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highly damped explicit integration scheme is implemented in
ACES (5).

A waveform method was first applied to VLSI circuit anal-
ysis problems in 1980. The starting point was the one-way
circuit analysis formulation by Ruehli, Sangiovanni-Vincen-
telli, and Rabbat in 1980 (6), which ignored the gate-to-drain
capacitive feedback in metal oxide semiconductor (MOS) tran-
sistors. Subsequently, the WR process for circuit simulation
was invented by Lelarasmee, Ruehli, and Sangiovanni-
Vincentelli to address this shortcoming (7). Different versions
of WR-based circuit solvers were first developed at the Uni-
versity of California at Berkeley (8) and at IBM Research
Laboratories (9) and later at several other locations. Numer-
ous improvements and new applications have been discovered
by the engineering and mathematical communities. On the
mathematical aspects, Miekkala and Nevanlinna and Odeh
(10) contributed much early on to the understanding of the
convergence issues of WR.

Researchers now apply the WR approach to a wide range
of problems from semiconductor device calculations (11), to
nonlinear parabolic problems (12), and to multibody problems
(13). In this article we will give only a limited set of references
that highlight key advances in WR for both scalar and multi-
processor machines. A complete set of references up to 1986
are given in Ref. 14. A large chapter in Burrage’s book (15)
is dedicated to the application of WR to mostly homogeneous
problems such as boundary value problems. It includes an ex-
tensive set of references on more recent WR work. The termi-
nology homogeneous and heterogeneous is actually due to
Gear. Homogeneous means problems that can be described by
a single set of equations in which the domains have relatively
uniform properties. The solution efficiency for homogeneous
problems is a very strong function of the basic WR algorithm,
which hereinafter will be referred to as the internal algorithm.

However, the focus of this article is on the heterogeneous
VLSI circuit analysis problem. Heterogeneous problems con-

CIRCUIT ANALYSIS COMPUTING sist of a multitude of different aspects such as linear and non-
linear parts. All these parts may have a mixture of differentBY WAVEFORM RELAXATION
models embedded such as the conventional macromodels rep-
resenting semiconductor devices. It is clear that a simple solu-Conventional exact circuit simulation algorithms, as they are

implemented in SPICE (1) and ASTAP (2) and in the follow- tion technique will be very inefficient for these problems. For
the WR approach to be efficient the internal algorithms muston programs, are limited by excessive compute time for the

time domain analysis. The difference between the number of be embedded in another layer, which we call the external algo-
rithms.transistors that can be simulated and the number of transis-

tors in a very-large-scale integrated (VLSI) circuit is an every- The external WR solution algorithm can be characterized
by the following steps:increasing quantity. For large circuits, the compute time in-

creases roughly as O(n1.3) to O(n1.8) depending on the circuit
under analysis, where n is the number of circuit nodes. This 1. Partitioning of a circuit into small subcircuits
has led to new approaches for the solution of these problems. 2. Ordering of subcircuits
The waveform-relaxation method (WR), which is such a tech-

3. Scheduling of subcircuits for analysis
nique, is an iterative approach for the exact solution of large

4. WR iteration until convergence of waveformsVLSI circuits in the time domain.
5. Storing of waveforms in databaseThe waveform relaxation technique, as it is presented in

this article, aims at the same accuracy level as the widely
used SPICE program (1). Often, however, in VLSI design, Before presenting the WR algorithms, it is appropriate to

give some insight into the fundamental reasons why WR cantiming simulators are used to obtain solutions where accuracy
is sacrificed for speed. These techniques are not considered in be faster than a conventional time point circuit solver. Here,

we assume that the circuits are sufficiently large that theythis article. However, three examples of such algorithms can
be found in the references. The ITA algorithm (3) is based on can be partitioned into a reasonable number of subcircuits.

First, in WR a large number of small matrices are solvedtime–point relaxation, whereas the SPECS algorithm (4) uses
piecewise constant waveforms. Another technique that uses rather than a single large one. For the usual modified nodal

analysis circuit formulation (MNA) (16), the size of the matrixpiecewise linear waveform approximations together with a
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is driven by the number of nodes in a circuit. The average
solution time growth rate is O(n1.5) for a circuit solver using
sparse matrix techniques. It is obvious that the speedup due
to matrix partitioning increases as the number of subcircuits
increases, which is generally an increasing function of circuit
size. This is obviously one of the factors why WR is fast for
very large circuits. Also, each matrix can be solved using dif-
ferent time steps. The fact that the time steps in the subcircu- 5.00 10.00N
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Levelits are different is called the multirate factor. The evidence
that in large circuits the waveforms are most likely very dif- Figure 2. ‘‘Width’’ of a DRAM circuit as a function of the logic level,
ferent in different parts of a circuit points to the fact that this starting from the input.
multirate behavior is another factor that increases strongly
with the number of subcircuits. However, the speedup is re-
duced by the number of times the average subcircuit is evalu- units that may include one or more functional blocks de-
ated due to WR iterations. Hence, it is obvious that the strat- pending on the block size. The connections between blocks
egy is to keep the average number of WR iteration as small shown in Fig. 1 may involve multiple paths. However, the
as possible. One of the factors that greatly helps is that a external connections are usually sparse compared with the
waveform solution error of 10�2 to 10�3 is sufficient for the connections within the functional units. It is very important
circuit simulation problem. The typical number of WR itera- to recognize that the number of fanout connections of a circuit
tions is between 3 and 4 for a well-partitioned circuit, while output is in general very sparse (e.g., 1–6). However, we have
the WR iterations may vary between 2 and 20 for a typical also encountered circuits with a fanout of 4000.
heterogeneous circuit. Smaller errors, like those required for Each block has the property that the number of logic levels
most homogeneous boundary-value problems, would demand or the logical circuits that are connected in series must be
a much larger number of WR iterations. For this type of prob- limited to meet delay time limits or the system clock cycle.
lem, the convergence rate, considered later, is a much more Hence, most functional units in Fig. 1 are relatively shallow
important factor than for the circuit WR problem we con- in the number of levels. The functional units become ‘‘wider’’
sider here. as the number of transistors increases. An example is the er-

ror detection or correction circuitry of a 16 Mbyte dynamic
random access memory (DRAM) design, shown in Fig. 2. The

STRUCTURE OF VLSI CIRCUITS unit contains over 16 	 103 transistors; however, the number
of logic levels is only 11. As can be seen from the figure, the

Special-purpose solvers gain much of their efficiency from uti- ‘‘width’’ of the unit averages over 200 gates with a large po-
lizing the specific structure of the problem at hand. VLSI cir- tential for parallel processing. More insight into this will be
cuit solvers are no exception. In fact, we hope that it will be given in the section entitled ‘‘Parallel Waveform-Relaxation-
clear from this section that a general-purpose WR solver with- Based Circuit Simulation.’’
out special partitioning algorithms would perform very poorly It is evident that the multirate factor increases rapidly as
for VLSI circuits. We want to identify key properties of large circuit size exceeds the size of a functional unit since the
VLSI circuits that make them good candidates for WR. To- waveforms may have little correlation especially if they come
day’s parallel computers make the analysis of circuits with less from different functional units.
than several million transistors excellent candidates for WR.

As will be explained below, the partitioning step subdi-
INTERNAL WR ALGORITHMSvides these very large circuits into small subcircuits, con-

taining one to several hundred nodes. Figure 1 shows an ex-
In this section we examine the WR iteration process, assum-ample structure of a very large VLSI circuit. Each of the
ing that a circuit has already been divided into subcircuits byblocks may represent a functional unit of a VLSI chip with
the external partitioning algorithms considered in the sectionhundreds to thousands of transistors. It is immediately evi-
entitled ‘‘External Global WR Algorithms.’’ The situation thatdent that these circuits should be partitioned into smaller
we explore focuses on the local iteration between two neigh-
boring subcircuits that are part of a large global circuit envi-
ronment.

