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Often an approach is followed to construct and apply some
artificial interfaces between the different types of modules
that allow for separate analysis of each subsystem but also
serve as an interconnection for exchanging the response data
between the modules. Well known practical solutions are sim-
ulation back planes or close coupling of a circuit level simula-
tor with a digital simulator. In general, these methods suffer
from large storage requirements, diverging iterations, and
slow computational speed. Furthermore, they lack the neces-
sary flexibility to be applied to a broad class of problems.

The creation of a mathematical description that approxi-
mates the system’s functionality is called modeling and the
description itself the model description or simply the model.
The aforementioned problems can be avoided to a large extent
when a common model is used that has a single solution algo-
rithm to solve the overall system response. The mathematical
description of such model has to be flexible enough to cover
the input-output description of a broad class of modules (e.g.,
device modules at the voltage-current level, logic modules at
the Boolean level, behavioral modules). A model description
that could deal with a large range of nonlinear multidimen-
sional functions is suitable for that purpose when it permits
the formulation of the relevant equations and its linked to a
suitable solution strategy. The standard approach in circuit
level simulation is to use analytical functions for the rela-
tions, and the key algorithm for the solution process is the
well-known Newton–Raphson (NR) iteration. This method
generates a sequence of iterates that (it is hoped) converges
to the required solution using derivatives of the modules’
equations. The limitations of the use of an NR scheme are
various, and the important ones are the local behavior of the
method (not all solutions can be obtained); a sufficient close
guess for the solution, which is required as a starting point;
and the computational burden of a repetitive inversion of
the derivatives.

Many of the aforementioned problems can be prevented or
solved using a different type of modeling, the so-called
piecewise linear (PL) modeling. Here the nonlinear behavior
of the modules’ analytical expression is replaced by a collec-
tion of linear relations in a sequence of adjacent intervals.
The immediate advantage of a piecewise linear approach is
that the local relation between the variables is always linear
except at the boundaries, which may simplify further compu-

PIECEWISE-LINEAR TECHNIQUES tations. The close mathematical relation of PL modeling and
linear algebra can be beneficial in nonlinear network theory.

Simulation programs play an important role in the design of An obvious drawback is the limited precision obtained, which
integrated electronic systems. They allow the designer to col- can only be avoided by increasing the number of linear rela-
lect information on the performance of the system that is be- tions to approximate the nonlinear behavior at the cost of a
ing designed before that the system is actually realized. To do higher computational load. The use of PL modeling results in
so, the circuit is described as a collection of separate modules a special data structure that makes it possible to use solution
that are connected in some way. Depending on the type of algorithms with a global convergence behavior. In the case of
circuit, these modules are of a different nature (e.g., transis- computing the direct current (dc) operating point of a circuit,
tors, logic gates, behavioral models), each with their own cor- this results in less restrictions on the initial guess of the
responding data structure and typical solution algorithm. starting point. Furthermore, this property is advantageous

when a circuit with many dc operating points is to be ana-Within a certain application, modules of different complexity
lyzed. It is due to these properties that piecewise linear tech-can also be used to supply variable detail in the resolution of
niques are used today in modern simulators to find dc op-the circuit response that must be calculated. For fast and ef-
erating points.ficient simulation, the algorithms to solve the set of equations

describing the modules’ behaviors are highly optimized with
respect to storage requirements, accuracy, or convergence PIECEWISE LINEAR MODEL DESCRIPTIONS
speed. As a result, it is nearly impossible to combine the anal-
ysis for all different aspects in one single run using conven- Confronted with the question to develop a piecewise linear

model for nonlinear components in electrical circuits, one ob-tional analysis methods.
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viously starts to look for the most simple extension to the voltage of the battery. The consecutive independent sources
increase in voltage (i.e., e1 
 e2). This means that an increas-well-known linear components like resistors and linearly con-

trolled sources. This extension should in one way supply us ingly higher voltage is required as the input to include the
parallel branches that are placed more to the right in the fig-with a kind of basic nonlinearity, but in another way this non-

linearity should be as simple as possible, with the expectation ure. However, in case these branches start to conduct, the
total resistance is decreasing (increasing) when the resistor’sof extending this approach to more general nonlinearities

later on. The first component that will come up to satisfy value is positive (negative) and hence the slope of the current-
voltage characteristic is increasing (decreasing), leading tothose conditions seems to be the semiconductor diode. It

surely is one of the most simple nonlinear elements and has the v-i characteristic as also depicted in Fig. 2. This fairly
simple network will hereafter be treated as a nonlinear resis-been used for a long time already to synthesize or reproduce

nonlinear transfer functions in analog computers by realizing tor with a piecewise linear behavior.
If we are able to describe the electrical behavior of the net-piecewise continuous approximations. One can try to idealize

the behavior of a diode. An ideal diode draws no reverse cur- work of Fig. 2, we will obtain a mathematical description of a
one-dimensional PL function without any further restrictions.rent when polarized into reverse bias and does not need any

forward bias voltage to conduct an arbitrary forward current. Should this network description result in an explicit solution,
this would yield an explicit PL function. However, it will al-Such an idealization yields a v-i relation that consists of only

two branches, one described by v � 0 and i � 0 and one by v ways produce at least an implicit description. From argu-
ments from electrical network theory, we know that it is pos-
 0 and i � 0. For reasons of symmetry, we will reverse the

voltage reference polarity of the ideal diode with respect to sible to construct a dual electrical network that has the same
functional relation with the roles of current and voltage inter-the normal convention such that the characteristic now reads
changed. Hence we immediately conclude that the description
that we are looking for will not be unique.v, i ≥ 0 and v · i = 0 (1)

