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CHAOTIC CIRCUIT BEHAVIOR

Many physical systems exhibit steady-state behavior that is
oscillatory but not periodic. Until recently, such behavior was
thought to be due to some inherent source of randomness in
the system and was classified as ‘‘noise.’’ Chaos refers to non-
periodic asymptotic behavior in systems that are completely
deterministic. This article describes a number of simple deter-
ministic electronic circuits that exhibit chaos.

Since the pioneering days of electronics in the 1920s, dc
equilibrium, periodic, and quasi-periodic steady-state solu-
tions of electronic circuits have been correctly identified and
classified. By contrast, the existence of chaos has been widely
acknowledged only in the past 30 years.

Even though the notion of chaotic behavior in dynamical
systems has existed in the mathematics literature since
Poincaré’s work at the turn of the century, unusual behavior
in the physical sciences as recently as the 1970s was being
described as ‘‘strange’’ (1). Today we classify as chaos bounded
recurrent motion in a deterministic dynamical system that is
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characterized by sensitive dependence on initial conditions tracting limit sets or attractors. Electronic circuits are typi-
cally dissipative due to resistive heating losses; consequently,(2,3).
their long-term behavior is usually characterized by motionAlthough the future behavior of a chaotic system is in prin-
on attractors. Here, we consider only dissipative circuits.ciple determined exactly by the initial conditions, sensitive

Attracting equilibrium point, periodic, and quasi-periodicdependence on initial conditions means that the precision
solutions of deterministic dynamical systems have the prop-with which these conditions must be specified grows exponen-
erty that trajectories from nearby initial conditions that con-tially with the length of the prediction. Thus a real chaotic
verge to the same limit set become correlated with time. Bysystem appears to exhibit ‘‘randomness’’ in the time domain
contrast, two trajectories started close together on an at-because its initial conditions cannot be specified with suffi-
tracting chaotic limit set diverge exponentially and soon be-cient precision to make accurate long-term predictions of its
come uncorrelated; this is called sensitive dependence on ini-behavior.
tial conditions and gives rise to long-term unpredictability.The earliest experimental observations of chaos in elec-

Technically a chaotic circuit is one whose steady-state be-tronic circuits were in forced nonautonomous nonlinear oscil-
havior is characterized by one or more positive Lyapunov ex-lators, including the sinusoidally excited neon bulb relaxation
ponents. Lyapunov exponents characterize the average expo-oscillator studied by van der Pol and van der Mark (4,5), the
nential rate of separation of trajectories of a dynamicalforced negative-resistance oscillator of Ueda (6) and the
system on the attractor. Negative Lyapunov exponents causedriven series-tuned RL-diode circuit (7–9). More recently
trajectories to converge with time. If an attractor has a posi-chaos has been observed and studied in a variety of unforced
tive Lyapunov exponent, then nearby trajectories on the at-autonomous electronic circuits such as Chua’s oscillator (10–
tractor are separated, on average, along some direction. In12), hysteresis oscillators (13–15), classical circuits such as
practical terms, this means that trajectories of the circuit arethe Colpitts oscillator (16,17) and the phase-locked loop (18),
unstable yet bounded. Instability means that nearby trajecto-and a number of important discrete-time systems, including
ries diverge on average, and boundedness implies that theyswitched capacitor circuits (19), dc–dc converters (20,21), dig-
remain in some finite volume of the state space.ital filters (22), and sigma-delta modulators (23).

How can nearby trajectories diverge exponentially and yetIn the following sections we discuss a number of autono-
remain within a bounded limit let? This may be achieved bymous and nonautonomous chaotic circuits. While exhibiting a
repeated stretching and folding of the flow, as shown in Fig. 1.rich variety of complex dynamical behaviors, these circuits

Consider the spiral attractor shown in Fig. 1. A trajectoryare simple enough to be constructed and modeled using stan-
spirals away from the equilibrium point P� along the planedard electronic parts and simulators.
Ec(P�) until it enters the D0 region, where it is folded back
into D�1 and returns to the plane Ec(P�) close to P�. The recur-

CHAOTIC CIRCUITS rent stretching and folding continues ad infinitum, producing
a chaotic steady-state solution (12).