Fundamental WR Techniques

The waveform iteration process consists of an approximation
to the solution of a set of nonlinear differential equations by
a sequence of convergent waveforms. In the equations that
follow, (w) is used to indicate the WR iteration index. It is
assumed that subsystems or subcircuits are generated by the
previously mentioned external partitioning and scheduling
techniques. The internal algorithm is designed to solve sub-

Functional units

Inputs Outputs

Width

Levels circuit equations that are formed using the MNA approach as
Figure 1. Basic structure of a large VLSI circuit as a set of blocks
which are interconnected sparsely. C(x)ẋ(t) = g(x, t) (1)
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where x � [v, i]T, v are node voltages, and i are selected cur- Proof: Applying the PL iteration Eq. (4) to Eq. (5) we can find
the solution to berents. The nonlinearities in C(x) are in part due to the tran-

sistor and integrated-circuit capacitances. To ensure that the
solution is unique and that convergence for WR can be
achieved, the capacitor and transistor models are designed

x(w) (t) = 1 − αt + · · · (−1)w (αt)w

w!
(7)

with care so that they do not have discontinuities. The re-
This is the Taylor-series expansion for the solution x*(t) �quired properties of C(x) and g(x, t) are considered later in
e��t, where � � 1/RC and Eq. (6) is found from the error termmore detail in the section entitled ‘‘Convergence for the Non-
in Taylor’s theorem.linear Case.’’ We also do not want to consider the general dif-

ferential algebraic equations (DAE) that result from general
From this, we gain insight into the behavior of the solutionMNA equations since the resultant equations are more com-

of PL iterations for VLSI circuits that involve RC subcircuitsplex than the ordinary differential equations (ODE) case con-
with capacitances to ground. First, we observe what is calledsidered here, although it has been shown by several research-
the early-time convergence property of the solution, whichers that a solution is possible for the DAE case, for example,
shows that it converges faster for small times. Also, the accu-in Ref. 17.
racy of the solution increases by one order for each iteration.Consider the scalar equation
By inspecting Eq. (6) we find that the time window [0, T]
must be kept small in relation to the number of waveformẋ(t) = f (x, t) (2)
iterations such that w � �T, to ensure uniform convergence.
Hence, it may be desirable to subdivide the total analysiswhere f (x, t) � C�1g(x, t) with the initial condition x(0) � x0, time into smaller subintervals or time windows for which con-where C � 0 is a constant capacitor. We gain some insight
vergence is obtained in fewer iterations. It is clear that theinto the waveform iterative solution by considering the Pi-
waveforms must be converged even at the end of the windowcard–Lindelöf (PL) iteration technique. In this method, the
at t � T so that the previous solution will provide a goodfollowing waveform iteration is suggested:
starting point for the next window. We will visit this question
in more detail in the section entitled ‘‘Convergence for RC

ẋ(w+1)(t) = f (t, x(w) (t)) (3) Circuits.’’

x(w�1)(t0) � x0, where x0 is the initial value, which is the same One-Way Systems and Gauss-Jacobi and Gauss-Seidel WR
for all iterations. It is assumed that we want to find the solu-

For WR we assume that the system equation (1) has beention in a window in time t � [ta, tb], where ta is the window
split or partitioned according to the techniques describedstart time and tb is the window end time. For convenience we
later in the section on partitioning. To study local conver-take the window to be t � [0, T], where T is the window size.
gence, we focus attention on the behavior between two con-In the PL technique, the solution of the problem is obtained
nected subcircuits, and we temporarily ignore all interactionsby simply integrating the equation as
with other subcircuits. This is not representative of the real
WR iteration scheme or schedule that involves all subcircuits.
The local convergence situation is depicted in Fig. 3 where allx(w+1)(t) = x0 +

∫ t

0
f (τ, x(w) (τ )) dτ (4)

other WR variables due to partitioning with respect to other
subcircuits are assumed to be external (known) sources as

where the initial waveform may be constant in the time win- shown. Hence, we assume that only the system variables x1
dow with x(0) � x0 and subsequent iterations yield new wave- and x2 are relevant for the local convergence situation.
forms x(1)(t),x(2)(t),x(3)(t), . . .. Local convergence of WR algorithms has been studied by

As an example, if the subsystem of equations is simplified many researchers [e.g., Lelarasmee, Ruehli, and Sangiovanni-
by assuming that g(x, t) � �Gx(t), where G represents a lin- Vincentelli (7), White and co-workers (18,19), and Debefve,
ear resistor R, or G � 1/R, then Eq. (1) is reduced to Odeh, and Ruehli (14)]. We will look at the convergence issue

in the next three sections. First, we give the most important
ẋ(t) + αx(t) = 0 (5) features of the two main algorithms, the Gauss–Jacobi WR

and Gauss–Seidel WR. They are best explained using the
where � � 1/(RC) is the magnitude of the eigenvalue or in- model in Fig. 3, where subcircuit 1 is excited by an input and
verse time constant. If we apply the PL iteration algorithm to coupling exists between the subcircuits in both directions, or
this RC circuit problem we can make the following statement
about the convergence of the iterative solution: ẋ1(t) = f1(x1, x2, u(t))

ẋ2(t) = f2(x1, x2)
(8)

Theorem 1. If we apply the Picard–Lindelöf method to Eq.
(5) on the interval t � [0, T], then the global error bound is
given by

SCkt 1

x1(t)

SCkt 2

x2(t)|x∗(t) − x(w) (t)| ≤ (αt)(w+1)

(w + 1)!
(6)

Figure 3. Two subcircuits shown to illustrate the local WR itera-
tion process.where x*(t) is the converged or the exact solution.
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where x1(0) � x10 and x2(0) � x20 and u(t) represents the
inputs.

A special case exists if the connection from subcircuit 2 to
subcircuit 1 is missing, or ẋ1(t) � f 1(x1, u(t)) only. In this case,

+

–
V1

I1
+

–

V3R1 R3

R2

we have a so-called one-way connection. If we solve the sys-
tem by solving subcircuit 1 first, followed by subcircuit 2, the Figure 4. Resistive circuit to illustrate the iteration process if the
exact solution is obtained in one forward iteration (6). An ex- circuit is partitioned at R2.
ample of such a system consists of two metal oxide semicon-
ductor (MOS) transistor inverters without gate–drain feed-
back capacitances. Since most logic circuits are highly

The first practical application of SOR WR to VLSI circuitdirectional even during switching transients, it is evident
problems was done by Carlin and Vachoux (20). They appliedthat it is always advisable to solve the circuit in the direction
under-relaxation to a stiff high-gain problem and showed thatof large coupling.
convergence could be improved by using � � 1. The definitionIn the general case, with coupling in both directions, sev-
of a stiff problem is one with a large difference in eigenvalueseral iterations are necessary to obtain a solution. The Gauss–
or time constants.Jacobi WR iteration algorithm is given by

Convergence of WR SOR has been studied theoretically by
Miekkala and Nevanlinna (21). It has also been applied to a
semiconductor device problem by Reichelt, White, and Allen

ẋ(w+1)

1 (t) = f1(x(w+1)

1 (t), x(w)

2 (t))

ẋ(w+1)

2 (t) = f2(x(w)

1 (t),x(w+1)

2 (t))
(9)

(22). They used a frequency-dependent over-relaxation factor
�( f) that was applied to the time domain through a convolu-

where x(w�1)
1 (t0) � x10 and x(w�1)

2 (t0) � x20. The iteration sequence tion operator. The general time window under- and over-re-
or schedule for this case is given by alternate evaluations of laxation WR technique applied to VLSI circuit problems most
subcircuits 1 and 2, or 1, 2, 1, 2, . . . until convergence. In likely can benefit greatly from a time-dependent factor �(t)
the Gauss–Jacobi (GJ) algorithm, all subcircuits are solved at for t � [0, T].
iteration (w � 1) using inputs from iteration (w). In contrast,
the Gauss–Seidel (GS) WR method is given by

Convergence for a Resistance Circuit

The convergence of the WR has been studied extensively for
the linear circuits by several researchers, for example, Mie-

ẋ(w+1)

1 (t) = f1(x(w+1)

1 (t),x(w)

2 (t))

ẋ(w+1)

2 (t) = f1(x(w+1)

1 (t),x(w+1)

2 (t))
(10)

kala and Nevanlinna (21) and Desai and Hajj (23). In this
section, we look at the static case of the small resistance cir-where x(w�1)

1 (t0) � x10 and x(w�1)
2 (t0) � x20. In this approach, re-

cuit, in Fig. 4, which is important for the partitioning step.sults that are computed in the solution of subcircuit 1 at iter-
The exact solution for this problem is given byation (w � 1) are used in the solution of subcircuit 2 in the

same iteration. This ordering and the immediate use of newly
computed results allows the GS algorithm to take fewer itera-
tion steps to converge than the GJ algorithm. For this reason,

v3 = I1R1
R3

R1 + R2 + R3
(12)

the GS method is generally preferred even though it puts a
which can be found by inspection.larger burden on the external WR algorithms such as order-

For the iterative solution we define the forward gain gf �ing and scheduling, which have to select the subcircuit analy-
R3/(R2 � R3) and the backward gain gr � R1/(R1 � R2), whichsis sequence. It is not always possible to update all the vari-
are simply the voltage divider ratios. This corresponds toables as required for GS WR. For this case we will use what
splitting the circuit at R2. The voltage dividers lead to thewe call a mostly GS algorithm that instantaneously updates
following voltage ratios: v3 � gfv1 and v1 � grv3. The iterativeas many variables as possible. We will revisit this issue later
solution yieldsin the section entitled ‘‘External Global WR Algorithms.’’