In the preceding situation it is fairly easy to produce an
Figure 1 shows the relation between the characteristics of an explicit description of the v-i relation at the input terminals
actual diode, an ideal electrical diode, and the ideal diode as using basic mathematical functions. To this purpose consider
used in the context of PL. Note that the characteristic of the the following expression:
ideal diode can also be considered as being piecewise linear
by itself, with 2 being the minimum number of PL segments
necessary to differentiate the diode from fully linear ele- �x� = 1

2
(x + |x|) (2)

ments. In this respect this diode indeed seems very basic.
In any actual electrical network application, this element which realizes a ramp function with the breakpoint at x � 0.

can only exist in one of two possible states—it either conducts Based on our previous discussion, using Eq. (2) the current in
with zero voltage, representing a closed connection between branch k satisfies for k � 0
its terminals, or it blocks the current in the reverse mode,
behaving as an open circuit. This means that any linear cir- ik = Gk�v − ek� with Gk = 1/Rk (3)
cuit containing ideal PL diodes only changes its topology
when these diodes switch from the conducting state (i.e., Application of Eq. (3) and summation over all branches imme-
switch from short to open circuit, or the other way around). diately yields
Therefore, the response of the network will remain linear in
any conducting state of the diodes, but for different conduc-
tion states the response will be different since we deal with a
network with switches that can change the topology. As the

i = G1(v − e1) +
n∑

k=2

Gk�v − ek�

switching occurs in the point v � i � 0, the response will
orautomatically be continuous for the applied excitations. This

property is essential and will be used to advantage in the con-
text of the finding of all dc operating points of networks. i = G1(v − e1) + 1

2

n∑
k=2

Gk(v − ek) + 1
2

n∑
k=2

Gk|v − ek| (4)

Explicit Piecewise Linear Models

which, for the example of Fig. 2, leads toFigure 2 shows a fairly simple network in which a number of
resistors, independent voltage sources (batteries), and diodes
are connected in parallel. In each parallel branch, the ideal
diode starts to conduct when the input voltage exceeds the

i = v − 3
4

− 3
4

|v − 1| + 3
4

|v − 2| (5)

Figure 1. The transformation of an actual diode
characteristic into the ideal electrical behavior and

i i i

v v v0 0 0
into the ideal behavior as defined in Eq. (1).
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Figure 2. A circuit example with ideal diodes. The
circuit can be represented as a nonlinear resistor
with a piecewise linear behavior as defined by the
v-i characteristic representing the behavior as seen
from the port nodes.
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In a more general mathematical expression, the model de- and that the second-order base function looks like
scription for the PL function f : Rn � Rm is given by

u2 = ⌊
f2(x) + a21� f1(x)�⌋

fff (xxx) = aaa + Bxxx +
σ∑

i=1

ccci|〈αααi,xxx〉 − βi| (6)

Then it can be proven that using this extension any two-di-
mensional function or two-port electrical network can be mod-where B � Rm�n, a, ci � Rm, �i � Rn, and �i � R1 for i � �1,
eled (4,5). Here we assume that the functions f i(x), i � 1, 2. . ., �� and which is the basic model description as proposed
are affine functions. Figure 3 shows a geometrical interpreta-by Chua and Kang (1–3). In the model description, hyper-
tion of these base functions. In a two-dimensional situation,plane Hi is expressed as
hyperplanes may cross each other and a hyperplane itself
may eventually be piecewise linear under the condition that〈αααi,xxx〉 − βi = αT

i x − βi = 0 (7)
the breakpoint is defined by a hyperplane described by a base
function of order one. In a similar way, we can define baseThis hyperplane Hi divides the domain space into two re-
function igions, R1i and R2i. The normal vector of the plane is defined

by �i. The hyperplane reflects the operation of the ideal diode
i, one region corresponding to the situation in which this di-
ode conducts and the other to its blocking state. This can also ui = � fi(x) +

i−1∑
k=1

aikuk� (9)
be seen from Eq. (4), in which each absolute-sign operator
refers to an ideal diode in the network. Using the model defi-
nition, the domain space Rn is divided into a finite number of and with this set of base functions it can be proven that any
polyhedral regions by � hyperplanes Hi of dimension n � 1. PL function or any multiport can be modeled (6,7). However,
When crossing Hi, the Jacobian matrix J of Eq. (6) changes the function or network should be of class P, a property we
with the amount will discuss later.

�J = J1i − J2i = (−ccciααα
T
i ) − (ccciααα

T
i ) = −2ccciααα

T
i (8)

Implicit Piecewise Linear Models
Notice that this amount is independent of the position in Rn

We can consider the circuit in Fig. 2 as a special case of a
where the hyperplane is crossed. This property is known as linear memoryless electrical multiport network that is loaded
the consistent variation property and plays an important role at some of its ports by the previously defined ideal diodes.
in piecewise linear modeling (3). The network may contain resistors and fixed and controlled

Each one-dimensional function or any one-port electrical sources and, for later convenience, all of its ports are parti-
network with ideal diodes and linear elements can be realized tioned in two different sets, port set 1 and port set 2. Figure
by Eq. (6), and there exists a one-to-one relation between the
parameters in Eq. (6) and the given piecewise linear function
or network. Consider again the nonlinear resistor in Fig. 2,
and notice that all elements of the network describing the
nonlinear resistor are used exactly once in the model Eq. (5).
However, in more dimensions hyperplanes can cross each
other, and geometrical constraints might exist, such that not
all multidimensional functions can be represented by this
model description. In terms of an electrical network this
means that not only linear components are used but, for in-
stance, also controlled sources.

