many different procedures useful in different cir-
cumstances. No general-purpose procedure has been found yet
that can be applied to all problems with guaranteed success. z0 =




d
2∏

j=1

z j




2
d

(38)

Flat Passband Loss

Note that for low-pass or high-pass filters, z0 may be selectedThe most common requirement in the passband is a flat loss,
to be zero or infinity, respectively, but need not. A finite z0and this may be approximated either in the maximally flat or
will then provide a maximally flat point inside the passband;the equal-ripple sense. This can be combined with the follow-
and the loss will be nonzero at zero or infinite frequenciesing types of approximation in the stopband(s):
respectively, yielding nonequal terminations (‘‘matching fil-
ters’’). Returning to the general bandpass case, the passband1. Monotonically increasing loss as we move away from
will be maximally flat and the stopband will have transmis-the passband. This combined with maximally flat pass-
sion zeros at the values specified by zj:band is the familiar Butterworth characteristic. If we

combine it with equal-ripple type passband, we have
the equally familiar Chebyshev type of filter. ω2

j = (ω2
A − z2

jω
2
B)/(1 − z2

j ) (39)

2. Equal-minima type stopband(s). This again can be com-
Now it is very simple to modify the zj values and the multi-bined with the maximally flat passband, which yields
plier �0 to obtain the required stopband behavior.the inverse Chebyshev type filter; while combining it

This procedure yields an even degree N(s); for the odd de-with the equal-ripple type passband leads to the elliptic
gree case we need to modify the �(z) function slightly. We(or Cauer) filter type.
have to replace one of the factors in the denominator by

All of these filter types have been treated previously. p
(1 − z2)(z2 − β2) (40)

3. A more general stopband type is the piecewise-constant
and modify the value of z0 accordingly:loss specification. Again, this may be combined with ei-

ther of the aforementioned passband characteristics,
and a very rugged and fast converging approximation
procedure is available for handling both cases (18). z0 = β

1
d




d
2 −1∏
j=1

z j




2
d

(41)

To explain this procedure, we will use a change of variable
to place the passband in evidence: This will yield the same overall even degree d, but the numer-

ator polynomial N(s) will be odd and of degree d � 1. Oddz2 = (s2 + ω2
A)/(s2 + ω2

B) (36)
overall degree is also possible by the use of what is called
parametric design and will be considered under that headingwhere �A is the lower edge and �B is the upper edge of the
later.passband, assuming a bandpass filter for generality. (This

variable z should not be confused with the variable used in
Equal-Ripple Passband Lossthe digital filter design procedure. Unfortunately, the litera-

ture uses the same letter for both.) Low- and high-pass filters Let us now consider the equal-ripple type passband. We first
can be handled in an obvious manner; furthermore, in the recognize that the variable z is pure imaginary in the pass-
case of digital or microwave filters, �A and �B will be replaced band; hence the function
by �A � tan(��A/2�0) and �B � tan(��B/2�0), respectively.

From the preceding expression we can see that the vari- (z j + z)/(z j − z) (42)
able z is pure imaginary in the passband and will vary be-
tween 0 and �, while it will be real for both the lower and is of magnitude 1 (if zj is real) and its phase varies from 0 to
the upper stopbands. In particular, it will vary from �A/�B � � as � varies from �A to �B. Consequently, the function:
� to 0 in the lower stopband and from � to 1 in the upper
stopband.

Now we are ready to form a function, first for the maxi- e jϕ =
d∏

j=1

(z j + z)

(z j − z)
(43)

mally flat passband:

will also be of unity magnitude and 	 will vary from 0 to d�
in the passband. We can therefore form the functionκ(z) = κ0

(z2 + z2
0)d/2∏d/2

j=1(z2 − z2
j )

(37)

This is an even rational fractional function in z and hence it
is also an even rational one in terms of s when we substitute

cos ϕ = 1
2

(e jϕ + e− jϕ ) =
∏d

j=1(z j + z)2 + ∏d
j=1(z j − z)2∏d

j=1(z2
j − z2)

(44)
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This function is going to vary between �1 and �1 in the pass- very good approximation [this approximation is not neces-
sary; we can simply solve Eq. (53) for �]band, and it is an even rational function of z (the odd terms in

the numerator cancel) and therefore will be an even rational
function of s after substitution. The proper characteristic
function therefore is

a ∼= 8.686 ln(ε/2) + 8.686ψ

∼= 8.686 ln(ε/2) + 8.686
d∑

i=1

ln
�

coth
∣∣∣∣γi − γ

2

∣∣∣∣
� (54)

κ(z) = ε cos ϕ (45)

The loss is therefore given as the sum of a number of identicalwhere � is a constant, determining the passband loss ripple.
functions that are just shifted along the stopband (�) axis.Again, the degrees d and n are equal and even; for odd degree
The resulting characteristic function will be of an even degreen, we must modify ej	 by replacing one of the factors by
for general bandpass filters. Odd overall degree is also avail-
able by the use of parametric design techniques and will be
considered later under that heading.

�
(1 + z)(z + β)

(1 − z)(z − β)
(46)

The zi values represent the variable (free) transmission
zero locations, although any number of them may be fixed byIt is clear that 	 will still vary between 0 and d� in the pass-
the designer. Our job is to determine how many of these vari-band, and once we substitute z as per Eq. (36) above, the re-
able zeros we need and where to put them. We first plot thesulting �(�) will still have an even numerator of degree d and
stopband requirements as a function of the variable �. Thenow an odd denominator of degree n � d � 1. For a micro-
first objective is reached by replacing these frequency-depen-wave filter that contains u unit elements, we must further
dent stopband requirements by an averaged constant require-include the factor
ment, which can be satisfied by an elliptic type design. From
the closed-form solution of this problem we can get an esti-
mate of the required number of zeros, from which we subtract

�zu + z
zu − z

�u
2

(47)
the number of fixed zeros and then distribute the additional
ones as uniformly as possible over the stopband(s).where zu is given by

Next we locate the loss minima between any two consecu-
tive transmission zeros (including fixed zeros) and evaluate
the loss at all breakpoints (where the requirement changes)z2

u = 
2
A + 1


2
B + 1

(48)
and subtract the required loss values from all of these. This
yields a short list of frequencies and excess loss values. If

in order to have a factor (�1 � s2)u in N(s), which is necessary there is a minimum as well as a breakpoint(s) between two
for the implementation of unit elements. Note that the value zeros, we discard the pair with the larger excess loss value
of zu is between � and 1 [i.e., in the previously forbidden re- until we have only one pair between the zeros. Next we con-
gion and that for the purpose of the computation of the loss, sider the fixed poles. If there are minima on both sides of the
we can replace �1 � s2 by (1 � s)]. Since in the stopband(s) fixed pole, we discard the one with the higher excess loss.
the variable z is real, we introduce the new variable for the Note that those zeros we explicitly put to zero or infinite fre-
purpose of computing the loss: quencies (zi � � or 1, respectively) are fixed by definition, but

they are not counted here, since the region between them is
γ = ln z = ln[(ω2 − ω2

A)/(ω2 − ω2
B)] (49)

of no interest. This way, the number of items in this list of
excess loss minima is reduced to the number of movable zerosand since the loss is given by
(plus one in the bandpass case).