Chaos may be defined as bounded steady-state behavior in a Note that two trajectories passing very close to X0 on
deterministic dynamical system that is not an equilibrium Ec(P�) are separated quite dramatically when they cross the
point, not periodic, and not quasi-periodic (24). plane U�1 and enter D0. By the time they return to D�1, they

Solutions of a dissipative deterministic dynamical system are no longer close. This illustrates sensitive dependence on
initial conditions.eventually settle into regions of the state space called at-
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Figure 1. Stretching and folding mechanism of chaos generation in Chua’s oscillator. (a) Simu-
lated spiral chaotic attractor showing affine regions (D�1 and D1), separating planes (U�1 and
U1), equilibrium points (P�, 0, and P�), and their associated eigenspaces (Er and Ec). (b) Experi-
mentally observed attractor. Vertical axis: V1 (1 V/div); horizontal axis: V2 (200 mV/div). Positive-
going intersections of the trajectory through the plane defined by I3 � 1.37 mA are shown high-
lighted.
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Figure 2. Experimental manifestations of chaos in the double-scroll attractor from Chua’s oscil-
lator (R � 1800 �, C1 � 9.4 nF) (a) Two-dimensional projection of the attractor in state space;
vertical axis: V1 (1 V/div); horizontal axis: V2 (200 mV/div). (b) Time-domain waveforms. Upper
trace: V1(t) (2 V/div); lower trace: V2(t) (500 mV/div); horizontal axis: t (2 ms/div). (c) Power
spectrum of V2(t). Vertical axis: power (dB); horizontal axis: frequency (kHz). (d) Time-domain
waveforms showing sensitivity to initial conditions. Vertical axis: V1(t) (2 V/div); horizontal axis:
t (500 �s/div).

Chaos is characterized by repeated stretching and folding In this section we consider three important classes of au-
tonomous electronic circuits: Chua’s oscillator, Saito’s hyster-of a bundle of trajectories in state space. In the time domain

a chaotic trajectory is neither periodic nor quasi-periodic but esis oscillator, and the Colpitts oscillator.
looks unpredictable in the long term. This long-term unpre-
dictability manifests itself in the frequency domain as a broad Chua’s Oscillator
‘‘noiselike’’ power spectrum (25).

Chua’s oscillator (shown in Fig. 3) consists of a linear induc-Figure 2 shows experimental manifestations of chaos in
tor, two linear resistors, two linear capacitors, and a singlethe well-known double-scroll chaotic attractor from Chua’s os-
voltage-controlled nonlinear resistor NR, called a Chua diodecillator (26).
(10–12). NR is a voltage-controlled piecewise-linear resistor

CHAOS IN AUTONOMOUS ELECTRONIC CIRCUITS

In order to exhibit chaos, an autonomous circuit consisting of
resistors, capacitors, and inductors must contain (1) at least
one active resistor, (2) at least one nonlinear element, and
(3) at least three energy-storage elements. The active resistor
supplies energy to separate trajectories, the nonlinearity pro-
vides folding, and the three-dimensional state space permits
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persistent stretching and folding in a bounded region without
violating the noncrossing property of trajectories. Figure 3. Chua’s oscillator.
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transforms a limit cycle into one at half the frequency,
spreading the energy of the system over a wider range of fre-
quencies. An infinite cascade of such doublings results in a
chaotic trajectory of infinite period and a broad frequency
spectrum that contains energy at all frequencies. Figure 5 is
a set of snapshots of the period-doubling route to chaos in
Chua’s oscillator.

Bifurcation Diagrams

IR
Gb

Gb

Ga
–E

E VR
0

(Gb – Ga)E

(Ga – Gb)E

While state-space, time-, and frequency-domain measure-
Figure 4. The V–I characteristic of the nonlinear resistor NR in ments are useful for characterizing steady-state behaviors,
Chua’s oscillator has breakpoints at 	E and slopes Ga and Gb in the nonlinear dynamics offers several other tools for summarizing
inner and outer regions. qualitative information concerning bifurcations.

A bifurcation diagram is a plot of the attractors of a system
versus a control parameter. For each value of the control pa-

(27) whose continuous odd-symmetric three-segment V–I rameter, called the bifurcation parameter, one plots samples
characteristic (shown in Fig. 4) is defined explicitly by the of a state of the system. In the case of a fixed point, all sam-
relationship ples are identical and the attractor appears on the bifurcation

diagram as a single point. If a periodic solution is sampled
synchronously, the attractor appears in the bifurcation dia-IR = GbVR + 1

2 (Ga − Gb)(|VR + E| − |VR − E|)
gram as a finite set of points. A periodic solution consisting of

Chua’s oscillator is described by three ordinary differential
equations:

dV1

dt
= G

C1
(V2 − V1) − 1

C1
f (V1)

dV2

dt
= G

C2
(V1 − V2) + 1

C2
I3

dI3

dt
= − 1

L
V2 − R0

L
I3

where G � 1/R and f (VR) � GbVR � ��(Ga � Gb)(�VR � E� �
�VR � E�).

Chua’s circuit is a special case of Chua’s oscillator where
R0 � 0 (11,12). In practice, an inductor typically has a nonzero
series parasitic resistance, implying that R0 � 0. Therefore
we consider only the general case of Chua’s oscillator.