Therefore, people have tried to extend this model descrip-

f1(x) f1(x)

f2(x)

u1 = 0

u2 = 0 u2 = 0

u1 = f1(x)

u2 = f2(x)u2 = f2(x) + a21f1(x)

f2(x) + a21f1(x)

tion to allow modeling of higher-dimensional piecewise linear
Figure 3. The first- and second-order base functions with respect tofunctions. Assume that Eq. (2) can be considered as a base their hyperplane(s). In the case of second-order base functions, hyper-

operation of order one, given as planes may be piecewise linear. In each half-space, the function’s
value is given and for each hyperplane the normal vector is given
also.u1 = � f1(x)�
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The complete set of Eq. (11) describes a PL mapping that is
defined on a collection of polytopes. The boundaries of each
polytope Km will be formed by a set of bounding hyperplanes
Hi

m according to

Hi
m = {xxx|ccci

mxxx + gi
m = 0}, i ∈ {1, . . ., k} (12)

which is a generalization of Eq. (10). Equation (12) defines a
collection of half-spaces Vi

m given by

V i
m = {xxx|ccci

mxxx + gi
m ≥ 0} and Km =

⋂
i

V i
m (13)
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The row vectors ci
m in Eq. (13) are the normal vectors onFigure 4. A memoryless electrical multiport loaded at port set 2 with

the hyperplanes that bound the polytope Km and point in theideal diodes. The voltage (current) across (through) each diode is rep-
inward direction. They all can be considered as rows of a ma-resented by u( j). Port set 1 represents the independent variables x

and the dependent variables y. trix Cm such that the polytope Km is equivalently given by

Km = {xxx|Cmxxx + gggm ≥ 0} (14)

4 shows such a network. Assume that port set 1 contains m
Define each polytope Km by determining on which side of eachports and port set 2 contains k ports. For port set 2 all its
hyperplane Hi it is situated. Note that for the hyperplanesports are loaded by ideal diodes; thus the voltage u over the
the subscript m is removed to express that we only have adiodes and the current j through the diodes can be repre-
single set of hyperplanes Hi, i � �1, . . ., k�, which can parti-sented by k-dimensional vectors (i.e., u, j � Rk). Then, based
tion the space into a maximum of 2k polytopes. This exactlyon the previous discussion, the conducting states of the diodes
fits with our network with ideal diodes. The k diodes can de-will depend on the m currents and m voltages at port set 1.
fine at most 2k topologies into which the network can be di-Next assume (without loss of generality) that the port set 1 is
vided. Therefore, for any polytope Km and each hyperplaneexcited by voltage sources. In the light of the PL model that
Hi we either have one of two possibilities:we are required to construct, we map the port variables at

port set 1 on new vectors x, y � Rm according to x � v and y
Cixxx + gggi ≥ 000 or Cixxx + gggi < 000 (15)

� i.
Diode k has only two states that are separated by the con-

Because the normal vectors of the hyperplanes were con-dition ukjk � 0. The diode now also separates the space
sidered to be rows of Cm and thus also for Ci, we may collectspanned by x and y into two half-spaces, one in which the
all normal vectors into a single matrix C. The same holds fordiode conducts and one in which it blocks. The boundary be-
vector g. Once a partitioning of the space is given, the varioustween the two half-spaces is a hyperplane and, as stated be-
matrices Am and vectors fm in Eq. (11) also have to be definedfore, is determined by ukjk � 0. Since in any conducting state
in accordance with Eq. (15). We are, of course, looking for athe response of the network will remain linear in terms of the
compact description of the piecewise linear function as de-applied voltage excitation, the components of the vectors y,
fined by the network with ideal diodes. From a network pointu, and j are all linear relations in the components xi of the
of view it is clear that the network is continuous and hencevector x. Hence the hyperplane can be rewritten such that a
the underlying piecewise linear function. As a result, the ma-linear combination of the components xi of x are equal to zero.
trices and vectors in Eq. (11) become related and may notThat is,
freely be chosen. This dependency is the same as expressed
by Eq. (8), yielding in this situation (assuming separationccctxxx + g = 0 (10)
hyperplane Hp)

All the diodes together separate the complete input space
into 2k polyhedral regions, called polytopes. Within each poly-
tope, all diodes remain in one of their states; some will con-

Ai = Aj + ( fff i − fff j )Cp·
gp

(16)

duct and others will block. Within each polytope, we have a
which fully determines the relation between two mappingslinear relation between x and y. Crossing a hyperplane means
from adjacent regions. Now the piecewise linear function isthat the diode corresponding to this hyperplane changes its
described completely by relation Eq. (11) together with thestate and hence we have an other topology, defined by the
description of the state space. Again consider the network ofpolytope in which we enter after crossing the boundary. Again
Fig. 4, from which we learned that its response is a piecewisewe are confronted with a linear network.
linear function that could be used to derive a closed form ex-Consider the situation that we have k diodes or hyper-
pression for a piecewise linear mapping. From the v-i curvesplanes, and therefore 2k polytopes. For each polytope, denoted
of the ideal diodes as given in Eq. (1), we recall that for eachby Km, we have a linear mapping representing the topology of
diode at port set 2 we havethe network for that polytope:

uuu, jjj ≥ 0 uuuT jjj = 0 (17)yyy = Amxxx + fff m m = 1, 2, . . ., 2k (11)
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with the inequalities taken component wise. Furthermore, we and which is a format similar to Eqs. (21) and (22). We can
easily show that for any one-dimensional one-to-one functionassume that the electrical behavior of the network within the

solid box at its outside ports can be described by a port-admit- this property holds.
tance matrix H, resulting in

Relations Between Piecewise Linear Model Descriptions

To compare explicit and implicit model description in order to
rank them, let us define the modulus operator:

[
iii1

iii2

]
=
[

H11 H12

H21 H22

][
vvv1

vvv2

]
+
[

fff
ggg

]