If the remaining excess loss values (all but one in the band-a = 10 log10(1 + κ2(ω)) = 4.343 ln(1 + κ2(ω)) (50)
pass case) are all equal and positive (an error of 0.5 dB is
usually acceptable), we are done and the approximation con-and
verged. Otherwise, we average the excess loss values and
compute the deviation from this average and denote it by

ak. The actual iteration is performed by first computing the
derivative of the loss at each of these frequencies (�ak/��i),

eψ =
d∏

i=1

coth
γi − γ

2
(51)

with respect to the parameters of the variable zeros zi. Fi-
where � � j	, therefore we obtain nally, we solve the approximate equations for the necessary

changes 
�i in these parameters as follows:

κ(ω) = ε cosh ψ = ε

2

�
d∏

i=1

coth
γi − γ

2
+

d∏
i=1

tanh
γi − γ

2

�
(52) ∑

i

∂ak

∂γi

γi = −
ak k = 1, 2, . . . (55)

and since we can usually neglect the 1 next to the characteris-
Such a routine has been described by Smith and Temes intic function, we can have
their classic paper (18) and in a slightly modified form to han-
dle piecewise linear requirements by Bell (19). Note that thea ∼= 8.686 ln ε + 8.686 ln cosh ψ (53)
simplicity of the expression makes it easy to compute the de-
rivatives that are necessary for the optimization. This proce-Next we realize that in the stopband � is usually large, and

we can approximate cosh(�) by e���/2, and consequently to a dure has been found to be fast and accurate, hardly ever need-
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ing more than 10 iterations to converge, and, of course, has which gives us the two (in fact, a double) real roots in the s
domain. The resulting characteristic function yields a filterbeen further generalized to handle multiple zeros, the digital,

microwave (perhaps containing unit elements), and paramet- that is called even parametric. To find out how much this ap-
proximation is going to affect the equal-ripple property of theric filter cases and their combinations as well. Another exten-

sion, described in the literature (20), permits the program to transfer function, let us express the relative error in the pass-
band, where z is pure imaginary (z � jy):exchange excess loss for wider passband automatically.

Returning to the maximally flat passband case [Eq. (37)],
that expression is simple enough to be handled directly, al-
though for uniformity, the new variable � � ln z is usually
introduced there also. For the details, we refer to the book by
Daniels (21).

Parametric Bandpass Filters. As mentioned previously, band-
pass filters designed by the methods outlined always turn out

error =
(α2 + y2)

�
a2

1a2
2

α2
+ y2

�

(a2
1 + y2)(a2

2 + y2)
− 1

=

�
α2 + a2

1a2
2

α2
− a2

1 − a2
2

�
y2

(a2
1 + y2)(a2

2 + y2)

(59)

to be of even degree. In some instances it would be desirable
This function has a maximum at y2 � a1a2 and thereforeto have an odd degree filter, which means a characteristic

function with an odd degree numerator (i.e., a root on the real
s axis). Also, for generating an LC structure with the absolute
minimum number of inductors, we often need a characteristic

max error =
[

α2 + a1a2

α(a1 + a2)

]2

− 1 (60)

function numerator with two real axis zeros. The explanation
Let us consider a very wide passband (� � 0.25) filter withof this fact will have to wait until the article on the LC imple-

	 � 0.5 and three transmission zeros at both zero and infinitementation of bandpass filters.
frequencies and no finite zeros. For this simple filter we calcu-In any case, in the equal-ripple type passband approxima-
latetion procedure, both of these objectives can be achieved (22)

by the introduction of another factor a1 = 0.4754975 and a2 = 0.5225556

which gives

r
α − z
α + z

or
α − z
α + z

(56)

max error = 0.002084in Eq. (43), where 	 is again in the forbidden zone:

Assuming a passband ripple of 0.5 dB, this introduces an er-β < α < 1
ror that is less than 0.001 dB. This filter can be implemented
using only two inductors and four capacitors, instead of theSince its exact value is of minor importance, we usually select
three inductors and three capacitors needed for the nonpara-	 � �1/2. Let us consider now the effect of this additional fac-
metric case. For more complex filters and narrower pass-tor. First note that these factors have the difference terms in
bands, the error will further decrease rapidly, because thetheir numerator, not in the denominator, as all the others.
values of a1, a2 and 	 get closer and closer.Let us consider the second case first, where we must also have

To get the odd parametric case, we introduce the square-an odd multiplicity of transmission zeros at both zero and in-
root factor specified previously and note that one of the multi-finite frequencies [i.e., we have the factor of Eq. (46) in the
plicities of the transmission zeros at zero and infinity mustdefinition of the characteristic function]. This characteristic
be odd, the other even. Again expanding the characteristicfunction will now have a factor (	2 � z2) in the denominator,
function, we see that the denominator will contain the factorwhile the numerator can be written in the form
�	2 � z2, while the numerator can be written in the form

(α − z)2(1 + z)(β + z)
∏

j

(z j + z)2

+ (α + z)2(1 − z)(β − z)
∏

j

(z j − z)2
(57) (α − z)(β + z)nz (1 + z)ni

∏
j

(z j + z)2

+ (α + z)(β − z)nz (1 − z)ni
∏

j

(z j − z)2
(61)

We can see that the second term will be negative between
� � z � 1, while the first term is nonnegative there but has where one of ni and nz is odd, the other even. If nz is odd, then
a double zero at z � 	 inside this range. Consequently, the the second term will be negative in the range � � z � 1 and
function is negative at z � 	 but positive at z � � and z � 1; zero at the boundaries, while the first term changes sign at
that is, it must have two zeros, a1 and a2 such that z � 	. Consequently, the sum is positive at z � � and negative

at z � 1; hence it must have a zero in between, say at a.
β < a1 < α < a2 < 1

Furthermore, since the numerator will be an even function of
z, it must therefore have a factor (a2 � z2). A similar resultFurthermore, since the complete numerator will be an even
can be observed if ni is odd. Now if we combine this numeratorfunction of z, it must, in fact, contain the factors: (a2

1 � z2)(a2
2

factor with the irrational parts of the denominator, we get, if� z2). At this stage, we can simplify the factors in the transfer
nz is odd, the factorfunction by writing

(a2
1 − z2)(a2

2 − z2)

α2 − z2
∼=
�

a2
1a2

2

α2
− z2

�
(58)

(a2 − z2)√
(α2 − z2)(β2 − z2)

(62)
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and, if ni is odd, the factor preferably in factored form. This will provide us with substan-
tially better control over numerical accuracy and a direct con-
trol over the question of stability. Here we are basically re-
duced to the two possibilities of the least pth, or the minimax

(a2 − z2)√
(α2 − z2)(1 − z2)

(63)

optimization procedures of classical optimization theory.
There are some other methods (the Pade method comes toSubstituting Eq. (36), we get, in terms of the variable s, after
mind as an example), but none of them has been found to besome rearrangement and saving for a multiplier,
of general use.

The basic options we have here depend on our choice of
error function. The most often cited such error function we

A − s2

s
√

B2 − s2
must minimize is of the form

in the first case and

A′ − s2

√
B′2 − s2

E = (1 − λ)
∑
ωi

w(ωi)(Hr(ωi) − H(ωi))
p

+ λ
∑
ωi

v(ωi)(τr(ωi) − τ (ωi))
p

(66)

in the second case, where A and B are both positive and very
where Hr(�) is the required transfer function magnitude andclose and so are A� and B�. Now we can again simplify:
H(�) is the actual magnitude, �r(�) is the required delay (to
make the approximation more general), �(�) is the actual de-
lay, w(�) and v(�) are the (user-specified) loss and delay

A − s2

√
B2 − s2

∼= A
B

− s (64)
weights, respectively, and � is a parameter allocating the er-
ror of the loss and the delay. The (even) parameter p is also a

similarly for the other case, yielding the real root we need in user-selected parameter, controlling the approximation. Some
the characteristic function. Again the approximation is very people prefer to work with loss, rather than transfer function
accurate and gets better with increasing degree. magnitude, but then the stopband causes problems since if

For the maximally flat case, the situation is much simpler; the actual loss is much higher than the required one, that
we may just modify the function to read adds to the error, while in fact it is quite acceptable. Conse-

quently, if the loss is greater than the required value, we usu-
ally set the corresponding w(�) weight to be zero. The prob-
lem with this choice is that it makes the error a nonanalytic

κ(z) = κ0
(z2 + z2

0)d/2−1(z2 − a2)∏d/2
j=1(z2 − z2

j )
(65)

function, causing problems with the iteration methods one
uses.and get an even parametric case, where a is again in the for-

The other, minimax, method can only handle one quantitybidden region, and just introduce a linear factor in terms of s
at a time (i.e., either the loss or the delay). Here we mustfor the odd parametric case.
minimize the functionThe algorithm to locate the movable transmission zeros

can readily be modified to handle these parametric cases as
max w(ωi)|Hr(ωi) − H(ωi )| (67)well.