The primary motivation for studying Chua’s oscillator is
that it can exhibit every dynamical behavior known to be pos-
sible in an autonomous three-dimensional continuous-time
dynamical system described by a continuous odd-symmetric
three-region piecewise-linear vector field. In particular, it can
exhibit equilibrium point, periodic, quasi-periodic, and chaotic
steady-state solutions. The oscillator is also useful in studying
bifurcations and routes to chaos. A user-friendly program for
studying chaos in Chua’s circuit is available (28).

A bifurcation is a qualitative change in the behavior of a
system (2). One of the most familiar bifurcations in electronic
circuits is the Hopf bifurcation, where a circuit that had been
at an equilibrium point begins to oscillate when a parameter
is increased through some critical value called a bifurcation
point.

A well-defined sequence of bifurcations that takes a system
from dc or periodic behavior to chaos is called a route to chaos.
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With appropriate choices of its component values, Chua’s os-
Figure 5. Period-doubling in Chua’s oscillator with L � 18 mH,cillator can follow the period-doubling, intermittency, or
R0 � 12.5 �, C2 � 100 nF, Ga � �50/66 mS � �757.576 �S, Gb �

quasi-periodic route to chaos.
�9/22 mS � �409.091 �S, and E � 1 V. Simulated state space tra-
jectories (left), time waveforms V1(t) (top right), and power spectra of

Example: Period-Doubling Route to Chaos in Chua’s Oscilla- V2(t) (bottom right). (a) G � 530 �S: periodic steady state; (b) G �
tor. The period-doubling route to chaos is characterized by a 537 �S: period two; (c) G � 539 �S: period four; (d) G � 541 �S:

spiral chaotic attractor.cascade of period-doubling bifurcations. Each period-doubling



230 CHAOTIC CIRCUIT BEHAVIOR

Dynamics of D0

A trajectory starting from some initial state in the D0 region
may be decomposed into its components along the plane Ec(0)
and the vector Er(0). When 	0 � 0 and �0 � 0, the component
along Ec(0) spirals toward the origin along this plane, while
the component in the direction Er(0) grows exponentially.
Adding the two components, we see that a trajectory starting
slightly above the plane Ec(0) spirals toward the origin along
the Ec(0) direction, all the while being pushed away from
Ec(0) along the unstable direction Er(0). As the (stable) compo-
nent along Ec(0) shrinks in magnitude, the (unstable) compo-
nent grows exponentially.

Thus the trajectory follows a helix of exponentially de-
creasing radius whose axis lies in the direction of Er(0); this
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is illustrated in Fig. 7.
Figure 6. Bifurcation diagram for V1 in Chua’s oscillator.

Dynamics of D�1 and D1

A trajectory starting from some initial state in the D1 region
may be decomposed into its components along the planen points is called a ‘‘period-n’’ orbit. Since a chaotic solution is
Ec(P�) and the vector Er(P�). When 	1 � 0 and �1 � 0, thenonperiodic, sampling produces an uncountable set of points.
component on Ec(P�) spirals away from P� along this plane,When producing a bifurcation diagram, the sampling in-
while the component in the direction of Er(0) tends asymptoti-stants are determined by a clock that is derived from the dy-
cally toward P�. Adding the two components, we see that anamics of the system under consideration. In discrete sys-
trajectory starting close to the real eigenvector Er(P�) abovetems, one simply plots successive values of a state variable.
the plane moves toward Ec(P�) along a helix of exponentiallyFor nonautonomous continuous-time systems with periodic
increasing radius. Since the component along Er(P�) shrinksforcing, the driving signal provides a natural sampling clock.
exponentially in magnitude and the component on Ec(P�)Some type of discretization in time is needed for autonomous
grows exponentially, the trajectory is quickly flattened onto

continuous-time systems. In this case, the sampling instants
Ec(P�), where it spirals away from P� along the plane; this is

are defined by crossings of a trajectory of the system through illustrated in Fig. 8.
a reference plane in the state space that is called a Poincaré By symmetry, the equilibrium point P� in the D�1 region
section. has three eigenvalues: 	1 and �1 	 j�1. The vector Er(P�) is

Figure 6 shows a simulated bifurcation diagram for V1 in associated with the real eigenvalue 	1; the real and imaginary
Chua’s oscillator as the bifurcation parameter G is swept parts of the eigenvectors associated with the complex conju-
from 533 to 543 �S. V1 is sampled when V2 � 0. Period-one, gate pair �1 	 j�1 define a plane Ec(P�) along which trajecto-
period-two, and period-four orbits for G � 530, 537, and 539 ries spiral away from P�.
�S yield one, two, and four points, respectively, on the bifur-
cation diagram. Global Dynamics