Definition 1. Let z, u, j � Rn and let the n-dimensional vec-Renaming i1 and v1 into y and x and the variables of port set
tor function � ( � ) be given as � (z)k � h(zk), where the sub-2 into u and j (because they are related to the diodes) and
script k denotes the kth element of a vector and h( � ) is asubstituting Eq. (16) yields
scalar function. For a strictly increasing h: R� � R� and
h(0) � 0, the transformation z � u, j defined by u � � (�z� �yyy = Axxx + Buuu + fff (18)
z), j � � (�z� � z) is called the modulus transformation.jjj = Cxxx + Duuu + ggg (19)

The modulus transformation automatically guaranteesuuu, jjj ≥ 0 uuuT jjj = 0 (20)
that u � 0, j � 0,uTj � 0, which exactly matches Eq. (20). If
we define h( � ) as h(t) � t. Corollary 1 immediately followswhich is known as the state model of a PL mapping f : x �
from Definition 1:y (8). Equation (18) determines the input-output mapping of

x onto y. The remaining two equations determine the state of
Corollary 1. The modulus transform for h(t) � t is equiva-the mapping from the electrical state of the ideal diodes.
lent to the mapping u, j � z satisfying �z� � (u � j)/2 andThese diodes form a kind of state variables, which, together
z � (u � j)/2, with z � R and u, j � R�.with the input vector x determine the output y comparable to

the situation in a state-space model of a linear dynamic sys-
By this corollary we have an operator to compare the im-tem. The conditions in Eq. (20) are called the complementary

plicit model description, which uses complementary vectors,conditions and u and j are complementary vectors. It is obvi-
with the explicit model description, as described by absolute-ous that some algebraic mechanism will be needed to be able
sign operators. Each explicit model description can be rewrit-to use the PL mapping in an efficient way. Storage and updat-
ten into a format similar to Eqs. (18) to (20) (10). To compareing of the description of the mappings as well as the calcula-
the descriptions, we only have to compare the obtained matrixtion of the mapping itself can then be performed by standard
in front of the state vector u. Doing so leads to the conclusionoperations from linear algebra.
that all explicit model descriptions are a subclass of the de-A few years after the publication of this model description,
scription Eqs. (18) to (20). If we have a description using basea new model was introduced in which the hyperplanes were
functions Eq. (9), it covers at maximum any PL function forallowed to be situated in the image space. However, the ma-
which the matrix D in Eq. (19) is of class P:trix in front of the state vector u in the state equation should

then be the identity matrix, resulting in the description
Definition 2. A matrix D belongs to class P if and only if
�z � Rp, z � 0, �k: zk � (Dz)k � 0.Iyyy + Axxx + Buuu + fff = 0 (21)

jjj = Cxxx + Dyyy + Iuuu + ggg (22) Class P is alternatively defined by the property that all
principal minors of D are positive. The model description of

where Eq. (20) still holds (9). Eqs. (21) and (22) is also a subclass of Eqs. (18) to (20) but
By now it should be clear that any piecewise linear memo- covers a larger class than Eq. (6). Note that the description of

ryless electrical multiport can be described by Eqs. (18) to Eqs. (18) to (20) also allows modeling of functions not being
(20). However, many networks can be handled by the descrip- of class P. As an example, consider the one-to-many mapping
tion of Eqs. (21) and (22), which has some advantages with
respect to analysis. To allow efficient analysis, it is important
that after a diode changes its conductivity and hence the to-
pology of the network is changed, the new description of the
network can be obtained efficiently (10). Because the state
matrix in front of the state vector u in Eq. (22) is the identity

x ≤ 1 } f (x) = 0

x ≤ 1
x ≥ 0

}
f (x) = −x + 1

x ≥ 0 } f (x) = 1
matrix, only Eq. (21) has to be modified during a topology

for which the description yieldschange of the network. As modeling example, consider the
model description of Eqs. (18) to (20) for the nonlinear resistor
in Fig. 2, which can be written as

y = (−1)x + (−1 1)uuu + (1)(
j1

j2

)
=
(

−1
1

)
x +

(
−1 1

1 −1

)
uuu +

(
1
0

)

having a matrix D not of class P. Such a function cannot be
described by any explicit model description.

Although each model format does not change with respect
to the function or network to be modeled, the model size is

i + (−1)v +
(

3
2

− 3
2

)
uuu = 0

j =
(

−1
−1

)
v + Iuuu +

(
1
2

)

uuu, jjj ≥ 0 uuuT jjj = 0

(23)
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strongly related to the number of ideal diodes in the network mension of M. A more efficient approach is to construct algo-
rithms that use an extension of a local solution estimate toor linear segments in the function. The more linear descrip-

tions are used to approximate the nonlinear behavior, the find the required result. Note that the dimension of M de-
pends on the number of linear segments used to approximatelarger the data storage will be, and this relation yields a lin-

ear behavior. However, the complexity to solve the model to the nonlinear behavior of a function.
The most well-known method for this purpose is the homo-obtain an output for a given input later on increases exponen-

tially with the number of ideal diodes in the network. In the topy algorithm by Katzenelson (16). Katzenelson introduced
this method in 1965, and the method is still extensively usedexplicit models this can be seen from the evaluation of the

absolute-sign operators and for the implicit models from the in piecewise linear simulation programs (10,17,18). Being a
homotopy method, a continuous path through the space is cre-evaluation of the complementary conditions. In both situa-

tions we have to check the two sides of each diode that is ated by extending the LCP of Eq. (26) according to
added to the network.