Finally, for completeness we may mention that an even
or a similar one for the delay, over the whole frequency range.parametric approximation is possible if the multiplicities of
See Appendix B for a brief description of several of the morethe zeros at zero and infinite frequencies are both even, but
useful optimization strategies in use today for this problem.the resulting transfer function turns out to be useless.

Constant Delay Approximation
Low-Q Approximations. All the standard approximating

Consider first the problem of constant delay. The maximallyfunctions (Butterworth, Chebyshev, or elliptic) have some of
flat approximation has a closed-form solution, which was de-their poles (those closest to the passband edges) too close to
scribed previously. Equal-ripple approximation of a constantthe imaginary ( j�) axis, which may cause difficulties in ac-
delay is possible, using the following approximation tech-tive RC implementations. This can be alleviated by replacing
nique.the two or three poles closest to the imaginary axis by a mul-

There is a closed-form solution to the problem of interpo-tiple pole with multiplicity two or three, which will not be
lating a linear phase function at equidistant points (13). As-quite so close to the axis. To maintain the nature of the ap-
suming that the points are multiples of the step � and theproximation, the other parameters must, naturally, be read-
phase is required to be proportional to �, the interpolatingjusted also. This needs an iterative approach, which is of no
polynomials can be obtained by the recursion formula:particular interest to us here except to mention that the re-

sulting functions have been extensively tabulated in Refs.
23–25. Pn+1(s, ε) = Pn(s, ε) +

� tan ε

ε

�
(s2 + (εn)2)

(2n + 1)(2n − 1)
Pn−1(s, ε)

(68)Arbitrary Loss Shape

When we come to the question of completely arbitrary loss with initial conditions P0(s, �) � 1 and P1(s, �) � 1 � (tan
�/�)s. The value of � is restricted to � � �/2 by stability consid-shapes, we have fewer tools to simplify the problem. We must

go back to the original equation [Eq. (1)] and deal with that, erations. If one plots this type of approximation, it is clear



FILTER APPROXIMATION METHODS 463

that while the delay will not be equal ripple, it will definitely will have the same delay as the low-pass and, in addition, will
be close to having an arithmetically symmetrical frequencyhave the correct number of extrema, and these are going to

be close to the interpolation points. Consequently, it is a rela- response (17). A direct iterative approximation method has
been described for equal-ripple delay bandpass design by Ul-tively easy matter of locating these extrema and then using

an iterative procedure to make them all equal. Such a proce- brich and Piloty (see Ref. 26, which also contains tabulated
results for low-pass and bandpass filters).dure has been implemented and takes very few (three to five)

iterations to converge. The resulting polynomial will be the
denominator D(s) of the transfer function, and we can still Delay Lines. As explained previously in the discussion of
select the numerator to shape the loss in the pass- or stop- Bessel polynomials, these results may also be used to obtain
band. In particular, both the equal minima solution of Temes- a delay line (i.e., a transfer function with �H� � 1) by simply
Gyi as well as the flat passband solution, outlined for the using a numerator polynomial N(s) � D(�s) yielding twice
maximally flat case, are available. Fig. 14 shows a seventh- the delay.
degree equal-ripple delay function over the frequency range
from 0 to 7.5, normalized to unity average passband delay.

Delay Equalization. Transfer functions of the form of Eq. (1)This can be combined with a constant numerator, or a fourth-
will have a phase characteristics that will usually be far fromdegree numerator yielding flat passband loss, obtained by the
linear. This can be seen from the fact that minimum phaseprocedure outlined previously. Finally, the third possibility is
transfer functions (those that have no zeros in the right halfa sixth-degree numerator yielding an equal-minima type stop-
of the s plane) have a unique relationship between loss andband from normalized frequency 6.5 calculated using the
phase (27). This can be expressed in the formTemes–Gyi procedure and providing a minimum loss of about

48.9 dB, all shown in Fig. 15.
The polynomials of Eq. (68) can, of course, be used directly,

since the delay deviation from a constant, while not exactly
θ(ω) = 2ω

π

∫ ∞

0

a(x)

x2 − ω2 dx (69)

equal ripple, will be found satisfactory in most cases. Every-
thing that we have said about equal-ripple delay functions where �(�) is the phase and a(�) is the loss in nepers (named
will work equally well with these polynomials. Additional after Napier, the discoverer of the natural logarithm). That
methods of simultaneous approximation of linear (or arbi- is, a(�) � �ln�H( j�)� and we take the principal value of the
trary) phase and flat magnitude may be found in Ref. 13. integral at the pole x � ��. For instance, if a(�) � 0 for � �

Naturally, this procedure works for low-pass filters, but for �0 and a(�) � A elsewhere (an ideal low-pass filter that can-
bandpasses, there is no closed-form interpolating polynomial not be realized but may be approximated as closely as re-
available, and due to the arbitrary intercept point of the lin- quired), the corresponding minimum phase will be
ear phase line, we have another variable to be concerned
about. An approximate procedure for bandwidths of about
25% or less is to shift the low-pass poles and zeros by the θ(ω) = A

π
ln

ω + ω0

|ω − ω0|
(70)

amount ��0 parallel to the j� axis, where �0 is the center of
the new bandpass filter. Clearly, all finite singularities of the and, consequently, the delay is
lowpass must be smaller than 2�0. The number of zeros of the
lowpass at infinity will be doubled and (if there is more than
one) are split up such that the bandpass has about three
times as many zeros at infinity as at zero. The resulting filter

τ (ω) = 2Aω0

π

1
(ω − ω0)2

(71)

Figure 14. Equal-ripple approximation of con-
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Figure 15. Equal-ripple delay transfer function
with various numerators.
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which is far from constant. Consequently, once the required in Fig. 16 to show their general behavior. The problem is to
select the number of sections k to be used and the parametersloss characteristics have been achieved, the minimum delay

is determined and our only choice left is to add additional Qk and �k such that the delay of the equalizers added to the
delay to be equalized is flat. A simple example shows thecircuitry to approximate the required delay (if, in fact, the

delay must also meet certain criteria). When the need arises equalization of the delay of the seventh-order elliptic low-
pass, with magnitude shown in Fig. 5. We have selected threefor the equalization of a computed or measured delay curve,

we basically use the second half of Eq. (66) to define our error second-order sections to equalize the delay over 90% of the
passband, and the results are shown in Fig. 17. The curvesfunction:
shown are the original delay [fairly close to the one we would
get from Eq. (71)], the delay of each of the three equalizer
sections, and finally their sum as the equalized delay. The

E =
∑
ωi

v(ωi)(τr(ωi) − τ (ωi ))
p (72)

approximation was performed in the least squares sense, us-
ing Eq. (72) with p � 2 and unity weighting.where �r is the required delay and the summation goes over

For digital filters, the exact form of the equations is some-the frequency range of interest. We can usually select these
what different, since the general allpass function is of theat our convenience, but if we are dealing with measured de-
formlay, the measurements usually also specify the frequencies.

The exponent p is going to control the nature of the approxi-
mation, and the weight function v(�) is also ours to choose.
This is a relatively simple procedure due to the relatively sim-

H(z) =
〈

β0 + z−1

1 + β0z−1

〉 ∏
k

β2k + β1kz−1 + z−2

1 + β1kz−1 + β2kz−2
(75)

ple dependence of the delay curves on the quadratic coeffi-
cients, and the solution is routine (see, e.g., Ref. 5). Namely, If we designate the poles of a quadratic factor as p1,2 � re�j	

the transfer function of a delay equalizer (allpass network) is and the zeros as z1,2 � r�1e�j	, where 0 � r � 1, then the delay
most often written in the form can be written as

τ = r2 − 1
1 + 2r cos(ω − ϕ) + r2 + r2 − 1

1 + 2r cos(ω + ϕ) + r2 (76)H(s) =
∏

k

1 − aks + bks2

1 + aks + bks2
(73)

for each of the second-order factors. For the linear factor, wewhere all coefficients are positive and sometimes (in the case
just have one of the terms with 	 � 0. While the specific equa-of a lowpass function) we may have a linear factor (1 �
tion is different from that of the analog system, the shapes ofa0s)/(1 � a0s) as well. The magnitude of H is unity for all
these delay curves, shown in Fig. 18 for 	 � 90� and variousfrequencies, while the delay can be written as
values of r, are quite similar, and so is the iterative pro-
cedure.