With the given set of parameter values, the equilibrium point
Chaos Generation Mechanism in Chua’s Oscillator at the origin has an unstable real eigenvalue and a stable pair

Because of the piecewise-linear nature of the nonlinearity
f ( � ), the vector field of Chua’s oscillator may be decomposed
into three distinct affine regions—V1 � �E, �V1� � E, and
V1 � E—which are called the D�1, D0, and D1 regions, respec-
tively (12). In each region, the dynamics are linear. The global
dynamics may be determined by considering separately the
behavior in each of the three regions (D�1, D0, and D1) and
then gluing the pieces together along the boundary planes
U�1 and U1.

Shil’nikov Chaos in Chua’s Oscillator

In the following discussion, consider a fixed set of component
values: L � 18 mH, R0 � 12.5 �, C2 � 100 nF, C1 � 10 nF,
Ga � �50/66 mS � �757.576 �S, Gb � �9/22 mS � �409.091
�S, and E � 1 V. When G � 550 �S, the oscillator has three
equilibrium points at P�, 0, and P�. The equilibrium point at
the origin (0) has one real eigenvalue 	0 and a complex conju-

V1

V2

Er(0)

Ec(0)

I3D0 0

gate pair �0 	 j�0. The outer equilibria (P� and P�) each have
a real eigenvalue 	1 and a complex conjugate pair �1 	 j�1. Figure 7. Dynamics of the D0 region.
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Figure 9. A simulated double-scroll attractor in Chua’s oscillator
Figure 8. Dynamics of the D1 region. By symmetry, the D�1 region with G � 565 �S.
has equivalent dynamics.

of complex conjugate eigenvalues; the outer equilibrium point
P� has a stable real eigenvalue and an unstable complex pair.

In particular, P� has a pair of unstable complex conjugate
eigenvalues �1 	 �1 (�1 � 0, �1 � 0) and a stable real eigen-
value 	1, where ��1� � ��1�. One can prove that the circuit is
chaotic in the sense of Shil’nikov by showing, in addition, that
it possesses a homoclinic orbit for this set of parameter val-
ues. A homoclinic orbit is a closed trajectory that is asymp-
totic in forward and reverse time to the same equilibrium
point. Trajectories that lie close to a homoclinic orbit exhibit
complex dynamics.

A trajectory starting on the vector Er(0) close to 0 moves
away from the equilibrium point until it crosses the bound-
ary U1 and enters D1. If this trajectory is folded back into D0
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by the dynamics of the outer region, and reinjected toward 0
Figure 10. Practical implementation of Chua’s oscillator using twoalong the stable plane Ec(0), then the required homoclinic or-
op amps and six resistors to realize the Chua diode.bit is produced. That Chua’s oscillator is chaotic in the sense

of Shil’nikov was first proved by Chua et al. in 1985 (26).

Double-Scroll Attractor

The double-scroll attractor, a two-dimensional projection of
which is shown in Fig. 9, is a chaotic attractor in Chua’s oscil-
lator. This strange attractor is so called because of the inter-
twined scroll-like structure of a transverse section through
the attractor at the origin.

Practical Implementation of Chua’s Oscillator

Chua’s oscillator can be realized in a variety of ways using
standard or custom-made electronic components. All of the
linear elements (capacitor, resistor, and inductor) are readily
available as two-terminal devices. A nonlinear resistor NR

with the prescribed V–I characteristic (called a Chua diode)
can be implemented by connecting two negative-resistance
converters in parallel, as shown in Fig. 10 (29). A complete
list of components for this circuit is given in Table 1. Chua
diodes have also been implemented in integrated circuit
form (30).

The op amp subcircuit consisting of A1, A2 and R1–R6 func-
tions as a negative-resistance converter NR with a V–I charac-

Table 1. Component List for the Practical Implementation
of Chua’s Oscillator Shown in Fig. 10

Element Description Value

A1 Op amp
(1/2 AD712 or equivalent)

A2 Op amp
(1/2 AD712 or equivalent)

C1 Capacitor 10 nF
C2 Capacitor 100 nF
R Potentiometer 2 k�

R1 1/4 W resistor 3.3 k�

R2 1/4 W resistor 22 k�

R3 1/4 W resistor 22 k�

R4 1/4 W resistor 2.2 k�

R5 1/4 W resistor 220 �

R6 1/4 W resistor 220 �

L, R0 Inductor 18 mH, 12.5 �

(TOKO type 10RB)
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Figure 11. Every physically realizable nonlinear resistor NR is even-
tually passive—the outermost segments must lie completely within
the first and third quadrants of the VR–IR plane for sufficiently large
�VR� and �IR�.