Successive Under- and Over-Relaxation WR v(1)

1 = I1Rp1, v(1)

3 = gfv
(1)

1 , v(2)

1 = v(1)

1 + grv(1)

3 + · · · (13)

The idea of accelerating the solution by overestimating the
with Rp1 � (R1R2)/(R1 � R2). With this, the iterative solutionupdate vector is used for most iteration techniques, including
is given byWR. The basic over-relaxation scheme (SOR) for GS WR takes

a similar form as in the conventional scheme. A new set of
waveform variables are introduced, which we call y(t). With v(w)

1 = v(1)

1 [1 + gf gr + (gf gr)
2 + · · · + (gf gr)

w] (14)
this the GS SOR WR scheme can be written as

The contraction factor is given by � � gf gr. For convergence
within a few iterations this factor needs to be � � 1. Assume
as an example that R1 � 1, R2 � 10, R3 � 5. Then gf � �� and
gr � ��� , which leads to � � ��� . In this case convergence is
reached in very few iterations to a very high accuracy. Also,
directionality of coupling can be assigned, even with this sim-

ẏ(w+1)

1 (t) = f1(y(w+1)

1 (t), x(w)

2 (t))

x(w+1)

1 (t) = βy(w+1)

1 (t) + (1 − β)y(w)

1 (t)

ẏ(w+1)

2 (t) = f2(x(w+1)

1 (t), y(w+1)

2 (t))

x(w+1)

2 (t) = βy(w+1)

2 (t) + (1 − β)y(w)

2 (t)

(11)

ple circuit, as we observe since gf � gr. From the logic signal
flow it is evident that in the directionality is assigned in thewhere y(w�1)

1 (x0) � x10 and y(w�1)
2 (t0) � x20. The over- or under-

relaxation factor is usually in the range 0 
 � 
 2. high-gain direction (14).
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Convergence for RC Circuits ness of the MOS capacitance models. It is confirmed by the
mathematical analysis in Ref. 25 that slow WR convergence

As was mentioned earlier, the convergence of WR for general
can be achieved for the limiting case in Fig. 5(a) in terms of

circuits has been studied from the very beginning, and the
Sobolev norms, which measure the derivatives as well as the

impact of the capacitors on the convergence is considered a
functional values.

key issue. In the early work on WR it was assumed that each
The second basic RC circuit is the low-pass CRC circuit,

node in the circuit was required to have a capacitor to ground.
Fig. 5(b), which was analyzed by Ruehli and Zukowski (27)

More relaxed conditions have been established recently by
for simple cases, and for more complex RC circuits by Leim-

Desai and Hajj (23) and Gristede, Ruehli, and Zukowski (24).
kuhler and Ruehli (28). Unlike the above RCR circuit, the

Specifically, the convergence of RC-type circuits has been in-
CRC circuit seems to lend itself well to partitioning. However,

vestigated by several researchers, for example, Miekkala,
there seems to be a problem in that it is hard to give a static

Nevanlinna, and Ruehli (25), Leimkuhler, Miekkala, and
argument for partitioning at the resistor R2 as was done in

Nevanlinna (26), Ruehli and Zukowski (27), and Leimkuhler
the previous section for resistive circuits. The voltage transfer

and Ruehli (28).
function for the case in which we excite the circuit with a

At first, it seems that many different RC circuit topologies
voltage source Vs in series to C1 is given by

need to be considered to gain an understanding of the WR
behavior of RC circuits. However, in VLSI circuits there are
two circuit topologies that appear many times as basic build-
ing blocks. The first involves a capacitor connected between
two nodes, in which this capacitance may represent a gate-to-

v̇(w+1)

1 (t) + 1
R2C1

v(w+1)

1 (t) = 1
R2C1

v(w)

3 (t) + V̇s(t)

v̇(w+1)

3 (t) + 1
R2C3

v(w+1)

3 (t) = 1
R2C3

v(w)

1 (t)
(17)

drain capacitance. To study its impact, the worst-case RCR
situation is considered in Fig. 5(a), where only resistances are

This can be written in the Laplace domain asconnected to the ground nodes. It should be noted that the
usual sufficient conditions for WR convergence for example,

(sIII + MMM)ṽvv(w+1)
(s) = NNNṽvv(w)

(s) (18)Ref. 4 or 15, do not include this case.
It was shown in Ref. 25 that, even for the RCR circuit in where M and N are evident from Eqs. (17) and (18). We can

Fig. 5(a), convergence can be achieved under certain condi- rewrite Eq. (18) as
tions. The WR iteration equations for the case where we as-
sume that a current source is connected to the left node in ṽvv(w+1)

(s) = KKK(s)ṽvv(w) (19)
circuit in Fig. 5(a) are given by

where the meaning of the symbol K(s) is evident from compar-
ing the last two equations. The following theorem from Miek-v̇(w+1)

1 (t) + 1
R1C2

v(w+1)

1 (t) = I1(t)
C2

+ v̇(w)

3 (t) (15)
kala and Nevanlinna (10) is applied to the problem to find the
spectral radius.

v̇(w+1)

3 (t) + 1
R3C2

v(w+1)

3 (t) = v̇(w)

1 (t) (16)

Theorem 2. Assume that the eigenvalues of M have positive
real parts. Then the spectral radius of K(s) is �(K) �These local mapping functions show that the derivatives at
max��R( j�I � M)�1N. For this case we haveone of the partitioned nodes v1 or v3 are a function of the de-

rivative at the other end of the partition v3 or v1, respectively.
It is intuitively obvious that for this case not only the input
forcing functions but also the derivatives must be continuous
for the WR iteration to converge. In actual VLSI circuits this

KKK(s) =




0
1

sR2C1 + 1
1

sR2C3 + 1
0


 (20)

issue is somewhat moderated since the gate-to-drain capaci-
tances for the MOS field-effect transistors (MOSFET) have

and it is clear that the minimum occurs for s � 0 whereat least some capacitances to ground at each end. Again, the
�(K(0)) � 1, which indicates that the convergence problempartitioning of the capacitance between gate and drain is very
could occur at s � 0.desirable in spite of the difficulties since a MOS transistor is

In Refs. 27 and 28 it is shown that this problem does nota perfect one-way device if the capacitive coupling is ignored.
occur for a finite time window. For convenience, we set bothThis analysis emphasizes the requirements for the smooth-
time constants to unity by choosing C1 � C3 � R2 � 1. Then
we can find the iterative solution to be

v(w)

1 (t) = e−t
w−1∑
m=0

t2m

(2m)!
(21)

With (2m)! � �2�(2m)2m�1/2e�2m the error term is

Error[v(w)

1 (t)] = e−t

2
√

π

∞∑
m=(w)

�
εt

2m

�2m 1√
m

(22)

R1 R3

C2

C1 C3

R2

(a) (b)

From this we can derive the rapid convergence of the parti-Figure 5. Two fundamental circuit topologies for partitioning as part
of a VLSI circuit. tioned circuit provided that the window is small enough.
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Theorem 3. The WR sequence converges rapidly in a time First, we assume that the transistor nonlinearities satisfy
the Lipschitz continuity conditionwindow T after the wth iteration for w 
 
T/2.

We can see from this that for our normalization R1C2 � 1 and ‖G(x1, t) − G(x2, t)‖∞ ≤ K‖x1 − x2‖∞ (24)
R3C2 � 1 the convergence is very fast for w 
 
T/2. Hence,
the larger the time constants of the two partitioned circuits, for the allowed values of t, x1, x2. Second, the nonlinear behav-
the larger the time window T for which rapid convergence ior of the m 	 m capacitance matrix with respect to the real
occurs for a particular number of WR iterations w. It should vector z of length m must satisfy several conditions. Each ele-
be noted that this type of partitioning can again be done stati- ment of the capacitance matrix C(z) must satisfy another
cally in the partitioning process by choosing an appropriate Lipschitz continuity condition with a constant L that applies
value of the time window T and the approximate number of for all j for the real vectors u, v:
WR iterations.