The minimax approximation to an arbitrary delay shape is
also possible, since it is easy to generate a starting approxi-

τ (ω) =
〈

2
1 + (ω/ω0)2

〉
+

∑
k

2Qk[1 + (ω/ωk)2]
[1 − (ω/ωk)2]2 + Q2

k(ω/ωk)2
(74)

mation that has the requisite number of extrema by selecting
high enough values for the starting Qk’s. One approach haswhere we have used the notation a0 � 1/�0, ak � Qk/�k, and

bk � 1/�2
k. We have plotted a few cases with various Qk values been described by Deczky in Ref. 28.
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Figure 16. Delay of second-order delay sections.

APPROXIMATION OF FIR DIGITAL FILTERS Depending on the parity of N we have the following precise
forms. For even N and symmetrical coefficients,

Formulation

FIR digital filters have to be treated differently than IIR fil-
ters. IIR filters have a rational transfer function and, as such,

H(ω) = e− jωNT/2

[
aN/2 +

N/2∑
k=1

2ak−1 cos ωT(k − N/2)

]
(78a)

can be obtained from analog filter functions, as we have done
previously. FIR filters, on the other hand, are represented by and for antimetrical coefficients
a polynomial in z � ej�T and have no analog equivalent (except
the special case mentioned previously). The significant advan-
tage of FIR filters over their IIR counterparts is that FIR fil- H(ω) = e− j(ωNT/2−π/2)

N/2∑
k=1

2ak−1 sin ωT(k − N/2) (78b)
ters may have exactly linear phase. This is easily observable
if the coefficients of the polynomial have even or odd symme-

while if N is odd, we havetry:

H(ω) = e− jωNT/2
(N−1)/2∑

k=0

2ak cos ωT(k − N/2) (78c)H(z) =
N∑

k=0

akz−k with aN−k = ak or aN−k = −ak (77)

Figure 17. Delay equalization of low-pass using a
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Figure 18. Delay of digital second-order delay sec-
tions.
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for symmetrical coefficients and method is not a true approximation technique; it is more a
trial-and-error procedure and will be treated only briefly here.

Windowed Design. The ideal low-pass filter transfer func-
H(ω) = e− j(ωNT/2−π/2)

(N−1)/2∑
k=0

2ak sin ωT(k − N/2) (78d)

tion is of the form
for antimetrical ones. Here T is the inverse of the sampling
frequency, which we can simply set to unity as normalization.
All of these have exactly linear phase and a delay of NT/2.

H(s) = 1 for 0 ≤ ω ≤ ωc

= 0 for ωc < ω ≤ π
(82)

Ignoring the phase terms for the time being, we see that all
of these expressions are trigonometric series, and the last two

and has a corresponding impulse responseof these contain terms of the form sin(n � ��)� or cos(n � ��)�.
Using the following trigonometric identities recursively,

hd(n) = ωc

π

�sinωcn
ωcn

�
with hd(0) = ωc

π
(83)

which is, of course, of infinite length. We can, however, trun-

sin(nω) = sin(ω) cos((n − 1)ω) + cos(ω) sin((n − 1)ω)

cos(nω + ω/2) = 2 cos(ω/2) cos(nω) − cos(nω − ω/2)

sin(nω + ω/2) = 2 sin(ω/2) cos(nω) + sin(nω − ω/2)

(79)

cate it to a symmetrical set of finite length:
in the last three of the preceding equations, we see that all
four expressions can be represented in the general form
(where we have ignored the phase factor):

h(n) = hd(n) for |n| ≤ (N − 1)/2

= 0 elsewhere
(84)

H(ω) = Q(ω)P(ω) (80)
which may be the coefficients of a (linear phase) FIR filter.
One can, of course, determine the corresponding frequency re-where
sponse, but that is not our direct concern here. Suffice it to
say that the resulting filter will have very limited stopband
suppression, and increasing N will not help here due to theP(ω) =

M∑
k=0

αk cos(kω) =
M∑

k=0

βk cosk ω (81)

Gibbs phenomenon familiar from Fourier series theory. Many
people have come up with ideas for shaping these coefficientsand where Q(�) is one of the four functions:
in one way or another to alleviate this problem. This simply
means using the modified coefficients

h̃(n) = h(n)w(n) (85)

Case 1: 1 M = N/2
Case 2: sin(ω) M = N/2 − 1
Case 3: cos(ω/2) M = (N − 1)/2
Case 4: sin(ω/2) M = (N − 3)/2

where w(n) is a ‘‘window’’ function and h(n) are the coeffi-
Approximation cients specified previously. We have seen more than 30 differ-

ent window functions proposed (29) and will mention hereThere are basically two methods of FIR filter design in use at
only a few. All equations are valid for odd N values; for eventhe present time. One is the windowed design, and the other

is the equal-ripple approximation method. The windowed N they must be modified slightly.
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The window function that does nothing [i.e., w(n) � 1] is where � is an adjustable parameter. The w(n) coefficients are
called the rectangular window. The triangular (or Bartlett) unscaled; they should be scaled by dividing them by w(0). The
window is defined as empirical relationship between the parameter � and the stop-

band loss as is given by
w(n) = 1 − |2n|

N + 1
(86)

The Hamming window is

β = 0.0000769(as)
2 + 0.0248as + 0.330 for as ≤ 60 dB

= 0.0000104(as)
2 + 0.0328as + 0.079 for as > 60 dB

(95)

The Taylor window is a simplified version of this that at-w(n) = 0.54 + 0.46 cos
2πn

N − 1
(87)

tempts to hold a subset of the sidelobes constant and permits
the rest to decrease at 6 dB per octave. For the exact formula-The Blackmann window is
tion of these and many other windows, please see the refer-
ences.

For other than low-pass filters, one must appropriately
w(n) = 0.42 + 0.5 cos

2πn
N − 1

+ 0.08 cos
4πn

N − 1
(88)

modify the h(n) function before applying the windowing. For
Finally, the Hann (raised cosine) window is instance, for a bandpass filter with passband from �A to �B,

the ideal impulse response is
w(n) = cos2 πn

N + 1
(89)

The last three are all examples of a large family of windows,
hd(n) = 1

πn
[sin(ωBn) − sin(ωAn)] with hd(0) = ωB − ωA

π
(96)all in the form of a cosine series. Many more are described in

Ref. 29.
Figures 19(a) through 19(h) illustrate some of these windows.The Kaiser window is defined as
All the filters are 51 taps long low-pass filters with passband
up to 0.4 times the Nyquist rate and, when possible, re-
questing 50 dB stopband rejection. For the Gaussian window,
we selected a � 3. We may conclude from these figures andw(n) =

I0

[
β

�
1 −

� 2n
N − 1

�2
]

I0(β)
(90)

other studies that precise control of pass- and stopband prop-
erties is not possible with this method. Its major advantageThe value of � is related to the desired minimum stopband
is that any filter length may be easily obtained without com-loss through the following empirical relationship. If the re-
putational problems.quired stopband loss in dB is as, then

Remez Algorithm (Equal-Ripple Design). Returning to Eqs.
(80) and (81) for the equal-ripple design, we have the un-
known 	k coefficients of the trigonometric polynomial P(�) to
determine, and the best procedure for this purpose is the Re-

β =
0.0 for as < 21 dB
0.5824(as − 21)0.4 + 0.07886(as − 21)

for 21 dB < as < 50 dB
0.1102(as − 8.7) for as > 50 dB

(91)

mez exchange algorithm. The formulation of the problem is
where I0(x) is the modified zeroth-order Bessel function and � based on the error function
is a selectable parameter.