For many practical situations, piecewise linear models for jjj = Muuu + qqq0 + λ(qqq∗ − qqq0) (27)

the electrical elements can be obtained easily (11). This holds
where we assume that q0 is known with u � 0, j � 0 for � isfor a device element described at the current-voltage level,
zero. We are looking for the solution for a q*. The homotopybut also for digital components in terms of Boolean algebra or
parameter � is to be increased from zero to one. The proce-behavioral models of, for example, complete analog to digital
dure is to gradually increase parameter � until a component(AD) or digital to analog (DA) converters. Also, time-depen-
jm becomes zero, because [q0 � �(q* � q0)]�m � qm becomesdent elements such as capacitors or even differential equa-
zero. Just a small increase of � is needed to let um � 0, thustions can be described when we modify the implicit model de-
preventing jm from becoming negative, which is not allowedscriptions (9,11). Although most PL models are generated by
according to the complementary conditions. In terms of thehand, automatic model generators do exist for several func-
electrical network, this means that diode m is changing itstions (12,13).
state and the network topology is changing. We have to per-
form a pivoting operation with again a system of equations

SOLUTION ALGORITHMS according to Eq. (27). The pivot is the diagonal element Mmm,
which we assume to be positive. As a result, variables jm and

When we are using explicit model descriptions, we only have um will change place and Eq. (27) changes into a new form
to solve the absolute-sign operators, which is an evaluation given by
task. However, in the case of an implicit model, which is more
powerful and is therefore more used in circuit modeling, we vvv = Mwww + qqq0 + λ(qqq∗ − qqq0), vvv,www ≥ 0,vvvTwww = 0 (28)
have to obtain the internal state variables by solving the state
equations. Without any restrictions, we assume that the elec- in which w � 0 and v � q0 � �m(q* � q0) now will be a
trical network is described in terms of Eqs. (21) and (22) and solution. This process of increasing � is repeated until � � 1
that we know that the description is valid for u � 0. Then we is reached, in which case the solution for the LCP has been
may use the linear mapping to eliminate the output vector in obtained. It can be shown that � can always be increased
the state equation, yielding when the diagonal elements of M needed as a pivot are al-

ways positive. Moreover, if the matrix M belongs to class P,
jjj = (C − DA)xxx + Iuuu + (ggg − Dfff ) (24) the Katzenelson algorithm will always find the unique solu-

tion (15,19).
which can be transformed into As an example, consider a fairly simple network, con-

sisting of a linear resistor in series with a nonlinear resistorjjj = Iuuu + qqq (25)
that has a characteristic as defined in Fig. 2 and for which
the model is given by Eq. (23). This network is excited by awhere q � (C � DA)x � (g � Df ). This equation is a special
voltage source E. The topological relation yieldscase of

E = Ri + v (29)jjj = Muuu + qqq

uuu ≥ 0, jjj ≥ 0,uuuT jjj = 0
(26)

For this network we intend to find the dc operating point for
E � 9 V and R � 4 �. According to the theory given pre-

where for a given q the complementary vectors u and j should viously, we can write the complete network in terms of its
be solved. input variable E and its output variable i by combining Eq.

The problem defined by Eq. (26) is known as the linear (23) with Eq. (29), yielding
complementary problem (LCP) and the solution to this prob-
lem is the key operation in the evaluation of a PL function
based on Eqs. (18) to (20) or Eqs. (21) and (22). The LCP has
been known as a basic problem for quite some time and is
mainly studied for applications in game theory and economics
(14,15). In the past 20 years a number of algorithms have

i +
[
−1

5

]
E +

[
3

10
− 3

10

]
uuu = 0

jjj =
[
−1
−1

]
E +

[
−4
−4

]
i + Iuuu +

[
1
2

] (30)

been developed to solve the LCP, which in its most general
form is known to be an NP-complete problem. The solution where we leave out the complementary conditions for conve-

nience. Because of the definition of the elements of the net-can be found by going through all possible so-called pivotis-
ations of matrix M, which number is exponential in the di- work, (i, E0) � (0, 0) is a solution of the network. However,
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we intend to obtain the dc operating point for Ee � 9 and topy parameter may be complex. The advantage is that diffi-
cult points in the characteristic, such as the hysteresis curve,therefore we may define the homotopy path as E � Eo �

�(Ee � E0) � �9. We are now able to rewrite the state equation can be handled with more care than with the straightforward
method. Another extension is treated in Ref. 17 that allowsin Eq. (30) into a form similar to Eq. (27), yielding
us to find the dc operating point of a network having a discon-
tinuous behavior.

Over the years, several algorithms have been developed tojjj =
[
− 1

5

− 1
5

]
λ9 + Iuuu +

[
1
2

]
solve the LCP and they can roughly be categorized into four
groups:Note that the LCP matrix is the identity matrix and thus

of class P. Katzenelson’s algorithm will always obtain a solu-
1. Homotopy Algorithms. Besides the algorithm of Katzen-tion. Increasing � to let um � 0 to prevent jm from becoming

elson, Lemke (21) and van der Panne (22) developednegative results in � � 5/9 for the first state equation. Let
pivoting algorithms based on homotopy methods. Theu1 and j1 interchange and Eq. (30) will be updated to
advantage of the latter two algorithms is that they are
able to handle a larger class of LCP matrices than can
Katzenelson, which is only guaranteed for class P prob-
lems. The price to be paid is a more complex algorithm,
and therefore it is mainly the Katzenelson algorithm
that is used in (PL) simulators.
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]
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]
i + Iuuu +

[
−1

2

] (31)

2. Iterative Algorithms. These methods solve some equiva-
lent multidimensional optimization problem. This opti-where u1 and j1 interchanged names also to achieve a model
mization problem is most often quadratic (23). Equationsimilar to Eq. (30). Note that � � 5/9 means that E � 5, i �
(26) can be reformulated as minimizing ��xT Mx � qT x1, and therefore v � 1, which is indeed a breakpoint of the
under the condition that x � 0, which yields a solutionnonlinear resistor characteristic (see Fig. 2). By further in-
satisfying Eq. (26). The required solution can be ob-creasing E, the diode in the second branch of the subnetwork
tained by applying efficient gradient search methodsrepresenting the nonlinear resistor starts to conduct as v in-
from the nonlinear optimization theory.creases. The complete network topology will now change and

is described by the new mapping equation in Eq. (31). For this 3. Contraction Algorithms. The algorithms in this class
new situation Eq. (28) now yields solve some equivalent nonlinear algebraic problem by

iteration using, for example, contraction or Newton-
Raphson iteration. One important member of this class
is the modulus algorithm (8). This method will yield a

jjj =
[
−1

1

]
λ9 + Iuuu +

[
5

−4

]
polynomial solution algorithm for matrix M from a cer-
tain limited class such as positive definitive matrices.from which it can be observed that we may not increase the