Another important observation can be made from this
analysis on convergence behavior for windowing. First, most

m∑
k=1

|cjk(u) − cjk(v)| ≤ L‖u − v‖∞ (25)
realistically modeled nodes for VLSI circuits, with the excep-
tion of the gate-to-drain capacitances, can be represented by

A further condition is imposed on the capacitances. We as-the basic circuit in Fig. 5(b). Hence, the convergence behavior
sume that there exists a constant � � 0 such that for all realshown in this section given by Eq. (22) is quite typical. It
vectors, u, v where u � 0 we haveshows that if the window T is chosen too large or equiva-

lently, the number of WR iterations w are chosen to be insuf-
ficient, then the solution may be quite poor since the rapid [C(z)u]iui ≥ α‖u‖2

∞ (26)

convergence regime has not been reached. Specifically, at the
This condition can be viewed as being related to the instanta-window boundary t � T, the approximation and, even more
neous energy in the system of capacitances C, which is givenimportant, the derivatives of the solution are approximated
by 1/2uTCu � 0 for u � 0. For a nodal capacitance matrix,very poorly. Then, multistep integration techniques, such as
this implies diagonal dominance. For the nonlinear case, thethe popular BDF2 method (29), that utilize solution points
requirements in Eq. (26) are somewhat more restrictive thanfrom the previous window are used to continue the solution
what is required for the multiple capacitances for whichin the next time window. This obviously represents a very
z � u.poor starting condition for the solution in the next time

The WR equations for two subcircuits in which each sub-window.
circuit is represented by a single equation are given by

Convergence for the Nonlinear Case

Key aspects of VLSI circuits are the nonlinear MOSFETs and
capacitances associated with the devices as well as the on-
silicon diffusion wires and diodes. This requires a nonlinear
analysis of the convergence, which has been available since
the start of WR, for example, Lelarasmee, Ruehli, and Sangio-

c11(x
(w+1)

1 , x(w)

2 )ẋ(w+1)

1 (t) + c12(x
(w+1)

1 , x(w)

2 )ẋ(w+1)

2 (t)

= G1(x(w+1)

1 (t), x(w)

2 (t), t)

c21(x
(w+1)

1 , x(w+1)

2 )ẋ(w+1)

1 (t) + c22(x
(w+1)

1 , x(w+1)

2 )ẋ(w+1)

2 (t)

= G2(x(w+1)

1 (t),x(w+1)

2 (t), t)

(27)

vanni-Vincentelli (7), White et al. (18), White and Sangio-
vanni-Vincentelli (19), and Debefve, Odeh, and Ruehli (14). where the contribution of the nonlinear capacitances is evi-
However, the nonlinear WR convergence proofs have become dent. The initial conditions are x(w�1)

1 (t0) � x10 and x(w�1)
2 (t0) �

more general in recent years. The proofs by Schneider (17) x20. Note that in terms of capacitances c11 � C1 � C2, c12 � c21and Gristede, Ruehli, and Zukowski (24) take the DAE (differ-
� �C2, and c22 � C2 � C3, where the circuit consists of three

ential-algebraic equation) for the MNA circuit formulation capacitances with the same topology as the circuits in Fig. 5.
(17) into account. Also, more useful bounds have been derived All three capacitances C1, C2, and C3 can be nonlinear.
with a one-sided Lipschitz constant by in ’t Hout (30) and in Now, we are ready to state the very interesting condition
Burrage’s book (15). Here, we give an interesting and relevant for nonlinear convergence in a time window [0,T].
proof of Taubert and Wiedl (31) that illuminates the nonlin-
ear convergence in terms of a time window T. The vector u is

Theorem 4. The sequence of approximate solutions given bygiven by u � (u1, u2, . . ., um), and the two relevant norms
the WR iterations x(w�1) converges uniformly to the solutionare �u�� � maxi�1,. . .,m �ui� and �z�T � maxt�[0,T] �z(t)��.
x* of Eq. (23) in [0,T] for which the following condition holds:The circuit equations for a MOSFET circuit including the

voltage-dependent capacitors are given as [similar to Eq. (1)]
α − KT − LT‖ẋ∗‖T ≥ 0

C(x)ẋ(t) = G(x, t) (23)

Proof. Here, we only give an outline of the proof. The unique-with the initial value x(0) � x0. All the conditions below are
ness of the solution of Eq. (23) is guaranteed by the conditionsassumed to apply in a window in time, which we choose to be
given earlier in a time window t � [0,T]. For any continuoust � [0,T]. The voltage excursion must be contained for the
differentiable function x(t) with the initial condition x(0) �semiconductor devices such that the nonlinearities can be de-
x*(0), we form the differencescribed by a valid circuit model. Hence, we assume that limits

are also applied on the particular values of x so that the con-
A(x,x∗ ) = C(x)ẋ − C(x∗ )ẋ∗ − G(x, t) + G(x∗, t) (28)ditions of the theorem are met.
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which can be expanded by adding and subtracting the quan- much larger number of WR iterations are required than for
the circuit simulation problem.tity C(x)ẋ*. For t̂ � [0,T] we form the quantity

Other issues are of importance for a large VLSI circuit
problem for which the general WR algorithm offers severalA(x,x∗ )i(t̂)(ẋ − ẋ∗ )i(t̂) (29)
advantages over the Newton waveform approach. First, for
the conventional WR, circuits are partitioned at the schematicUsing also the fact that
level into self-contained subcircuits that are analyzed inde-
pendently using a conventional circuit solver. Furthermore,
the interaction between subcircuits and functional units, atx(w)

i (t) = xi0 +
∫ t

0
ẋ(w)

i (s) ds (30)

all levels, simply consists of the exchange of segments of
waveforms of various sizes. Other techniques such as the hi-and using the Lipschitz conditions in the expanded form of
erarchical WR techniques (35) and parallel WR discussedEq. (29) with K, L from above, we can show the inequality in
later benefit greatly from the simplicity of the conventionalTheorem 4. We assume that the size of the time windows T
WR approach.is adjusted during the transient analysis.

It is evident from this that both the nonlinearities of the
EXTERNAL GLOBAL WR ALGORITHMScapacitances and the devices can reduce the maximum size of

the time window during the highly nonlinear transitions of
In this section we consider the overall environment that isthe devices for which usually the smallest time windows T
required for a heterogeneous VLSI circuit WR solver whereoccur. This transition time is usually a small part of the tran-
the circuit structure may be extremely nonuniform. This issient analysis time. Also, the transition is the time where the
especially true for mixed analog-digital circuits. To make thecircuit solver will take very small time steps, so that T in-
issue more complex, feedback loops in logical circuits may re-cludes a reasonable number of time steps.
quire more WR iterations than the local WR interfaces re-
quire to converge. It is evident from this that all aspects of a

Newton Variant of WR WR program must be implemented carefully to obtain maxi-
mum overall efficiency. Furthermore, it is very unlikely thatGiven Eq. (2), in a general form, the WR schemes considered
the optimal number of WR iterations is uniformly the sameso far first partition the system at the differential equation
for all local interfaces between the subcircuits. Before we canlevel. Then the nonlinear equations are solved separately for
consider these global convergence issues at the end of thiseach subcircuit using Newton’s method. Van Bokhoven (32)
section, we first must introduce other fundamental conceptsconsidered a variation on WR by essentially interchanging
such as partitioning, ordering, and scheduling. A detailed de-the waveform loop with the Newton linearization of the equa-
scription of the concepts is given in Ref. 14. A key aspect oftions. Hence, the Newton variant of WR starts by linearizing
the external environment is the storage of the waveforms. AsEq. (2) for the entire circuit. The system of equations rewrit-
will be evident below, the waveforms for iterations w andten in a functional form is
w � 1 must be available for computations.

F(x) = C(x, t)ẋ(t) − g(x, t) = 0 (31)

Partitioning
This form can be linearized using the Newton scheme as

The partitioning of a circuit into small subcircuits is clearly a
heuristic process for heterogeneous systems. One of the keyx(n+1) = x(n) − J−1

F (x(n) )F(x(n)) (32)
driving factors for partitioning is that convergence of the in-
ternal WR algorithms must be enhanced by the partitioningwhere JF(x) is the Fréchet derivative of F and where n is the
process. This has been recognized since the beginning of VLSInonlinear or Newton iteration index. This method has been
WR, and much work has been dedicated to this issue through-explored by many researchers [e.g., (18,19,32–34)]. It can be
out the evolution of WR [e.g., Carlin and Vachoux (36) Whiteshown that the resultant scheme
and Sangiovanni-Vincentelli (37), Cockerill et al. (38), and
John, Rissiek, and Paap (39).ẋ(n+1) − Jnx(n+1) = f (x(n) ) − Jnx(n) (33)

Definition 1. Partitioning means subdividing a large circuitis another splitting of the circuit matrix of the entire circuit
(Ckt) into small subcircuits (SCkts). The SCkts are chosen in(15). If we apply only a single Newton iteration n � 1, we
such a way that coupling between subcircuits is minimizedcan partition the resultant circuit matrix and we can use an
and that convergence is enhanced.external waveform relaxation loop. At this level, all the neces-

sary algorithms such as windowing are applied.
The Newton waveform technique has been successfully ap- It should be noted that this type of partitioning is also known

as multisplitting or diacoptics. Most partitioning algorithmsplied to the homogeneous semiconductor problems by Lums-
daine and White (11). These problems do not require a com- are static; the partitions are defined before a transient analy-

sis is performed. In fact, it is the first step in the overall WRplex partitioning procedure as is the case for heterogeneous
systems. For homogeneous problems the Newton waveform scheme. Some exploratory work on dynamic partitioning has

been done by Dumlugol, Cockx, and DeMan (40) for specificapproach is preferred for its quadratic convergence behavior.
However, this is more of an issue for the solution of homoge- circuit structures in which the partitions are altered during

the iteration process. It is evident that for large heteroge-neous systems since much more accuracy and therefore a
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Since the model is set up using the worst case for nonlinear
resistances, a slightly higher value of the threshold is used
since the gain estimates are conservative. It should be noted
that the same technique can be used for a circuit that in-
cludes only capacitors in exactly the same way as in the sec-
tion on convergence for RC circuits in which the ‘‘equivalent’’
resistance values used are given by R � 1/C. All pairs of
nodes that are directly connected to one another are consid-
ered in the partitioning process, and the algorithms just de-
scribed will decide whether to place them in the same subcir-
cuit or not. Hopefully, the resultant SCkts are small so that
each has only a few nodes. However, if too many single-node
subcircuits result, it may be advantageous to merge some
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2 3
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1
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subcircuits into larger ones. Merging or condensing will re-