The Gaussian window is E(ω) = W (ω)[Hr(ω) − H(ω)] = W (ω)[Hr(ω) − Q(ω)P(ω)]

= W (ω)Q(ω)[Hr(ω)/Q(ω) − P(ω)]
(97)

w(n) = exp[−2(an/(N − 1))2] (92)

where a is a selectable parameter. where W is the usual weight function and P is the only un-
For the Chebyshev (also called Dolph–Chebyshev) and known. Naturally, we must also select the case and therewith

Taylor windows, w(n) will also be a cosine series, where the the Q function, especially since some filter types can only be
coefficients are calculated by evaluating the Chebyshev poly- implemented with some of the cases. For instance, lowpass
nomial at N equidistant points along the unit circle and sub- filters may not be implemented in a case where Q is a sine
sequently calculating its inverse discrete Fourier transform. function. Using the Remez algorithm, also described in Ap-
This attempts to make all sidelobes to be about equal and of pendix B, the first step is to select a set of frequencies �i, one
specified height. The equation that defines the weights is as more than the number of free parameters in P(�), and set the
follows: value of E(�k) � �� in an alternating manner. Solving for the

trigonometric polynomial P, we obtain the expressionM∑
n=−M

w(n)e− jω = TM[γ cos ω + (γ − 1)] (93)

P(ωi) = Hr(ωi)

Q(ωi)
± δ

W (ωi )Q(ωi)
= Ai ± δBi = Ci (98)

where M � (N � 1)/2, Tk(x) is the Chebyshev polynomial of
order k, and

at the selected frequencies, where the Ai and Bi values are
known. Including the unknown deviation �, we have the right
number of equations for the right number of unknowns. In

γ =
�

1 + cos
2π

2M + 1

�/�
1 + cos

2βπ

2M + 1

�
(94)
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Figure 19(a). Characteristics of a rectangular
window.
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particular, these equations can be written in matrix form, us- A similar matrix equation may be written for the 	k coeffi-
ing Eq. (81): cients, if we replace the powers of cosine by the multiple angle

forms of the cosine function. This linear set of M � 2 equa-
tions in M � 2 unknowns is not solved directly, because that
would be time consuming. Instead, we first calculate �, for
which we can find a closed-form expression:

δ =
∑M+2

k=0 qkAk∑M+2
k=0 (−1)kqkBk

where qk =
M+2∏

i=0, 
=k

1
cos ωk − cos ωi

(100)

Once this is computed, the remaining equations can be ob-
tained by deleting the last row and the last column from the
preceding matrix equation and replacing the right side by the
column containing Ci � Ai � �Bi. This forms an interpolation




1 cos ω1 cos2 ω1 cos3 ω1 . . .

1 cos ω2 cos2 ω2 cos3 ω2 . . .

.

.

1 cos ωM+1 cos2 ωM+1 cos3 ωM+1 . . .

1 cos ωM+2 cos2 ωM+2 cos3 ωM+2 . . .

cosM ω1 −B1

cosM ω2 B2

cosM ωM+1 (−1)M+1BM+1

cosM ωM+2 (−1)M+2BM+2







β0

β1

βM

δ







A1

A2

AM+1

AM+2




(99)

Figure 19(b). Properties of a Hann window.
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Figure 19(c). Behavior of a Blackman window.

problem, which can be solved again explicitly by Lagrange’s Naturally, the procedure needs additional safeguards, es-
pecially concerning the treatment of extra ripples that maymethod in an effective manner (30):
occur and, of course, the convergence criteria and numerical
problems, if any. Nevertheless, a program has been available
in the public domain for some time now (31) and producesP(ω) =

M+1∑
k=0

lk(ω)Ck

excellent results. In this method there is no need to distin-
guish between low-pass, high-pass, or bandpass filters. In-
deed, the procedure works for any number of pass- and stop-
bands. Also note that the requirements need not be flat; any

where lk(ω) =
∏M+1

i=0, 
=k(cos ω − cos ωi)∏M=1
i=0, 
=k(cos ωk − cos ωi)

(101)

specified shape can be accommodated.
Next we evaluate the function E(�) on a dense set of frequen- Fig. 20 shows a 51 tap long low-pass filter designed by this
cies to locate the true extrema ��i and replace the previous method and requesting a passband up to 0.4 and a stopband
frequencies by these new ��i values. Repeating the process from 0.475 to 1.0, the Nyquist rate. The filter has less than 1

dB passband loss ripple, and the minimum stopband loss isleads to the true minimax approximation in a very few steps.
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Figure 19(d). Loss of a Hamming window.
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Figure 19(e). Loss shape of a Gaussian window.
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about 51 dB. This design, of course, compares favorably with 	k or �k. The number of frequencies used in the summation
must be L � M � 1 (i.e., the number of available free param-any of the windowed designs demonstrated before.
eters).

To clarify the formulation of the problem, let us introduceLeast Squares Design. If we go back to Eq. (66), consider the
loss only (since the phase is linear), and use the special case the following vector-matrix notation. Let the vector � � (�0,

�1, . . . �M)T be the unknown coefficient vector, F the M � 1p � 2, we get
by L matrix:

E =
L∑

i=1

w(ωi)[Hr(ωi) − H(ωi )]
2

=
L∑

i=1

w(ωi)[Hr(ωi) − Q(ωi)P(ωi)]
2

(102)




1 cos ω1 cos2 ω1 . . . cosM ω1

1 cos ω2 cos2 ω2 . . . cosM ω2

.

1 cos ωL cos2 ωL . . . cosM ωL


 (103)

Hd is the requirement vector, Hd � (Hd(�1), Hd(�2), . . .where H(�) is now given by Eqs. (80) and (81), we can see
that E is a quadratic function of all the unknown coefficients Hd(�L))T, and finally Q and V are L by L diagonal matrices,

Figure 19(f). Behavior of a Kaiser window.
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Figure 19(g). Properties of a Chebyshev window.

where the diagonal values are Q(�i) and �W(�i), respectively. rally, the inverse matrix is not computed, but the equations
are solved by some other, numerically preferable, method.With this notation, we can formulate an error vector of length

L as follows: If, however, L � M � 1 or even L � M � 1, then e has
many more elements than � and consequently cannot be
made to disappear; we can only attempt to minimize its normeee = V (Hd − QFβ) (104)
(that is, eTe). This can be done by the use of the ‘‘pseudoin-

and the total error is now given as E � eTe. verse’’ of a rectangular matrix. We obtain this by premulti-
If L � M � 1, then all matrices are square and the vector plying the error equation by (QF)T, obtaining

e can be set to zero and the unknown vector computed as (the
weights are now immaterial) (QF )T (QF)βββ = (QF)TVHd − (QF )T e (106)

We can now set the last error term to zero and solve thisβββ = (QF )−1Hd (105)
equation, because the matrix on the left (QF)T(QF) is an M �
1 by M � 1 square matrix. We leave the details for the litera-This is indeed a slight generalization of the method of fre-

quency sampling and can be used for FIR filter design. Natu- ture (32,33). We must be careful about using this algorithm,
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Figure 19(h). Characteristics of a Taylor window.
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Figure 20. Equal-ripple (Remez) FIR filter char-
acteristics.
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since the procedure can get numerically ill conditioned. In- if we wish �H� to be unity at � � 0. High-pass filters with
similar behavior are easily obtainable through a change of thestead, we recommend the use of the methods in the LINPACK

program package (34) or the method of singular-value decom- expression for x, but bandpass filters are more difficult since
we must make both H(0) and H(�) disappear.position (33).