4. Polyhedral Algorithms. These methods perform opera-homotopy parameter � further. The alternative is to decrease
tions on the polyhedrons in which the domain space isthis parameter and hope that we may increase it afterward
divided by the collection of hyperplanes. We will discussto reach � � 1. It can be proved that this extension to the
two algorithms of this class in more detail in the follow-original method of Katzenelson is allowed (19). Doing so, we
ing section because this class of algorithms allows us toobtain � � 4/9 in the second state equation, which corre-
find all dc operating points of a network.sponds to the diode in third branch of the subnetwork repre-

senting the nonlinear resistor starting to conduct. Pivoting
and updating the model results in MULTIPLE DC OPERATING POINTS

In the previous section algorithms were discussed to obtain a
single dc operating point of the electrical network. However,
many circuits do have multiple operating points. We dis-
cussed how a solution algorithm (in this case Katzenelson)
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]
can be applied to solve a network of piecewise linear compo-
nents (i.e., how to find a single operating point for a given

and the algorithm yields
excitation). In general, this means that using a homotopy
method, we are able to find a single solution of a piecewise
linear function starting from an initial condition. Determin-
ing all solutions would require trying all possible initial condi-

jjj =
[

1
5
1
5

]
λ9 + Iuuu +

[
1
5

− 4
5

]

tions, thus posing a severe drawback. The problem of finding
all solutions of a system of piecewise linear (or, in general,from which it is clear that we may increase the homotopy

parameter reaching � � 1. We now have obtained the dc op- nonlinear) equations is extremely complex. Because a
piecewise linear function might have a solution in every re-erating point of this network, (i, E) � (3/2, 9), and the voltage

over the nonlinear resistor is v � 3 V. gion, any algorithm that claims to find all solutions must scan
through all possible regions. The efficiency of an algorithm isIn the literature, an adaptation to the Katzenelson algo-

rithm is presented in which a single homotopy parameter therefore mainly determined by the efficiency with which it
can remove regions that do not have a solution from the list ofpath is extended to a multiparameter path (20). The homo-



PIECEWISE-LINEAR TECHNIQUES 463

all regions. Finding all solutions of a piecewise linear function because y1 and the origin must lie on the same side of Ĥk.
This procedure must be repeated for all sides of region R̂. Ifmeans solving
this so-called sign test fails on any of the boundaries of R̂,
then this region contains no solution of Eq. (32). Due to thefff (xxx) = 000 (32)
sign test, we do not have to solve all linear equations, but

To obtain all solutions of a piecewise linear function, we only those for which we know in advance that they contain a
can use the brute force method. Knowing the linear map y � solution. Therefore, this method is more elegant than the
a � Bx for each region, it is easily checked in which region brute force method. In Ref. 24 Chua described an efficient
the operating points are and what they are. However, this implementation of the sign test.
means solving 2k linear equations, which can be a rather large Applying this technique to Eq. (33) yields the dc operating
number in general. Therefore, this is called the brute force points (i, v) � (��, ��), (i, v) � (��, ��) and (i, v) � (��� , �	� ), which can
method of solving Eq. (32). Hence it is worthwhile to develop be verified by adding the load line, defined by Eq. (29) to the
methods that can reduce the computational effort of the task. characteristic in Fig. 2.
For finding all solutions of a piecewise linear function, we
must find an efficient way to exclude regions that do not con- Separable Piecewise Linear Functions
tain a solution.

Yamamura (25) developed a method that is based on the as-We will discuss several techniques that exploit some prop-
sumption that one considers the function f to be separable:erties of the piecewise linear model to obtain rather efficiently

all dc operating points of a network. To compare the methods,
we will use one example throughout this section. We will con-
sider the same network as in the previous section but with R

fff (xxx) =
n∑

i=1

f i(x) (37)

� 6 � and E � 6 V.
where f i : R1 � Rn. It can be shown that many practical re-
sistive circuits exploit this property and hence this assump-Exploiting the Lattice Structure
tion is not too strict (26,27). Further, it is known that a

In 1982 Chua explored a special property of Eq. (6) to find all piecewise linear approximation of a separable mapping can
solutions in a more efficient way than the brute force method be performed on a rectangular subdivision. This means that
(24). This property is the fact that for functions described by if f was nonlinear, it is transformed into a piecewise linear
Eq. (6) all regions in the domain space are separated only by function by approximating the function linearly within each
horizontal and vertical hyperplanes. Notice that this property rectangle. Hence a piecewise function will be the result. It
only holds for the one-level nested operator. Therefore, this also means that the following procedure results in an approxi-
method is not applicable for higher-order nesting of this oper- mation of the exact solution: The finer the rectangular subdi-
ator, like in the model description based on higher-order base vision, the better the approximation solution of f . If, how-
functions. Function f for our example is given by ever, f was already piecewise linear and, in particular, in

accordance with Eq. (6), we can choose the subdivision such
that it fits with the polytopes of the mapping. In case of Eq.f (v) = 0 = 7

6
v − 7

4
− 3

4
|v − 1| + 3

4
|v − 2| (33)