teristic as shown in Fig. 11. Using two 9 V batteries to power
the op amps gives V� � 9 V and V� � �9 V. From measure-
ments of the saturation levels of the AD712 outputs, Esat �
8.3 V, giving E � 1 V. With R2 � R3 and R5 � R6, the nonlin-
ear characteristic is defined by Ga � �1/R1 � 1/R4 � �50/66
mS, Gb � 1/R3 � 1/R4 � �9/22 mS, and E � R1Esat/(R1 �
R2) � 1 V. Note that the real inductor is modeled as a series
connection of an ideal linear inductor L and a linear resis-
tor R0.

Nonideality of an Op amp–Based Chua Diode

The V–I characteristic of the op amp–based Chua diode in
Fig. 10 differs from the desired piecewise-linear characteristic
shown in Fig. 4 in that it has five segments, the outer two of
which have positive slopes Gc � 1/R5 � 1/220 S.

This nonideality is due to the fundamental laws of nature.
Any physical realization of a nonlinear resistor is eventu-
ally passive, meaning simply that for a large enough volt-
age across its terminals, the instantaneous power PR(t) �
(VR(t)IR(t)) consumed by the device is positive.

Hence the V–I characteristic of a real Chua dioide must
include at least two outer segments with positive slopes that
return the characteristic to the first and third quadrants.
From a practical point of view, as long as the voltages and
currents on the attractor are restricted to the negative-resis-
tance region of the characteristic, these outer segments will
not affect the circuit’s behavior.

SPICE Simulation of Chua’s Oscillator

Chaotic circuits may be readily simulated using commercial
circuit simulators such as SPICE (31). Figure 12 shows a net-
list for the practical implementation of Chua’s oscillator
shown in Fig. 10. The AD712 op amps in this realization of
the circuit are modeled using Analog Devices’ AD712 mac-
romodel (32). The TOKO 10 RB inductor has a nonzero series
resistance, which we have included in the SPICE net-list:

CHUA’S OSCILLATOR

L 1 10 0.018
R0 10 0 12.5
R 1 2 1770
C2 1 0 100.0N
C1 2 0 10.0N
* 2-VNIC CHUA DIODE
V+ 111 0 DC 9
V� 0 222 DC 9
XA1 2 4 111 222 3 AD712
R1 4 0 3.3K
R2 3 4 22K
R3 2 3 22K
XA2 2 6 111 222 5 AD712
R4 6 0 2.2K
R5 5 6 220
R6 2 5 220

* AD712 SPICE Macro-model 1/91, Rev. A
* Copyright 1991 by Analog Devices, Inc.
* (reproduced with permission)
*
.SUBCKT AD712 13 15 12 16 14
*
VOS 15 8 DC 0
EC 9 0 14 0 1
C1 6 7 .5P
RP 16 12 12K
GB 11 0 3 0 1.67K
RD1 6 16 16K
RD2 7 16 16K
ISS 12 1 DC 100U
CCI 3 11 150P
GCM 0 3 0 1 1.76N
GA 3 0 7 6 2.3M
RE 1 0 2.5MEG
RGM 3 0 1.69K
VC 12 2 DC 2.8
VE 10 16 DC 2.8
RO1 11 14 25
CE 1 0 2P
RO2 0 11 30
RS1 1 4 5.77K
RS2 1 5 5.77K
J1 6 13 4 FET
J3 7 8 5 FET
DC 14 2 DIODE
DE 10 14 DIODE
DP 16 12 DIODE
D1 9 11 DIODE
D2 11 9 DIODE
IOS 15 13 5E-12
.MODEL DIODE D
.MODEL FET PJF(VTO=�1 BETA=1M IS=25E-12)
.ENDS

.IC V(1)=0 V(2)=0.1

.TRAN 0.01MS 100MS 50MS

.OPTIONS RELTOL=1.0E-5 ABSTOL=1.0E-5

.PRINT TRAN V(1) V(2)

.END
R0 � 12.5 �. Node numbers are as in Fig. 10: The power rails
are 111 and 222; 10 is the ‘‘internal’’ node of our physical Figure 12. SPICE deck to simulate the transient response of the
inductor where its series inductance is connected to its se- implementation of Chua’s oscillator in Fig. 10. The op amps are mod-

eled by the Analog Devices AD712 macromodel. R0 models the seriesries resistance.
resistance of the real inductor L.A double-scroll attractor results from our SPICE 3e2 simu-

lation using the input deck shown in Fig. 12; this attractor is
plotted in Fig. 13.
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Figure 15. The V–I characteristic of the nonlinear resistor NR in
Saito’s oscillator has breakpoints at 	I and slopes Ra and Rb in the
inner and outer regions.
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Figure 13. SPICE simulation of a double-scroll attractor in Chua’s In the limit as L0 � 0, the third equation imposes the con-
oscillator. straint