This method can also be applied to the case of nonlinear In any case, we have very little control over the band that
is not equal ripple. Fig. 21 shows a pair of filters with 21 taps;phases, and it is one of the methods most often used in that

case. one has an equal ripple passband from 0 to 0.5, the other an
equal ripple stopband from 0.5 to 1.0. The ripple values in
both cases are extremely small.Closed-Form Solutions. We may mention two special cases,

A much more useful closed-form approximation (36,37) ex-in which we can obtain closed-form expressions for the FIR
ists for maximally flat pass- and stopband lowpass filters. Us-filter. Both use the Chebyshev polynomials Tn(x) we have al-
ing the case 1 formulation (symmetrical coefficients and Nready used (35). Since Tn(x) varies between �1 if x is in the
even), we can find an H(�) such that it has 2L zeros at � � �range �1 � x � �1, we can simply replace x by an expression
and H(�) � 1 has 2K zeros at � � 0, where M � L � K � 1.in terms of cos(�). If we need a low-pass with an equal-ripple
Ignoring the phase factor, we can then write this transferpassband, we select
function in two equivalent forms:

x = (1 + cos ωp) − 2 cos ω

1 − cos ωp
(107)

and use the transfer function

H(ω) = 1 − δpTn(x) (108)

H(ω) =
[

1 + cos ω

2

]K L−1∑
n=0

dn

[
1 − cos ω

2

]n

≡ 1 −
[

1 − cos ω

2

]L K−1∑
n=0

dn

[
1 + cos ω

2

]n
(112)

The stopband will be monotonic, and to make the magnitude
which is satisfied if (37)of the transfer function at the Nyquist frequency zero we need

to select
dn = (K − 1 + n)!

(K − 1)!n!
or dn = (L − 1 + n)!

(L − 1)!n!
(113)

δp = 1/Tn[(3 − cos ωp)/(1 + cos ωp)] (109)

The other case is when we need an equal-ripple stopband; in The design has only the powers K and L as free parameters,
which case we use and the way to satisfy specific requirements is also outlined

in Ref. 37. The parameters usually specified are the H(�) �
0.5 point and the transition bandwidth, usually defined as the
distance between the 95% and the 5% transmission points.

x = 2 cos ω + 1 − cos ωs

1 + cos ωs
(110)

Figure 22 shows an example, with K � 11 and L � 8, yielding
and the transfer function will be given by a (normalized) transition bandwidth of 0.24 and a half-power

point at � � 0.448. High-pass filters can easily be obtained
by using 1 � H(�), but there is no way to design bandpass
filters with similar characteristics. As pointed out by Kaiser,

H(ω) = δsTn(x) where δs = 1/Tn[(3 − cos ωs)/(1 + cos ωs)]
(111)
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Figure 21. FIR filters with equal ripple pass- or
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high-order filters designed by this method will have a num- ter, the first step is to expand the function divided by s into
partial fraction form:ber of coefficients at the end with very small values. Con-

sequently, these filters are practical for medium complexity
(N � 50) only.

Attempts have been made for developing algorithms for

H(s)
s

=
d+1∑
j=1

Aj

s − pj
(114)

the design of FIR filters with flat passband and equal-ripple
where Aj is the residue at the pole pj. Incidentally, while westopband or vice versa. Today, few of these methods are in
may make allowances for multiple poles, we have never en-general use.
countered them in practical situations. The residues are, ofAdditional algorithms have been developed for cascading
course, functions of the poles and zeros:two or more functions to generate more selective filters and

their design, for which we refer the reader to the literature
(38). Aj = H0

∏n
i=1(pj − zi)∏d+1

k=1, �= j(pj − pk)
(115)

The step response can now be expressed asTIME-DOMAIN APPROXIMATION

Returning to Eq. (1) for the overall transfer function and as-
suming that we are interested in the step response of the fil-

a(t) =
d+1∑
j=1

Aje
p j t (116)

Figure 22. Maximally flat FIR filter character-
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Some of the poles will be complex, but they appear in complex APPENDIX A: TEMES-GYI PROCEDURE
conjugate pairs, and the corresponding residues will also be
complex conjugates, yielding a real time function. A number To generate a low-pass transfer function with an equal-min-

ima type stopband behavior with a given denominator D(s),of papers have been published about approximating either the
step or the impulse response to have specified magnitude of we shall start by writing the transfer function denominator

in factored form:ringing and simultaneously the filter to have equal minima
type stopband with specified loss (39–41). The approximation
was performed in the minimax sense, and extensive tabulated
results are available. D(s) =

d∏
k=1

(s − pk) (A.1)

FIR filter design is basically a time-domain approach and
therefore need not be discussed. However, if the impulse re- where the multiplier is immaterial and pk, if complex, appears
sponse of IIR filters is specified, Prony’s method may be used in complex conjugate pairs. Next we introduce a new variable
to obtain the corresponding transfer function. This method is z:
based on the relationship

z =
p

1 + (s/ωs)
2 (A.2)

which will be pure imaginary in the stopband from �s to in-
H(z) = N(z)

D(z)
= b0 + b1z−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N =
∞∑

n=0

h(n)z−n

(117) finity. If we compute the transformed values of the pk poles
as

where the h(n) values are given and the ai and bi coefficients
are to be determined. If we truncate the right side to K � zk =

p
1 + (pk/ωs)

2 (A.3)
M � N � 1 terms and cross multiply, we can compare coeffi-
cients of z�k and obtain the following set of linear equations

then we can observe that since the zk values, if complex, also[denoting h(n) by hn for simplicity]:
occur in complex conjugate pairs, hence for pure imaginary z
values the function

d∏
k=1

zk − z
zk + z

(A.4)

will have unit magnitude in the stopband and can therefore
be written as ej�, that is,




b0

b1

b2

.

.

bM

0
.

.

0




=




h0 0 0 . . . 0
h1 h0 0 . . . 0
h2 h1 h0 . . . 0
. .

. .

hM hM−1 hM−2 . . . hM−N

hM+1 hM hM−1 . . . hM−N+1

. .

. .

hM+N hM+N−1 hM+N−2 . . . hM







1
a1

a2

aN




(118)

cos ϕ/2 = 1
2

(e jϕ/2 + e− jϕ/2) = 1
2

{
d∏

k=1

�
zk − z
zk + z

+
d∏

k=1

�
zk + z
zk − z

}

=
Ev

{∏d
k=1(zk + z)

}
∏d

k=1

√
(z2

k − z2)
(A.5)

Ignoring the first M � 1 equations for the moment, the rest
can be rewritten as is going to vary between zero and one in the stopband. Ev

designates the even part of the polynomial. The square of this
quantity is therefore

cos2(ϕ/2) =
{
Ev

∏d
k=1(zk + z)

}2

∏d
k=1(z2

k − z2)
(A.6)

hMa1 + hM−1a2 + hM−2a3 + · · · + hM−N+1aN = −hM+1

hM+1a1 + hMa2 + hM−1a3 + · · · + hM−N+2aN = −hM+2

...

hM+N−1a1 + hM+N−2a2 + hM+N−3a3 + · · · + hMaN = −hM+N

(119)
where the denominator corresponds to the polynomial
D(s) D(�s), while the numerator is [N(s)]2, where N(s) is anThis set of N equations in the N unknown ai denominator
even polynomial. This is therefore the magnitude functioncoefficients can be solved if the (square) matrix on the left is
(save for a multiplier) we are looking for, and the requirednonsingular. Once this is done, we can go back to the first
transmission zeros are obtained by calculating the roots of theM � 1 equations and solve them for the numerator coeffi-
polynomialcients. If the matrix is singular, this indicates that the prob-

lem may be solved by a lower-degree H(z) function.
The problem with this method is that we have no control

over the values of h(n) beyond n � M � N � 1 and, more
Ev

d∏
k=1

(zk + z)

significantly, we have no idea if the resulting transfer func-
tion will turn out to be stable. The first of these can be some- and converting them back to s. The available minimum stop-

band loss can be computed simply by calculating the magni-what alleviated by adding additional equations to those in Eq.
(119) and solve this (overdetermined) set of equations using tude of N(s)/D(s) at �s, assuming that the magnitude at s � 0

is set to unity. Alternatively, we can evaluate the expressionleast squares techniques.
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above for cos2(�/2) at z � 1 (� � 0) and the minimum loss will reduce the size of the polyhedron by a factor of two, starting
from the best point. The test for convergence is usuallybe

amin = 10 log10(1/ cos2(ϕ/2)) at z = 1
[

1
n + 1

n+1∑
i=1

( f (xi) − fave)
2

]1/2

≤ eps (B.2)

This works fine if the degree d is odd. If it is even, the re-
sulting loss will be finite at infinity, since the degree of N(s) where f ave is the average of all the function values and eps is
will be the same as that of D(s). This is acceptable for active the specified tolerance. This simply means that the function
RC or digital implementations. For RLC realization, we could values are now so close as to make any distinction between
apply a simple shift to the zeros and poles, as we have done them meaningless.
in the preceding elliptic case above, but that would also shift This procedure is fast and cheap in terms of computational
�s and, more significantly, all the zeros of D(s) as well. The expenses. Since the polyhedron is changing its shape and size
solution is to apply a reverse shift to these zeros and to �s, during the iteration, it is able to follow the terrain fairly well
followed by the preceding computation, followed by the for- and has been found to be effective in starting the optimi-
ward shift to cancel the reverse one. If this shifts the last zero zation.
to infinity, we are done. If not, we modify the amount of re-
verse shift we used and repeat. This iterative procedure con- The Gradient Method. The gradient method needs the com-
verges very fast, hardly ever needing more than two or three putation of the first set of partial derivatives:
steps. A somewhat different procedure is described in Ref. 12.