(6) we choose the lattice structure as rectangular subdivision
and the exact solutions will be obtained. If this is not possible,

which is obtained by combining Eq. (5) with the topological we can again approximate this piecewise linear function on a
relation of Eq. (29). Now consider the domain space of f , chosen rectangular subdivision following the procedure as if
which in this case is partitioned by 2 or, in general, by � hyp- the function was nonlinear. So in this subsection we assume
erplanes into 4 or 2� regions, respectively. Note their special that f in Eq. (37) is either nonlinear or piecewise linear.
property: They are parallel to one of the axis. Such a struc- Let us subdivide the solution space into rectangular re-
ture is called a lattice structure. For each region we have a gions. To this purpose we define two vectors
linear map of f . We can also generate the partitioning of the
image or the range space by applying map f on the regions. lll = (l1, l2, . . ., ln)T and uuu = (u1, u2, . . ., un)T (38)
Because we are searching for the solutions of Eq. (32) or (33),
we can see from the range space which regions must be con- so that a particular n-dimensional rectangle is given by
sidered, and they simply must contain the origin. Let x1 be an
arbitrary point in region R and let its image be y1 in R̂, the Ri = {xxx ∈ Rn|li ≤ xi ≤ ui}, i = 1,2, . . ., n (39)
image of R. Consider also hyperplane Hk and its image Ĥk:

Then for this region Ri we define the following sign test:
Hk: 〈αααk,xxx〉 − βk = 0

Ĥk: 〈α̂ααk,xxx〉 − β̂k = 0
(34)

If the origin is located in region R̂, then

n∑
i=1

[
max{ f̂ i

j (li), f̂ i
j (ui)}

] ≥ 0

n∑
i=1

[
min{ f̂ i

j (li), f̂ i
j (ui)}

] ≤ 0

j = 1, 2, . . ., n (40)

sgn
(〈α̂ααk, 0〉 − β̂k

) = sgn(−β̂k) (35)

where f̂ represents the linear approximation of f in the rect-
and this must be equal to angle under consideration. Equation (40) means that in each

rectangle only two function evaluations per region have to be
performed. This is because the function within the rectanglesgn

(〈α̂ααk,yyy1〉 − β̂k) (36)
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is linear and hence the function evaluation on the boundaries where xj, j � 1, 2, . . ., n represents a breakpoint in the char-
of the rectangle provides enough information. For instance, if acteristic and x��, x�� represents some points at the left-most
we consider the one-dimensional case, then Eq. (40) reduces and right-most segment (28). Equation (42) describes a PL
to mapping with the parameters consistent with the complemen-

tary conditions as given in Eq. (43). We did not mention this
model description in the previous sections because it has no
direct relation to an electrical network. The nonlinear resistor

max{ f̂ 1(l), f̂ 1(u)} ≥ 0

min{ f̂ 1(l), f̂ 1(u)} ≤ 0
(41)

as defined by the network in Fig. 2 can be given in terms of
Eqs. (42) and (43)

which means that at one boundary of the rectangle the func-
tion value is positive while at the other boundary the function
value is negative. Indeed, somewhere within the boundary
the function must pass the origin and hence a solution is ob-
tained. If Eq. (40) does not hold for some j, the function does
not possess a solution in that rectangle.

This test is very simple, simpler than the one proposed by
Chua (24), where first the image of all boundaries must be

[
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=
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]
+
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]
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λ+
1 − λ−

1 = λ+ − λ− − 1

λ+, λ−, λ+
1 , λ−

1 ≥ 0

λ+
1 · λ−

1 = λ+ · λ− = 0

(44)

computed. In the case of Yamamura, per region it requires
only 2n(n � 1) additions and n(n � 2) comparisons. After the

and the topological equation of Eq. (29) can be rewritten as
sign test, we solve linear equations on the regions that passed
the test. The problem with this method is that the test has to
be applied on each rectangle. We can significantly reduce the
number of tests by exploiting another property—namely, the
sparsity of the nonlinearity. In general, each equation is non-

(−6 − 1 6)




i
v
α


 (45)

linear or piecewise linear in only a few variables and is linear
in all other variables. Suppose that the function f is nonlinear

where � is a slack parameter. We can now substitute Eq. (44)in x1 and linear in x2; then we do not have to define a subdivi-
into Eq. (45), yielding a system of the following form:sion in R2 but only in R. Now we can apply the same sign test

of Eq. (40) to this structure, which has a complexity of a lesser
degree than we had previously. We can show that the total
complexity is on the order O(n3).

We can apply this technique to our example assuming that
f is given by Eq. (33). Let us define the rectangular division
as [0, 1], [1, 2], and [2, 3], which coincides with the lattice

[
−9 0 2 7 −1
−1 1 1 −1 −1

]


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1

λ−
1

λ+

λ−
α


 (46)

structure of Eq. (33). For the first rectangle Eq. (41) results
in

or, in general,

max{ f̂ 1(0), f̂ 1(1)} = max{−1, 1
6 } ≥ 0

min{ f̂ 1(0), f̂ 1(1)} = min{−1, 1
6 } ≤ 0

and therefore contains a solution of the network. In a similar

(M N − q)


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www
zzz
α


 = 0 (47)

way, we can observe that the other two rectangles fulfill the
conditions, and working this out results in the three dc op- which in the literature is known as the generalized linear com-
erating point as obtained previously. plementary problem (28,29) with w, z, � � 0 and the comple-

mentary condition still valid. This set of equations can be
Finding all Solutions Using Polyhedral Methods solved using the modified Tschernikow method. The term gen-

eralized is used because the matrix is not of dimension Rn�n,In essence, these methods transfer the original problem into
as in the LCP discussed previously, but can have any dimen-a form of the LCP and solve the new problem with very pow-
sion, i.e. Rn�m, n � m. Hence it can represent an undercon-erful methods. Any one-dimensional PL mapping can be writ-
strained set of equations that indeed can possess more thanten according to
one solution.