V1 = g(I3)

Hysteretic Chaotic Oscillator Trajectories are thus constrained to lie along the driving-
point characteristic of the nonlinear resistor NR. On the outerA hysteretic chaotic oscillator is one in which the nonlinear
segments of this characteristic,elements exhibits ‘‘hysteretic’’ behavior resulting from slow-

fast dynamics (33).
I3 = V1 ± Es‘‘Hysteretic’’ behavior in electronic circuits, such as that

which occurs in a Schmitt trigger or a nonmonotone nonlinear where the intercepts 	Es are as shown in Fig. 15. In these
resistor, is normally associated with fold bifurcations; it mani- regions, the system is governed by two-dimensional dynamics
fests itself as ‘‘jumps’’ in voltages or currents at impasse
points (13,27,34).

The fast dynamics associated with a nonmonotone current-
controlled (voltage-controlled) negative resistor can be mod-
eled by a small transit inductance (capacitance) in series (par-

dV1

dt
= 1

C
I2 − 1

RC
(V1 ± Es)

dI2

dt
= − 1

L
V1 − R

L
I2

allel) with the resistor (35).
If the trajectory is on the upper segment of the V–I character-Saito’s oscillator, shown in Fig. 14, contains a nonmono-
istic and V1 decreases below �E, I3 ‘‘jumps’’ to the lower seg-tone current-controlled ‘‘hysteresis’’ resistor NR (14,15). L0 is
ment. The trajectory then remains on the lower segment un-a small transit inductance that completes the model.
til V1 exceeds E, when it ‘‘jumps’’ back to the upper segment.This circuit is described by a system of three autonomous
This behavior becomes apparent when I3 is plotted againststate equations:
V1, as shown in Fig. 16.

dV1

dt
= 1

C
I2 − 1

C
I3

dI2

dt
= − 1

L
V1 − R

L
I2

dI3

dt
= 1

L0
V1 − 1

L0
g(I3)

where g(IR) � RbIR � ��(Ra � Rb)(�IR � I� � �IR � I�).
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Figure 16. Simulation of chaotic trajectory in Saito’s oscillator show-
ing how the fast dynamics associated with I3 cause the trajectory to
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be confined to the outer portions of the V–I characteristic NR and to
produce ‘‘jumps’’ between these segments.Figure 14. Saito’s oscillator.
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Table 2. Component List for the Practical Implementation
of Saito’s Oscillator Shown in Fig. 18

Element Description Value

A1 Op amp
(1/2 AD712 or equivalent)

A2 Op amp
(1/2 AD712 or equivalent)

C Capacitor 4.7 nF
R1 Potentiometer 5 k�

R2 1/4 W resistor 1 k�

R3 1/4 W resistor 1 k�

R4 1/4 W resistor 3.3 k�

R5 1/4 W resistor 10 k�

R6 1/4 W resistor 10 k�

R7 1/4 W resistor 100 �

D1 Zener diode 2.7 V
D2 Zener diode 2.7 V
L Inductor 100 mH

(TOKO type 10RB)
Figure 17. Simulation of Saito’s oscillator.

Chaos Generation Mechanism in Saito’s Oscillator SPICE Simulation of Saito’s Oscillator

In Saito’s oscillator, stretching is accomplished by the nega- Saito’s circuit is characterized by slow-fast dynamics: slow
tive resistor R which adds energy to the circuit to separate two-dimensional dynamics associated with the outer seg-
trajectories. The ‘‘hysteresis’’ element switches the trajectory ments of the V–I characteristic of the negative resistor, and

fast one-dimensional parasitic dynamics associated with thebetween two two-dimensional regions to keep it bounded. Fig-
‘‘jump’’ through the inner region. Circuits of this type, whichure 17 shows a simulation of Saito’s circuit with R � �3 k�,
are characterized by time scales that differ by several ordersL � 100 mH, C � 4.7 nF, L0 � 1 nH, Ra � �3.3 k�, Rb � 10
of magnitude, are called stiff systems. Care must be takenk�, and I � 250 �A.
when solving the differential equations to account for the
abrupt change in dynamical behavior as the trajectory passesPractical Implementation of Saito’s Oscillator
through the inner region (35).