∇ f (x) =
{

∂ f
∂x1

,
∂ f
∂x2

, . . .
∂ f
∂xn

}T

(B.3)
APPENDIX B: OPTIMIZATION STRATEGIES

either analytically or approximately (numerically). The super-The general optimization problem can be formulated as fol-
script T indicates transposition. Since the direction �f islows. The overall error function is a general, nonlinear func-
where the value of f would increase the fastest, we go in thetion of the transfer function poles, zeros, and possibly a multi-
opposite direction and search for the minimum alongplier:

xxx = xxx0 − λ∇ f (B.4)
E = f (x1, x2, x3, . . . xn) = f (xxx) (B.1)

where 	 is a scalar. There are again many ways to perform
The variables xi are usually combined into a single vector x. this one-dimensional search that can be done with or without
If we wish to reduce the problem to real variables, we may calculating further derivatives. Some of the simplest ones are
use the quadratic coefficients in a factored form, instead of the golden section and the Fibonacci searches. Here we com-
the roots of these quadratics. We start from a set of initial pute the function values for two values of 	 that are sure to
values x0 and wish to determine x such that E is minimized. bracket the minimum and subdivide this range by either the
The method to be used is dependent on the exact form of the golden section or the Fibonacci series ratio. Once the new
error function f (x). function value is computed, we can do further subdivisions

and arrive at the location of the minimum in optimal time.
The Least pth Approximation Another could be to calculate the function values for three

values of 	, fit a quadratic function to these points, and calcu-Consider first the least pth error definition of Eq. (66). The
late its minimum. Repeating this procedure can locate thecurrently favored methods can be classified according to
minimum reasonably accurately.whether they need derivatives or not.

Once the line search has located the minimum along the
variable 	, we recalculate the gradient and repeat the process.The Simplex Method. Nelder and Mead (42) introduced the
It can readily be shown that if we locate the minimum alongsimplex method, which needs only function evaluations. It
this direction exactly, the new direction will be orthogonal tostarts by evaluating the function at the starting set of param-
the previous one, which may not help if we need to go alongeter values x0 and n additional points, which we get by chang-
a narrow valley. Refinements can come in the form of averag-ing the xi parameters by a fixed amount, one at a time (the
ing the directions of several consecutive derivative calcula-corner points of a polyhedron). Out of these n � 1 points, we
tions and many others.select the one where f (x) is the largest and reflect this point

through the center of gravity of the remaining n points. At Newton-Raphson Method. Newton’s method goes one step
this juncture, we again have n � 1 points and function values further along in expanding the function f (x) around x0 into a
and we can repeat the procedure. Many refinements are pos- Taylor series:
sible, indeed, necessary. One is that if the function value at
the reflected point is better than at any other, we move fur-
ther in the same direction, by a factor usually selected to be

f (x) ∼= f (x0) + ∇ f T�x + 1
2

�xT H�x (B.5)

about two. This is called expansion, and if it works, we accept
where H is the matrix of second derivatives (also called Hes-the new point; if not, we back off. If, on the other hand, the
sian matrix):new point has a value f (x), which is better than the worst

point but worse than all others, we contract the step (i.e.,
move a shorter distance in the indicated direction). Finally, if
the new point yields an evaluation that is still the worst, we

Hij = ∂2 f
∂xi∂xj

(B.6)
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To find the point where f (x) is optimum (minimum), we must half of the s plane leaves the loss unchanged, and that is the
only restriction we need to satisfy. For delay requirements,find the value of 
x that will make all components of the vec-

tor �f disappear: however, the poles may sometimes wander over to the right-
half plane, which is not permitted. We must then increase the
additional flat delay required to force these poles back into∇ f (x) ∼= ∇ f (x0) + H(x0)�x = 0
the left half of the s plane. More complex constrained optimi-

or zation techniques exist, but if we restrict our techniques to
optimizing the transfer function itself, these are usually not
necessary.�x = (x − x0) = −H−1(x0)∇ f (x0) (B.7)

This method only works if H is positive definite, but when we Minimax Approximation
are close to the optimum, it converges fast. The main problem

All of the preceding methods are applicable if the error func-is the cost of evaluating (analytically or numerically) the Hes-
tion is of the form of Eq. (66). For the minimax formulationsian matrix and inverting it. This method is hardly ever used
of Eq. (67), we have basically two options. One is based on thein its original form; it is useful mainly to introduce the next
fact that if the value of the exponent p in Eq. (66) tends tomethod, the Davidon–Fletcher–Powell method.
very large values, the approximation in fact approaches the
minimax criteria. The other option is the application of theThe Davidon–Fletcher–Powell Method. This is one of a fam-
Remez algorithm.ily of methods called the variable metric algorithms (43). The

idea for this method comes from the realization that the gra-
dient method can be written in the form Remez Algorithm. The idea behind this algorithm is very

simple (44), and it is based on the alternation theorem: If
xxx = xxx0 − λ∇ f (xxx0) = xxx0 − λG∇ f (xxx0) (B.8) P(�) is a linear combination of M cosine functions,

where G is the unit matrix, while the Newton–Raphson
method has the same form, except that G is then proportional
to the inverse Hessian. Davidon had the idea that we can

P(ω) =
M∑

k=0

αk cos(kω) (B.10)

start the approximation with G being the unit matrix but
then, as the iterations continue, build it up to approximate then a necessary and sufficient condition that P(�) be the
the inverse Hessian numerically, without actually having to unique best weighted Chebyshev approximation to a continu-
calculate the Hessian and invert it. The reason for this being ous function Hr(�) is that the weighted error function
a whole family of methods is that there is no unique way of
doing this, but many different ways instead. At any particular E(ω) = W (ω)[P(ω) − Hr(ω)] (B.11)
iteration, we locate the minimum along the current direction
and determine the corresponding 	k�1 and from that xk�1 and

exhibit at least M � 1 extremal frequencies in the range of�f (xk�1), which give us
interest in �.

We select M � 2 frequency points �k that is one more thanpppk = xxxk+1 − xxxk and yyyk = ∇ f (xxxk+1) − ∇ f (xxxk)
the number of free parameters and use the (weighted) approx-
imating function to interpolate the required function Hr(�k)
��, where the sign alternates at consecutive frequencies.