Tschernikow developed a method to find all solutions of the
problem

Axxx ≤ bbb, xxx ∈ Rn, A ∈ Rm×n, n ≥ m (48)

x = x0 + x−∞λ− + (x1 − x0)λ+

+
n∑

k=2

(xk − 2xk−1 + xk−2)λ+
k−1

+ (x+∞ − 2xn + xn−1)λ+
n

(42)

which in any case with the introduction of some slack vari-
ables can always be transformed into

Buuu ≤ 0,uuu ≥ 0 B ∈ Rk×p (49)

λ+
j − λ−

j = λ+ − λ− − j, j = 1, 2 . . ., n

λ+
j , λ−

j , λ+, λ− ≥ 0

λ+ · λ− = 0, λ+
j · λ−

j = 0

(43)
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The solution space of Eq. (49) describes all nonnegative so- If not, the corresponding row must be removed from the tab-
leau and we can generate a new tableau (29).lutions of Eq. (48). The method starts to define a start tableau

The start tableau in our example of Eq. (46) looks like

T1 = (T1
1 |T1

2 ) =




1 0
. . .

0 1

b11 · · · bk1

...
...

b1p · · · bkp


 (50)

where T1
1 is a unity matrix, forming a base in the




1 0 0 0 0 −9 −1

0 1 0 0 0 0 1

0 0 1 0 0 2 1

0 0 0 1 0 7 −1

0 0 0 0 1 −1 −1




p-dimensional space, and T1
2 is composed by placing a row of

Eq. (49) as column in Eq. (50). For each row in T1
1 we define

Taking the first column of the right-hand part, we can makeS(i), i � 1, 2, . . ., p as the collection of columns in T1
1 with a

two combinations of rows having opposite sign. All can bezero in row i. In a similar way, we define S(i1, i2) as the collec-
transferred to the next tableau, yieldingtion with both zeros in i1 and i2. We now randomly choose a

column j in T1
2 with at least one nonzero element. We consider

two rows, i1, i2, from the tableau with opposite sign in column
j and consider the corresponding S(i1, i2). If S(i1, i2) � S(i), i
� i1, i � i2, then the linear combination of rows i1, i2 such that
a zero in column j is created is of importance. It is precisely
this combination that generates a boundary in the solution




0 1 0 0 0 1

2 0 9 0 0 7

7 0 0 9 0 −16

0 0 1 0 2 −1

0 0 0 1 7 −8




space. Only on one side of this hyperplane, solutions of the
problem do exist that are consistent with the space as defined

which finally yields (because many combinations do not fulfillin T1
1 and the equation as defined by column j corresponding

the complementary conditions)to row j of Eq. (49). Obviously, this new row must be intro-
duced in the new tableau matrix. It must be clear that all
rows having a zero or negative entry in column j are also
transferred to the new tableau matrix. They automatically
fulfill the inequality condition in Eq. (49) for axis j. In the




0 1 1 0 2

2 0 16 0 14

0 8 0 1 7


 (54)

same way tableau Ti can be found from Ti�1, and the proce-
dure stops when all columns in the right part are treated or We now consider the first equation in Eq. (54), which tells us
we end up with only columns in the right part, which are that ��

1 � ��(� � 1). Combining this with Eq. (44) leads to (i,
strict positive. In the latter case there does not exist a solu- v) � (��, ��), which is indeed one of the dc operating points. In
tion to the problem except the trivial solution. In the first a similar approach, the other two operating points can be ob-
situation we end up with the following tableau: tained from Eq. (54).

The outlined approach can be slightly modified to handle
model descriptions as defined by van Bokhoven directly, lead-
ing to a broad class of problems that can be solved (33). Here
first the transfer characteristic of each element is determined
after which the topological relations are used to solve a set of

Tend = (Tend
1 |Tend

2 ) =




c11 · · · c1p

...
...

ct1 · · · ct p

0


 (51)

equations similar to Eq. (47) but now being a pure LCP. The
advantage of this method over the treated method is that re-with the nonnegative solution for Eq. (49)
striction on the variables can be taken into account. This can
be of interest when only solutions in a special subspace are of
interest or when the network is extended with other compo-uuu =

t∑
i=1

pici, with ci = (ci1, . . ., cip) (52)

nents later. In that case, not the whole procedure must be
restarted but only parts of it for the new added components.and pi a nonnegative parameter. The set (c1, . . ., ct)T de-
Obviously, this will save computational effort.scribes the corners of the convex solutions space. If the prob-

lem is written as
Polyhedral Methods and Linear Programming

For a long time the relation between LCP and linear program-Axxx = bbb, xxx ∈ Rn, A ∈ Rm×n, n ≥ m (53)
ming (LP) has been known. Each LP problem can be trans-
formed into an LCP using the duality property of the LP (29).as in Eq. (47), then only a small modification in the previously

outlined procedure is needed. Only rows having a zero entry On the other hand, it is possible to treat a piecewise linear
network as a polyhedral function, which can then be solvedin column j are directly transferred to the new tableau ma-

trix. For a detailed outline, we refer to the works of Tscherni- using LP (34). We mentioned that the state equation de-
scribes a set of polyhedral regions in the space, called poly-kow (30–32). For the generalized LCP, the procedure outlined

previously has to be only slightly adapted: Now the comple- topes. For each polytope a linear relation describes the local
behavior of the function. We can also combine these two rela-mentary conditions must also be fulfilled, so after each gener-

ation of a new tableau we have to check these conditions. We tions when we treat the piecewise linear function as a polyhe-
dral element. The polyhedral elements, in general, do notsimply check each row in the columns in the left part of the

tableau matrix for whether the conditions are fulfilled or not. have a correspondence with a physical device, but they consti-
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