A practical implementation of Saito’s oscillator is shown in Figure 19 shows a simulation of Saito’s circuit using the
Fig. 18. The negative resistor R is implemented by means of SPICE deck in Fig. 20.
a negative-resistance converter (A1, R1, R2, R3). Provided that
R2 � R3, then R � �R1. The nonmonotone current-controlled Chaotic Colpitts Oscillator
nonlinear ‘‘hysteresis’’ resistor is constructed using a second

Chua’s oscillator and Saito’s oscillator have been designednegative resistance converter. The breakpoint I is chosen by
with analysis in mind. Their piecewise-linear nature makesmeans of zener diodes D1 and D2 such that op amp A1 remains
analysis and implementation straightforward. In particular,in its linear regime. The saturation voltages at node 5 are
the fast dynamics in Saito’s oscillator produces a relativelygiven by Es � 2.7 V � 0.7 V � 3.4 V. A complete list of compo-
simple discrete-time equivalent of this system.nents is given in Table 2.
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Figure 18. Practical implementation of Saito’s oscillator using an op
amp, resistors, and zener diodes to implement the current-controlled
nonlinear resistor.
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Figure 19. SPICE simulation of Saito’s oscillator.
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Figure 21. Chaotic Colpitts oscillator.

Most electronic oscillators are not piecewise-linear, and the
active elements are as likely to be transistors as negative-
resistance converters. Provided that the circuits satisfy the
necessary conditions for chaos, it is possible that they will
exhibit complex steady-state behavior.

A drawback of both Chua’s circuit and Saito’s circuit is
that they are limited to relatively low frequency operation be-
cause of the requirements that the nonlinear element should
be resistive and piecewise-linear. Novel applications of chaos
are now driving the demand for high-frequency chaotic cir-
cuits derived from conventional oscillator topologies.

Recall that a harmonic oscillator is usually designed to
have a linearized loop gain of unity and a soft nonlinearity to
bound the amplitude of the oscillation. By increasing the loop
gain beyond unity and employing a hard nonlinearity, chaos
can be produced.

The Colpitts oscillator shown in Fig. 21 consists of a linear
inductor L with series resistance RL, a bipolar junction tran-
sistor Q, a linear resistor REE, and two linear capacitors C1

and C2.
Assuming that the transistor acts as a purely resistive ele-

ment, this oscillator can be described by a system of three
autonomous state equations:

SAITO’S OSCILLATOR

L 1 4 100M
C 4 0 4.7N
* NEGATIVE RESISTOR (VNIC)
V+ 111 0 DC 9
V� 0 222 DC 9
XA1 3 1 111 222 2 AD712
R1 3 0 3.0K
R2 2 3 1.0K
R3 1 2 1.0K
* HYSTERESIS ELEMENT (INIC)
XA2 6 4 111 222 8 AD712
R4 6 0 3.3K
R5 5 6 10K
R6 4 5 10K
R7 8 5 100
D1 5 7 ZENER2E7
D2 0 7 ZENER2E7

* 2.7V ZENER DIODE
.MODEL ZENER2E7 D(BV=2.7)

* AD712 SPICE Macro-model 1/91, Rev. A
* Copyright 1991 by Analog Devices, Inc.
* (reproduced with permission)
*
.SUBCKT AD712 13 15 12 16 14
*
VOS 15 8 DC 0
EC 9 0 14 0 1
C1 6 7 .5P
RP 16 12 12K
GB 11 0 3 0 1.67K
RD1 6 16 16K
RD2 7 16 16K
ISS 12 1 DC 100U
CCI 3 11 150P
GCM 0 3 0 1 1.76N
GA 3 0 7 6 2.3M
RE 1 0 2.5MEG
RGM 3 0 1.69K
VC 12 2 DC 2.8
VE 10 16 DC 2.8
RO1 11 14 25
CE 1 0 2P
RO2 0 11 30
RS1 1 4 5.77K
RS2 1 5 5.77K
J1 6 13 4 FET
J2 7 8 5 FET
DC 14 2 DIODE
DE 10 14 DIODE
DP 16 12 DIODE
D1 9 11 DIODE
D2 11 9 DIODE
IOS 15 13 5E-12
.MODEL DIODE D
.MODEL FET PJF(VTO=�1 BETA=1M IS=25E-12)
.ENDS

.IC V(1)=1M V(4)=1M

.TRAN 0.1MS 15MS 5MS

.OPTIONS RELTOL=1.0E-5 ABSTOL=1.0E-5

.END

C1
dVCE

dt
= IL − IC

C2
dVBE

dt
= −VEE + VBE

REE
− IL − IB

L
dIL

dt
= VCC − VCE + VBE − ILRL

Figure 20. SPICE deck to simulate the transient response of Saito’s
oscillator. Node numbers are as in Fig. 18. The op amps are modeled where, in common-emitter configuration, IC is written as a
by the Analog Devices AD712 macromodel. function of VBE and VCE.
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NONAUTONOMOUS CHAOTIC CIRCUITS

Thus far we have considered only autonomous systems where
no external forcing signal is applied. An important class of
circuits that may exhibit chaos includes those that are driven
by a periodic signal. Because the vector field is time-varying
in this case, these circuits are called nonautonomous. While
at least three energy-storage elements are necessary to pro-
duce chaos in an autonomous oscillator, chaos can occur in a
second-order circuit that is subject to periodic forcing.