Figure 6. (a) A MOS transistor circuit partitioned into three subcir- duce the number of WR iterations at the expense of having to
cuits; (b) A directed graph corresponding to Fig. 6(a), which shows solve larger subcircuits. An example of a situation where it
the main logic signal flow.

may be advisable to condense subcircuits occurs when global
feedback loops exist in the circuit. This will be explained in
more detail in the next section.

neous circuits static partitioning is preferred since it can be
designed for all types of structures. Ordering and Scheduling

Two of the most popular methods are pointwise and block
Definition 2. Ordering is defined as the process of labelingpartitioning. Pointwise partitioning breaks the circuit at each
the subcircuits in an increasing order starting with the one(s)node, generating subcircuits with one node each. This scheme
that should be solved first.does not control the coupling between subcircuits. On the

other hand, block partitioning groups one or more nodes into
It is evident from the example of a one-way inverter chain,SCkt based upon estimates of the coupling of the circuit ele-

Fig. 7, in which the gate-drain capacitances are ignored, thatments that connect between them. The techniques in the pre-
the solution starting from input to output leads to conver-vious sections entitled ‘‘Convergence for a Resistance Circuit’’
gence in one WR iteration. On the other hand, if the subcircu-and ‘‘Convergence for RC Circuits’’ are applied to see if two
its are ordered from output to input, m inverters require mnodes should be in the same SCkt by evaluating the potential
WR iterations for convergence. It was shown in the first sec-coupling. The nodes of the resultant SCkt are then ensured
tion that large VLSI circuits that are simulated by WR tech-not to be strongly coupled to other SCkts at least in one direc-
niques have many parallel paths, which can result in thetion. This direction is away from the SCkt for an output and
same ordering in each of the paths or chains of SCkts.into the SCkt for an input. Hence, block or subcircuit parti-

Ordering becomes more difficult for circuits with feedbacktioning leads to much faster WR convergence.
loops. There are two possible choices for dealing with feed-Most WR programs also use graph theoretic partitioning
back. An example is given in Fig. 6(a) for a circuit with feed-algorithms like the strongly connected or dc connected compo-
back. This is apparent from the graph in Fig. 6(b). For smallnents (14). An example of a circuit that has been partitioned
feedback loops involving only a few SCkts like that given ininto dc connected components is shown in Fig. 6(a). In Fig.
this example, it may be more efficient to form a larger SCkt6(b), a directed graph is shown that corresponds to the circuit
by merging all the SCkts in a feedback loop into a singlein Fig. 6(a).
SCkt. For larger loops, it may be better to cut the feedbackNext, we consider in more detail the decision process for
loops (14). Application of these techniques results in a newthe assembly of nodes into SCkts. One of the algorithms used
set of SCkts without cycles. The feedback-loop-cutting algo-is the diagonally dominant Norton (DDN) algorithm by White
rithm can also be viewed as a mostly Gauss–Seidel approachand Sangiovanni-Vincentelli (37), which is based on tech-
in which the values at the feedback input nodes are specifiedniques given in the section on resistance-circuit convergence
at iteration (w � 1) by using feedback values from x(w) as isfor static partitioning. This algorithm is based on the idea
done for all variables in the Gauss–Jacobi technique. All thethat two nodes may either be coupled only resistively or ca-
other nonfeedback variables are updated in the GS fashion.pacitively. The simple circuit in Fig. 4 provides a model for
So-called strongly connected component techniques (41) areapplying this algorithm. Consider the resistor R2 to represent
used to detect the inputs to the feedback loops, which are theall parallel conducting paths between any two nodes. These

include all resistive and inductive elements as well as ‘‘worst-
case’’ values for the nonlinear conductances of semiconductor
devices. The inductance voltage drops are set to zero for the
conductance between nodes. The resistances R1 and R3 repre-
sent the equivalent resistance of all local paths to ground.
Again, this is done by ignoring all capacitance in the circuit
for these two nodes. If the convergence factor � � gf gr is

1 2 3 4 5

greater than some threshold value, usually chosen to be be-
tween 0.3 and 0.95, the two nodes are considered to be Figure 7. Chain of MOSFET inverters which is used to illustrate

different scheduling techniques.strongly coupled and are placed into the same subcircuit.
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GJ variables. An ordering for the resultant circuit in terms of the windows separately. It is well known that the number of
WR iteration for convergence is very nonuniform for the dif-the SCkts is found by the leveling algorithm.
ferent time windows due to the switching activities of the
transistors.Leveling Algorithm.

To properly explain the overlap scheduling technique, we
assume that each of the subcircuits has several nodes unlikeInput: SCkt graph
the very simple inverter chain in Fig. 7, which has only oneOutput: Assignment of Ckts to ordering levels
node per subcircuit. It is intuitively obvious that if we could
overlap or share some of the nodes of the neighboring SCkts

Function LevelizeSubCircuits during the local WR iteration, then the convergence would be
{ enhanced at the cost of having to analyze the shared nodes
LevelNumber = 0; twice as many times at each iteration. Here we assume that
Assign inputs to LevelNumber = 0; each SCkt now has three nodes instead of one. We still as-
REPEAT sume that we have a chain a five SCkts, where the labels of
FOR each SCkt s in LevelNumber { the three internal nodes per SCkt are given as
FOR each SCkt k in fanout set for s {
NumberOfOrderedInputs = 11 12 13 21 22 23 31 32 33 41 42 43 51 52 53
NumberOfOrderedInputs + 1;
IF NumberOfOrderedInputs == It is evident that many different overlaps can be chosen in
NumberOfInputs this example even if only the boundary nodes are shared be-
assign SCkt k to LevelNumber + 1; tween subcircuits. To illustrate the fact that the overlap does

} not even have to be symmetrical we give the following over-
} lap example:
LevelNumber = LevelNumber + 1;

11 12 13 21 21 22 23 31 31 32 33 41 41 42 43UNTIL Level with LevelNumber is empty;
51 51 52 53}

11 12 13 21 21 22 23 31 31 32 33 41 41 42 43
For scalar WR it is sufficient to order the SCkts in such a way 51 51 52 53
that the transient analysis of each SCkt in a lower level is
scheduled before the next higher-level SCkt is so that all the Specifically, we chose an overlap in which one node of the
input variables at iteration (w �1) are available before the next SCkt is taken into account while analyzing a SCkt. How-
transient analysis for a SCkt is performed. ever, we assume that it is a waste of compute time to also

take the corresponding node from the previous subcircuit into
Definition 3. Scheduling means the scheduling for analysis account. An example for symmetric overlap for subcircuit 2
of a subcircuit according to the ordering until WR conver- would be 13 21 22 23 31. From this it is evident that the
gence is achieved. number of nodes in each SCkt analysis can grow rapidly with

overlap scheduling. Hence, the reduced number of WR itera-
Most existing WR-based circuit solvers use what is called tions must be balanced against the analysis of larger subcir-

basic scheduling. However, other scheduling methods may be cuits. We observed experimentally that overlap scheduling
more efficient than this approach. Here, we consider a simple does not work well for circuits in which the coupling is suffi-
chain of ordered SCkts to illustrate the different techniques. ciently weak as is the case for an inverter chain. Its main
To make the example applicable to all scheduling techniques application is for situations in which the coupling is strong
of interest, we use a special circuit for which we can overlap for a large number of nodes such that large subcircuits result.
some of the nodes of any pair of SCkts. The overlap means Overlap scheduling works well even if the circuits are very
that a subset of nodes in a subcircuit may be shared between strongly coupled. Hence, it is best applied to severe coupling
two neighboring subcircuits. We take the chain of five invert- situations. Overlap scheduling has been applied in different
ers in Fig. 7 as a simplified example and order it from input forms since the beginning of WR. The first paper applying
to output as is shown in Fig. 7: overlap scheduling was by Mokari-Bolhassan, Smart, and