Gk+1 = Gk − (Gkyk )(Gkyk)T

yT
k Gkyk

+ pk pT
k

yT
k pk

(B.9)

Since we have M � 2 frequencies, where M � 1 is the number
of free parameters and M � 2 parameters (� is also unknown),as one of the possible update expressions. (Note that if v and
this should be a well-defined problem. Next we find all thew are two vectors, then vTw is a scalar, but vwT is a matrix.)
extrema of this approximating function and replace the �kIt can be shown that if f (x) is a true quadratic function
values by the locations of these extrema. Repeating the pro-[i.e., the Taylor series expansion of Eq. (B.5) is exact], then
cess will lead to the required minimax result. The problem isthis Gk converges to the inverse Hessian in exactly n steps.
the interpolation step, especially if the approximating func-Also, if the original Hessian H is positive definite, the se-
tion is highly nonlinear, when solving the interpolation prob-quence of matrices Gk will also be positive definite.
lem is itself equivalent to an approximation procedure. In aNaturally, one equation an algorithm does not make; we
few special cases, we can obtain an appropriate interpolationneed convergence criteria, ways of handling special cases, nu-
relatively easily; one is the procedure of approximating a con-merical instability, and a host of other issues besides using
stant delay, and the other is the design of FIR digital filters.different expressions. For all of these as well as for finding

computer programs implementing the foregoing, we refer to
the extensive literature.

APENDIX C: SPECIAL FUNCTIONSThoroughly tested and highly efficient routines are avail-
able for these and other optimization techniques either com-

A number of classical polynomials have been tried to generatemercially or in the public domain. All methods considered
characteristic functions, including Jacobi, Laguerre, Leg-previously were of the unconstrained variety (that is, there
endre, and various Chebyshev polynomials [other than thewere no limits placed on the possible values of the variables).
Tn(x) we have used previously], but they have not been foundThis is no restriction if we consider losses only, since dealing

with poles and zeros, putting all the poles back into the left useful in practice. A few exceptions are as follows.
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Figure 23. Loss characteristics of Gaussian filters.

Gaussian Filter and

In certain situations, one would like to have a filter charac-
teristic that approximates the Gaussian shape: �H(�)�2 �
exp[�(�/�0)2]. One can again do this in various ways; the sim-

a0 = a2/5 = · · · = a(n−2)/2/(n − 1) = 2√
n(n + 2)

plest one approximating this shape in the maximally flat
For n even, on the other hand, we havesense is to use the characteristic function

κ(s)κ(−s) = exp(s/ω0)2 − 1 =
∞∑

n=1

�
s

ω0

�2n

n!
(C.1)

κ(ω)κ(−ω) =
∫ 2ω2−1

−1
(x + 1)[a0 + a1P1(x)

+ · · · + a(n−1)/2P(n−1)/2(x)]2 dx

(C.4)

Truncating this expansion to a finite number of terms will
where we have two subcases:yield a number of (equivalent) �(s) functions depending on

how we allocate the zeros to �(s) and �(�s). Equal ripple-type
approximation has also been tried, but the results are simply
tabulated natural modes for degrees from 3 to 10 and approxi-
mation errors of 0.05 dB up to either the 6 dB or 12 dB points.
Fig. 23 shows the loss characteristics of the first few maxi-
mally flat approximations and the seventh-order equal ripple
to 12 dB approximation. This last one has a much steeper rise
of the loss beyond the 12 dB point. Tabulated functions are
available (for instance, in Refs. 10 and 45).

Papoulis Filter

Case 1: [(n − 2)/2] is even:

a0 = a2/5 = · · · = a(n−2)/2/(n − 1) = 2√
n(n + 2)

a1 = a3 = · · · = a(n−4)/2 = 0

Case 2: [(n − 2)/2] is odd:

a1/3 = a3/7 = · · · = a(n−2)/2/(n − 1) = 2√
n(n + 2)

a0 = a2 = · · · = a(n−4)/2 = 0

(C.5)

Papoulis (46) has found the function that provides a loss that
Reference 45 contains tables of these polynomials. Fig. 24rises the fastest among all the monotonically increasing
shows the fifth-order Butterworth and Papoulis filter charac-transfer functions with a constant numerator function. One
teristics. For comparison, we also included the fifth-ordercan derive the denominator polynomial of such a function as
Chebyshev function with 1 dB ripple, but scaled to the samefollows (see Refs. 46 and 47). For n odd
3 dB point as the others. The Chebyshev is, of course, the
fastest rising but it is not monotonic.

Butterworth–Thomson Filter

κ(ω)κ(−ω) =
∫ 2ω2−1

−1
[a0 + a1P1(x)

+ · · · + a(n−1)/2P(n−1)/2(x)]2 dx

(C.2)

Filter designers have found that the Butterworth characteris-
where the Pk(x) are the Legendre polynomials defined by tics are desirable from the loss point of view but have undesir-

able delay performance. The Bessel functions, on the other
hand, have the opposite behavior. It follows naturally that
someone would try to combine the two, yielding the Butter-
worth–Thomson filter. (In this context, Thomson’s name is be-

P0(x) = 1; P1(x) = x; and

Pk+1(x) = 2k + 1
k + 1

xPk(x) − k
k + 1

Pk−1(x)
(C.3)



Figure 24. Comparison of polynomial low-pass
transfer functions.
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12. R. Unbehauen, Low-pass filters with predetermined phase or de-ing used instead of Bessel.) The idea is simply to take the
lay and Chebyshev stopband attenuation, IEEE Trans. Circuitnatural modes of the nth order Butterworth filter
Theory, CT-15: 337–341, 1968.

13. J. D. Rhodes, Theory of Electrical Filters, New York: Wiley, 1976.zB
k = exp( jϕB

k ) k = 1, 2, . . . n
14. J. P. Thiran, Recursive digital filters with maximally flat group

delay, IEEE Trans. Circuit Theory, CT-18: 659–664, 1971.and the zeros of the (same degree) Bessel polynomial [Eq.
(21)] 15. A. Fettweis, A simple design of maximally flat delay digital fil-

ters, IEEE Trans. Audio Electroacoust., AU-20: 112–114, 1972.
16. J. P. Thiran, Equal-ripple delay recursive digital filters, IEEEzT

k = rT
k exp( jϕT

k ) k = 1,2, . . . n
Trans. Circuit Theory, CT-18: 664–669, 1971.

The transitional Butterworth–Thomson filter will have natu- 17. G. Szentirmai, The design of arithmetically symmetrical band-
ral modes given by pass filters, IEEE Trans. Circuit Theory, CT-10: 367–375, 1963.

18. B. R. Smith and G. C. Temes, An iterative approximation proce-
zk = rk exp( jϕk) (C.6) dure for automatic filter synthesis, IEEE Trans. Circuit Theory,

CT-12: 107–112, 1965.
where 19. H. C. Bell, private communication.

20. H. C. Bell, Bandwidth adjustment in iterative approximation pro-rk = (rT
k )m and ϕk = ϕB

k − m(ϕB
k − ϕT

k ) (C.7)
cedures, IEEE Trans. Circuits Syst., CAS-25: 951–954, 1978.

21. R. W. Daniels, Approximation Methods for Electronic Filter De-Here m is a parameter between zero and one; m � 0 yields sign, New York: McGraw-Hill, 1974.
the pure Butterworth solution, while m � 1 is the Bessel filter

22. H. Watanabe, Approximation theory for filter networks, IRE(see Ref. 48). The roots of the Bessel polynomial rT
k are usually Trans. Circuit Theory, CT-9: 341–356, 1961.

scaled first by dividing them by the factor
23. A. Premoli, The MUCROMAF polynomials: An approach to the

maximally-flat approximation of RC-active filters with low sensi-
tivity, IEEE Trans. Circuit Theory, CT-20: 77–80, 1973.

2n
e

2
1

2n

24. A. Premoli, A new class of equal-ripple filtering functions with
low Q factors, IEEE Trans. Circuits Syst., CAS-21: 609–613,to bring their magnitude close to unity. This quantity is an
1974.approximation to the nth root of the constant term in the

25. M. Biey and A. Premoli, Tables for Active Filter Design, Norwood,polynomial and is based on Stirling’s approximation of n!, but
MA: Artech House, 1985.it is very good even for low degrees. Also, this renormalization

26. E. Ulbrich and R. Piloty, Über den Entwurf von Allpässen, Tief-will change the normalized delay at zero frequency from unity
pässen und Bandpässen mit einer in Tschebyscheffschen Sinneto this value. Figures 25 and 26 show the loss and delay of
approximiert konstanten Gruppenlaufzeit, AEU, 14: 451–467,the sixth-order Butterworth–Thomson filters with m values
1960.
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