Trick (42), and a thorough mathematical analysis and further
1 2 3 4 5 extension were given by Jeltsch and Pohl (43). For heteroge-

neous circuits overlap scheduling is especially applicable to
For a basic schedule, the SCkts are analyzed according to the the situation in which the coupling is very strong such that
ordering starting from the input, and a basic analysis sched- some very large subcircuits would result. In this situation,
ule is given by the additional cost of the overlap is offset by other gains in

compute time.
1 2 3 4 5 Another important method with the potential to improve
1 2 3 4 5 the overall efficiency of WR is 
 scheduling by Odeh, Ruehli,
1 2 3 4 5 and Carlin (44). To show how the method works we consider

the coupling in a matrix system rather than a system of dif-
ferential equations. A typical form for the systems iswhere we assume in this example that global convergence has

been reached in three WR iterations. If there are several time
(L + E)x = b (34)windows in the analysis, we execute this schedule for each of
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where L is a lower triangular invertible matrix representing
strong forward coupling and E is a matrix with a sparse array
of small coupling terms of O(
) and zeros in all other locations.
For simplicity we assume that the small couplings in E can
be arranged in a vector, which we again call E � (v1, v2, v3,
. . .) to retain meaning. For a given m we divide the vector
into two parts, E � E1 � E2, where E1 � (v1, v2, v3, . . ., vm�2)
and where E2 is the remainder of the vector. We need to note

Table 1. Conventional Circuit Analysis vs. WR Analysis

Time (s)

Ckt No. Basic �-sched.
Name Trans. Conventional Sched. WR WR

Ch8 16 26 41 34
Ch16 32 118 100 48
Ch32 64 635 270 171

that the feedback element vs corresponds to the variable
Xx�1. With this we can see that if we ignore the feedback from

results in all cases. Table 1 compares a conventional circuitthe variables xj, j � m one simply has to set all elements in
analysis result with a basic and 
-schedule WR analysis.E2 to zero. We denote by y the variables of the truncated sys-
These results give insight into the general behavior of thetem corresponding to Eq. (34); then the new system is
solution gain for WR over conventional circuit simulation.
First we observe that very small circuits have little multirate
and matrix overhead, so one would expect the conventional(L + E1)y = b (35)
SPICE type solution to be faster than WR, which is indeed
the case. The other interesting comparison is between differ-We now can define the error vector e � x � y, which is due to
ent scheduling algorithms for which the difference is a non-the truncation of the O(
) feedback variables. The following
monotonic function. We did not try to apply overlap schedul-

will give an indication of how the errors propagate in both the ing to this since the coupling for the inverter chain is
forward and backward directions. moderate. It would not be a fair test for overlap scheduling,

which excels in strongly coupled situations, with a weakly
coupled example. Finally, we would like to point out that theTheorem 5. For a system of size N, the components of the
scheduling techniques can be combined. For example, overlaperror e for the truncated system, Eq. (35), in comparison with
and 
 scheduling can be used for different parts of the samethe fully coupled system, Eq. (34), is given by ek � O(
N�k) for
circuit.the backward direction 0 
 k 
 m � 1. The error in the for-

ward direction is given by ek � O(
) for k � m. Global Convergence

With the techniques described previously we are ready to con-The proof of this theorem is given in Ref. 14. It gives us a
sider the difficult global convergence issues. The local conver-clear indication of how the scheduling can be changed to im-
gence between two SCkts has been examined extensively ear-prove global convergence. One key observation is that the er-
lier in the section entitled ‘‘Internal WR Algorithms.’’ Globalrors decay rapidly in the back direction due to the 
 backcou-
convergence deals with the interaction of thousands of SCktspling. This implies that a very good result can be obtained for
with different waveform interfaces. The gain or loss of effi-

the present SCkt even if we have not analyzed all the SCkts ciency due to the global algorithms can be considerable. A
with a higher order. On the other hand, once an error has single local waveform interface with poor partitioning can
been committed somewhere along the chain it will propagate slow down the convergence of a large circuit. The well-known
forward to all SCkts with a higher order until the error has example is the one-way inverter chain for basic scheduling,
been corrected with further iterations. where the local feedback 
 � 0, with the exception of the

We can utilize this result to come up with a scheduling mth stage which has a feedback of 
. This may be SCkt m �
that we call 
 scheduling, for now-obvious reasons. The 
 3 in the example of Fig. 7. In this case, the best number of
schedule is applied locally and it ‘‘propagates’’ forward, mak- WR iterations is given by one iteration up to circuit m � 1 �
ing sure that convergence is achieved locally after all the WR 2. Then, the local iteration between SCkts 2 and 3 should be
iterations have been executed. For the inverter chain example iterated to convergence. Finally, all the circuits following
an 
 schedule is given by SCkt 3 again require only one iteration. It is evident that a

brute-force global analysis using a basic overall schedule
would be much more costly than an analysis with the best

1 2 possible global schedule outlined here.
1 2 3 The general situation for a subcircuit may be very chal-

2 3 4 lenging due to the potentially complex interconnections. A
3 4 5 SCkt m with its variables xm corresponding to Eq. (1) is repre-

4 5 sented with all the potentially connected variables corre-
sponding to other subsystems as

Techniques such as overlap scheduling and 
 scheduling
clearly are more difficult to apply for complex circuits with
complicated fanout situations due to the complicated parti-
tioned circuits and logical signal flow. We give results for an
inverter chain, which is the simplest circuit with which to
illustrate these concepts. We consider chains with 16, 32, and

m∑
l=1

Cml (x
(w+1)

1 , . . ., x(w+1)
m , x(w)

m+1, . . ., x(w)

M )ẋ(w+1)

l

+
M∑

l=m+1
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(w+1)

1 , . . ., x(w+1)
m , x(w)

m+1, . . ., x(w)

M )ẋ(w)

l

− fm(x(w+1
1 , . . ., x(w+1)

m , x(w)

m+1, . . ., x(w)

M , u) = 0

(36)

64 inverters that are partitioned into SCkts where each SCkt
has two inverters. This partition was found to give the best where the system is of size M.
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The updating in this equation is of the GS type. It is clear
that the challenge is to partition a large circuit in such a way
that similar local convergence factors result for all the vari-
ables involved. A relatively uniform basic schedule can then
be used without large inefficiencies. This is complicated by
the presence of feedback loops. Feedback loops have been in-
vestigated by several researchers like Juan and Gear (45) and

Table 2. Effects of Window Size

Analysis time Best Window
Ckt Name No. Trans. (ns) (ns)

Ch8 16 4.5 4.5
Ch16 32 8 2
Ch32 64 16 4

Johnson and Ruehli (46). The work in Ref. 42 uses a theoreti-
cal model, while the work in Ref. 43 is based on numerical
experiments. Experimental evidence shows that tight feed- riod of the oscillator determines the best window size, as is
back situations, which do not include many subcircuits inside shown by Urahama and Kawane (33).
a feedback loop as they exist in flip-flop circuits, lead to a
much larger number of WR iterations than loops that involve Latency
more SCkts. This is due to the instantaneous and highly non-

Efficiency improvements in the WR method have been pur-linear interactions of the SCkts in tight loops. More details on
sued almost since its beginning. Waveform convergence maythis issue will be given later in the section entitled ‘‘Parallel
be measured by different weighted norms based on � � �� or onWaveform-Relaxation-Based Circuit Simulation.’’
the � � �2 norm, which may lead to a more sensitive criterion.
This issue was first reported by Debefve, Hsieh, and Ruehli

WINDOWING AND OTHER EFFICIENCY IMPROVEMENTS (48).
Some of the additional convergence testing concepts lead

Windowing to considerable reduction in compute time. For a large circuit,
there usually exist some subcircuits that do not need to beIt was shown in the section entitled ‘‘Fundamental WR Tech-
analyzed, because their surrounding subcircuits do notniques’’ that convergence is a function of the analysis time
change over a particular window in time T. This situation isinterval. Specifically, the local convergence can be accelerated
stated in the next paragraph in some detail.by subdividing the total analysis time into a series of sequen-

For a given subcircuit SCkt, we call all the associatedtial unequal time windows. All subcircuits need to be solved
waveforms x(t). They include the external waveforms xE(t) andto convergence within a time window before moving on to the
the internal waveforms xI(t), corresponding to nodal voltagesnext window. The time window needs to be as large as possi-
or current external or internal to the given subcircuit SCkt,ble to allow the SCkts to operate with independent time steps
respectively.such that the multirate factor is maximized. In contrast to

this it has been observed in Theorem 4 that the larger the
Definition 4. A SCkt is said to be latent ifnonlinearities or equivalently the Lipschitz constants K and

L, the smaller we must choose the window sizes T. Fortu-
1. The SCkt has been analyzed at least once for the pres-nately, the time step may also be several orders of magnitude

ent time window T.smaller during the high-gain nonlinear transition where K
and L are large such that the number of time steps per win- 2. All external waveforms XE(t) associated with the SCkt
dow is not drastically decreased during the highly nonlinear do not change between iterations (w) and (w � 1) in the
transitions. Hence, we can still expect to obtain a reasonable present time window T. This change is measured by
multirate factor. comparing

Time-windowing algorithms have been suggested by sev-
eral authors [e.g., (14,19,47)]. Peterson and Mattisson (47) ‖x(w)

E (t) − x(w−1)

E (t)‖ ≤ εA + εR max
t∈[0,T ]

‖x(w−1)

E ‖∞ (37)
suggest a time-windowing scheme that initially creates win-
dows whenever an input waveform changes state. Then as the

where 
A is the absolute waveform error and 
R is the
analysis proceeds, windows may be truncated based on the

relative waveform error.
convergence rate of the subcircuits and the number of accu-
mulated time points. By limiting the number of time points

Then the subcircuit SCkt is declared latent and is not ana-
within a window, memory requirements can easily be man-

lyzed until either the inputs xE(t) change or the analysis
aged and controlled.

moves on to a new time window. Essentially, latency is the
In general, it is very hard to come up with heuristic win-

limiting form of partial waveform convergence considered in
dowing algorithms for heterogeneous circuits. The best win-

the next section. The application of latency can lead to an
dow size is not only determined by the local convergence rate

appreciable improvement in overall solution efficiency. For
but also by strong feedback loops such as a flip-flop or a ring

example, the solution of a 4-bit ALU with 282 FET transistors
oscillator loop. Hence the dynamics of the local situation plays

analyzed on a small IBM RS/6000 workstation required 249
a major role in the choice of the window size as we will illus-

central processing unit (CPU) seconds without the above la-
trate later. We again use the same complementary MOS

tency algorithm invoked, as compared with 101 CPU seconds
(CMOS) inverter chain in Fig. 7 for the windowing examples

with the latency algorithm used.
as we did for the partitioning and scheduling. We note from
the data in Table 2 that the best results are only weakly de-

Partial Waveform Convergence
pendent on window size. The dependence is much stronger for
circuits with a complex fanout structure and for strong feed- This algorithm represents a more elaborate form of latency.

It was recognized that many waveforms were rejected towardback situations such as a ring oscillator. In this case, the pe-
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the end of the time window T due to the nonuniform conver- PARALLEL WAVEFORM-RELAXATION-BASED
CIRCUIT SIMULATIONgence of the WR process. This nonuniform convergence was

considered earlier. The partial waveform convergence is given
Parallel implementations of WR have been investigated byby the following algorithm.
many researchers (47,51–57) since the approach is ideally
suited for parallelization. Many of the techniques developedDefinition 5. A SCkt is said to be partially converged or t̂
for parallel WR are detailed in the book by Banerjee (58). Be-partially latent if
cause each subcircuit is solved independently, subcircuits can
be distributed among multiple processors and solved concur-

1. The SCkt has been analyzed at least once for the pres- rently. During every iteration, each processor must have ac-
ent time window T. cess to the input waveforms for each subcircuit that it is to

2. All waveforms xE(t) associated with the SCkt do not solve. Once waveforms are available, a processor can then
change up to the time point t̂ for (w) and (w � 1). This solve a subcircuit over a time window T. Only after a subcir-
change is measured as cuit has been solved is there a need to share data among pro-

cessors. This results in infrequent sharing of relatively large
blocks of data among processors. Generally the time to solve‖x(w)

E (t) − x(w−1)

E (t)‖ ≤ εA + εR max
t∈[0,t̂]

‖x(w−1)

E ‖∞ (38)
each subcircuit is relatively long compared with the time
needed to communicate results among processors. This im-

where 
A is the absolute waveform error and 
R is the plies that the ratio of time for computation to communication
relative waveform error. will be high, and good parallel speedups are possible. More-

over, as circuit size increases, the size of each subcircuit often
remains relatively constant, while the number of subcircuitsThen the subcircuit SCkt does not need to be re-solved over
generally increases. Therefore as circuit size increases, thethe entire interval [0, T] for iteration (w � 1), but only over
opportunities for parallelism also increase.the shorter interval [t̂, T].The application of partial waveform

convergence can lead to an appreciable improvement in over-
all efficiency. For example, the solution of a clock-signal-gen- Architecture Considerations
eration circuit containing 1059 FETs run again on a small

Parallel-processing machines can be grouped into two classes:IBM RS/6000 workstation required 2861 CPU seconds when
single-instruction, multiple-data (SIMD) and multiple-in-partial waveform convergence was not used, versus only 2430
struction, multiple-data (MIMD). In a SIMD machine, eachCPU seconds using the partial waveform convergence just
processor executes the same instructions on different datamentioned.
streams. In a MIMD machine, each processor executes differ-
ent instructions on different data streams. Parallel WR solves

Coupled and Preconditioned WR different subcircuits on each processor, and therefore each
processor will in general be executing different instructionsThe WR approach has the potential to be used in many differ-
on different data, which implies that parallel WR is bestent ways due to its iterative basis. Here, we consider two dif-
suited for a MIMD architecture. Additionally, both SIMD andferent important aspects on how a WR circuit solver can in-
MIMD machines can be implemented using either shared orteract with other circuit solvers. Several circuit simulators
distributed memory. In a shared-memory machine, each pro-must cooperate together in a multilevel simulation environ-
cessor is capable of accessing all memory in the machine. Itment. A higher-level simulator may have to be coupled to a
is usually the programmer’s responsibility to make sure noWR circuit solver. A multirate waveform interface (49,50) is
two processors attempt to access the same memory locationsa very good way to couple tools together by exchanging wave-
simultaneously. The Cray C-90� and SGI IRIS Challenger�forms during each time window. However, the coupled wave-
are examples of shared memory MIMD machines. In a dis-forms may have to be subjected to some processing such that
tributed memory machine, each processor has its own localthe waveforms fullfill the appropriate smoothness conditions.
memory, which cannot be accessed by other processors. Shar-The WR solver will supply the appropriate master time
ing of data is accomplished through message passing betweenwindows.
processors. One form of distributed memory machine is a net-Another approach has been proposed by Burrage (15) in
work of workstations using MPI to share data over a network.which the waveforms are preconditioned with some other
The IBM SP2�, Intel Paragon�, and Cray T3D� are exam-waveforms. Very good waveforms may be obtained from a
ples of more closely coupled distributed-memory MIMD ma-faster more approximate circuit simulator. We did some infor-
chines. One advantage of distributed-memory machines ismal studies of the preconditioning process by distorting the
that no single processor needs to have enough memory to holdsolution waveforms obtained from a WR solver. We discovered
all of the data for analysis. This becomes increasingly impor-two different regimes. Very rapid convergence to the exact
tant as circuit sizes increase. On the other hand, shared mem-waveforms was observed, provided that the distortion was not
ory permits faster exchange of data among processors.too large. For the case in which the distortion was large, the

As stated above, a MIMD architecture is well suited forstarting waveforms seem to have little impact on the conver-
WR where parallelism is applied at the subcircuit level withgence behavior. It should be noted that many other situations
each processor solving its own set of subcircuits. Eitherare relevant. For example, in a hierarchical situation as is
shared or distributed memory can be used, each with its ownshown in Fig. 1 only a few waveforms need to be known at an
advantages and disadvantages. In a shared-memory environ-interface between the functional units to enable the analysis

of other functional units using existing waveforms for WR. ment, it is easier to balance work load among the processors,
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because each processor has complete access to all data rela- Although the parallel GS method will retain a faster con-
vergence rate over the GJ method (fewer iterations), becausetive to the analysis. As each processor completes an analysis

of a subcircuit, it solves the next subcircuit that is ready to of the limits on available parallelism, the time to complete
those iterations may actually be longer than the time to com-be processed (51). In this way, slower processors will automat-

ically take on less work, while faster processors will do more. plete the GJ iterations. If the number of available processors
is large, the GJ algorithm will in general be able to use all ofOne associated disadvantage is that a relatively complicated

locking mechanism must be implemented to prohibit different them. The GS algorithm, on the other hand, will only be able
to use effectively a number of processors equal to the maxi-processors from trying to read and write the same data at the

same time. Another is that all input data and computed re- mum number of subcircuits scheduled at any Seidel level.
Therefore, the GS algorithm is not necessarily the best algo-sults must fit within the globally shared memory.

Distributed memory eliminates problems relating to simul- rithm for parallel processing. However, if the number of pro-
cessors is smaller than the average number of subcircuits attaneous access of data and the need to have all data fit within

one global memory. However, because all data are not easily each Seidel level, then the GS method is probably the better
choice. In such cases parallelism will be limited by the num-accessible to all processors, it is harder to balance work load.

Most implementations statically assign subcircuits to pro- ber of processors, and the faster convergence rate of the GS
algorithm will result in a faster solution. In most applicationscessors at the beginning of an analysis using a combination

of heuristics to attempt to predict and balance work load and the number of processors is limited, whereas the number of
subcircuits and their relationship to one another is circuit de-communication patterns (56). Dynamic work load balancing

(59) requires the transfer of subcircuits and their ‘‘state’’ from pendent. The best implementation would be to include both
algorithms with automatic selection of the GS or GJ algo-one processor to another, which may be several thousands of

bytes. If these transfers cannot be done quickly or they must rithms based upon circuit topology and the number of pro-
cessors available to solve the problem.be done often, it may be faster to stay with a suboptimal subc-

ircuit to processor assignment. In addition, performance may Another implementation consideration is memory usage.
In order to determine convergence, at any iteration (w �1),be affected by the time required to share data among pro-

cessors. Fortunately, windowed WR at the subcircuit level re- both GS and GJ algorithms require storage to hold computed
waveforms for iterations (w) and (w � 1). For each subcircuit,quires infrequent sharing of data among processors. Never-

theless, the time to communicate results may be a significant complete waveforms must be retained for all computed wave-
forms for two iterations. For a single processor, this impliesportion of total job time. Consequently, most MIMD imple-

mentations attempt to minimize communication by assigning that all waveforms must be stored twice. However, on a multi-
processor system, each processor only needs to store iterationsubcircuits that share data to the same processor and to

‘‘hide’’ communication overhead by overlapping communica- (w) and (w � 1) values for those waveforms that are actually
computed on that processor, along with waveforms for eithertion and computation, that is, by continuing to compute addi-

tional results while communication is progressing. The under- the (w) or (w � 1) iteration of inputs solved on other proces-
sors. Input waveforms are needed for iteration (w) when usinglying assumption is that parallel WR is applied to very large

circuits that partition into many subcircuits, and that there the GJ algorithm and for iteration (w � 1) when using the
GS algorithm. With the GS algorithm, newly computed wave-are many more subcircuits than processors. Therefore, each

processor will generally have sufficient work to remain active forms can be shared with other processors immediately. How-
ever, unless each processor maintains storage for inputs forwhile data are being shared among processors.
both iterations (w � 1) and (w), the GJ algorithm must delay
sharing newly computed waveforms among processors untilAlgorithm Selection
all processors have completed each waveform iteration. Oth-

It was shown earlier that the GS relaxation algorithm will, in erwise, data for iteration (w � 1) may overwrite data expected
general, converge in fewer iterations than the GJ algorithm, to be for iteration (w). Consequently, the parallel GS method
and is usually the favored implementation for sequential pro- can be implemented to use less storage per processor than the
cessing. However, the faster convergence rate of the GS algo- GJ method. The alternative is to defer sharing of data until
rithm is derived from an ordering and scheduling of subcircu- all processors have completed an iteration. This can result in
its that limits parallelism. Parallelism is limited by the communication bottlenecks and substantially reduce perfor-
number of subcircuits that can be scheduled at each Seidel mance, especially for distributed-memory machines.
level. Circuits that partition into long chains of subcircuits With the GS algorithm, data must be shared among pro-
with little fanout will have little parallelism to exploit, cessors throughout the analysis of a time window in order for
whereas circuits like the DRAM error correction circuit shown the solution to proceed. If input waveforms are not available
in Fig. 2 offer a great deal of potential parallelism. In con- to solve a subcircuit, a processor may have to wait for data to
trast, parallelism using the GJ algorithm is limited only by be computed on another processor. So not only does the GS
the number of subcircuits. With the GJ algorithm, during algorithm limit parallelism, it also may introduce bottlenecks
waveform iteration (w � 1) all subcircuits are solved using and adversely affect load balance among processors. In an at-
input waveforms computed during iteration (w). Hence no or- tempt to reduce these effects, Zukowski and Johnson (60)
dering of subcircuits is necessary. This implies that once all have reported implementation of a ‘‘mixed’’ Seidel–Jacobi or
subcircuits have been solved for an iteration, all data are bounded-chaotic algorithm that attempts to solve all subcir-
available to schedule all subcircuits for the next iteration. cuits using the GS algorithm. However, if a processor is idled
Consequently, the GJ algorithm has the potential for parallel- due to lack of input waveforms for the current iteration, a
ism that is equal to and increases linearly with the number subcircuit is chosen to be solved using whatever waveforms

are available. Some inputs may be from the current, whileof subcircuits.
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others may be from the previous iteration. The algorithm is
bounded in that waveforms can be at most one iteration be-
hind the current iteration, like the Jacobi algorithm. The
hope is that a solution will be completed faster if processors
remain busy, even if all of the input waveforms do not meet
strict Seidel ordering. For circuits with large fanouts that per-
mit the effective use of a large number of processors, this im-
plementation retains the faster convergence rate of the GS
algorithm. For circuits with less fanout, this technique should
take no longer than the GJ algorithm in which all input wave-
forms are from the previous iteration.

Implementations

Parallel WR may be implemented using either a master–
slave or a data-driven paradigm. In a master–slave imple-
mentation, one processor serves work to the others and syn-
chronizes each iteration of the analysis. The master–slave
setup is well suited for a shared-memory machine, because

Table 3. Timing Results

Time (s)

Ckt. Name All Loops Cut Only Long Loops Cut

Ckt1 28 116
Ckt2 33 162
Ckt3 46 134
Ckt4 90 246
Ckt5 103 242
Ckt6 106 297
Ckt7 113 278
Ckt8 142 175
Ckt9 155 285
Ckt10 159 288
Ckt11 195 355
Ckt12 226 316
Ckt13 229 352
Ckt14 537 815
Ckt15 477 1111
Ckt16 1025 1509

all data are available to all processors, and therefore the mas-
ter can quickly assign any work item to any processor without
the need to transmit large quantities of data. In addition, the loops are cut such that two (or more) similarly sized subcircu-
master can maintain data integrity by only permitting one its are created, these subcircuits can be distributed among
processor to access a specific data item at a time. the processors. Since we expect cut feedback loops to result in

In a data-driven implementation, each processor solves its additional WR iterations, it is advantageous to iterate multi-
assigned subcircuits as soon as input waveforms are avail- ple times during each WR iteration among subcircuits re-
able. Synchronization is required only to determine conver- sulting from cut feedback loops. Table 3 gives timing results
gence, update window boundaries, and prepare output files. for 16 circuits ranging in size from under 300 to over 93,000
A data-driven implementation will function equally well on transistors when all feedback loops are cut versus only cut-
either shared- or distributed-memory machines. ting long loops where the feedback loop extends over several

subcircuits. These results were obtained using the experimen-
Efficiency Improvements tal Victor, V256 processor described in Ref. 56, with the larger

circuits using all 256 processors.With either implementation, whenever input data are avail-
able to solve a subcircuit, the circuit can be scheduled for
analysis. In general, there will be many more subcircuits than SUMMARY AND CONCLUSIONS
processors, and each processor will have more than one sub-
circuit that can be solved at any time. Under such conditions, We summarize the state of the waveform-relaxation tech-

niques in this article. WR is a very active area of research asa choice must be made as to the order in which the subcircuits
are solved. When using the GJ algorithm, the choice is unim- is evident from the publications listed here, which are only a

fraction of all the work done in this area. Also, there are manyportant. However, when using the GS algorithm, this choice
may greatly affect overall performance and throughput. The more relevant works on WR that are of interest. To mention

just a few topics of interest, there are the faster sensitivitysubcircuits for which data are available should be sorted and
solved in order based upon the level at which their outputs computations by Chen and Feng (61) and the related error

measuring technique by Gristede, Zukowski, and Ruehli (62).are needed. For example, consider the situation in which a
processor has two subcircuits that can be solved. One has out- Other work of importance is hierarchical WR by Saviz and

Wing (35). We hope that it is evident from this article thatputs that are needed as inputs to another subcircuit at level
4, while the other subcircuit’s outputs are not needed until WR is an interesting area of research with potential for fur-

ther innovations as well as applications.level 5. The subcircuit whose outputs are needed at level 4
should be solved first. This will permit the outputs to be com- The WR approach shows a clear speed advantage for very

large circuits over conventional circuit solvers. However, evenmunicated to other processors while the second subcircuit is
being solved. Hopefully the data will arrive before the second today a fast workstation is required to run circuits that are

large enough to show substantial gains. This may be of inter-processor finishes the subcircuits it is currently solving, and
the processor will not have to wait for data. est for a large company or to a university, but it is of a lesser

interest to the average user of a circuit solver like the manyIn the previous section ‘‘Ordering and Scheduling,’’ options
were discussed for dealing with feedback loops. However, the SPICE-like tools that may run on a small machine. We expect

that the WR approach will become much more popular withchoice of whether to break feedback loops into SCkts is differ-
ent when using a multiprocessor system (46). One of the pri- the next generation of high-performance workstations, which

include multiple processors at a more moderate price. As ismary goals of parallel WR is to keep all of the processors busy
most of the time. Feedback loops that are merged into a single evident from this article, the gains in compute time will be

substantial. We expect that the availability of parallel com-subcircuit maintain strict GS ordering, but they create larger
subcircuits. This has a negative impact on load balancing, puting for a wider audience will make the WR algorithms of

more interest to EDA companies.matrix size, and the multirate speedup. However if feedback
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