Table 3. Component List for the Practical Implementation
of the Colpitts Oscillator Shown in Fig. 21

Element Description Value

RL Potentiometer 50 �

L Inductor 100 �H
Q NPN bipolar transistor 2N2222A
C1 Capacitor 47 nF
C2 Capacitor 47 nF
REE 1/4 W resistor 400 k�

Forced Neon Bulb Relaxation Oscillator

One of the earliest recorded observations of chaos in an elec-When the loop gain is slightly greater than unity and the
tronic circuit is the driven neon bulb relaxation oscillatorquality factor of the resonant circuit is high, the transistor in
studied by van der Pol and van der Mark in 1927 (4,5). Thethe oscillator remains in its forward active region of opera-
circuit, shown in Fig. 24, consists of a high voltage dc sourcetion, and the voltage waveform VCE is almost sinusoidal. By
E attached via a large series resistance R to a neon bulb andmaking the loop gain greater than unity and reducing the
capacitor C1, which are connected in parallel; this forms thequality factor, this circuit can exhibit a variety of complex
basic relaxation oscillator. Initially the capacitor is dis-behaviors, including chaos (16,17).
charged and the neon bulb is nonconducting. The dc source
charges C1 with a time constant RC until the voltage across

Chaos Generation Mechanism in the Chaotic Colpitts Oscillator the neon bulb is sufficient to turn it on. Once lit, the bulb
presents a shunt low-resistance path to the capacitor. TheBy selecting a sufficiently large small-signal loop gain, the
voltage across the capacitor falls exponentially until the neonoscillation VCE grows rapidly, the transistor switches off, VBE

arc is quenched, the bulb is returned to its off state, and theis driven negative, and then increases slowly until the tran-
cycle repeats.sistor switches on again. Stretching results from the high

As the capacitance C1 is increased smoothly, the circuit ex-gain of the transistor in its forward active region; folding is
hibits jumps from one (periodic) mode-locked state to another.caused by the spiral decay in the cutoff region.
For a critical value of the amplitude of the driving signal, the
pattern of mode-lockings has a self-similar fractal structurePractical Implementation of the Chaotic Colpitts Oscillator
consisting of an infinite number of steps. This is called a

A list of components for the chaotic Colpitts oscillator shown Devil’s staircase (36).
in Fig. 21 is given in Table 3. This oscillator exhibits a series When the amplitude of the forcing signal is greater than
of period-doubling bifurcations as R is varied from 0 to 50 �. the critical value, the steps of the staircase overlap. Van der
Figure 22 shows a simulation of the chaotic Colpitts oscillator Pol noted that ‘‘often an irregular noise is heard in the tele-
using the SPICE deck in Fig. 23. phone receiver before the frequency jumps to the next lower

value’’; this is chaos.
The frequency-locking behavior of the driven neon bulb os-

cillator circuit is characteristic of forced oscillators that con-
tain two competing frequencies: the natural frequency f 0 of
the undriven oscillator and the driving frequency f s. If the
amplitude of the forcing is small, either quasi-periodicity or
mode-locking occurs. For a sufficiently large amplitude of the
forcing, the system may exhibit chaos.

Figure 25 shows experimentally observed mode locking in
a driven neon bulb oscillator. Magnifications of the staircase
are shown in Fig. 26. For driving signals with amplitudes
greater than that shown, the monotonicity of the staircase is
lost and chaos occurs.

The presence of a single dynamic element (the capacitor)
in Fig. 24 might suggest that this is a first-order system, but
a first-order circuit with periodic forcing cannot exhibit chaos.
The ‘‘hidden’’ second state is associated with the fast transit
dynamics of the neon bulb. The neon bulb may be modeled as
a nonmonotone current-controlled nonlinear resistor with a
parasitic series inductor (5).

0 1 2 3 4 5 6

Colpitts oscillator
1
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0
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VCE(V)

V
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E
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Figure 22. SPICE simulation of the Colpitts oscillator in Fig. 21 Driven RL-Diode Circuit
with VCC � 5 V, VEE � �5 V, RL � 33 �, L � 100 �H, C1 � 47 �F,

One of the simplest nonautonomous chaotic circuits is the se-C2 � 47 �F, and REE � 400 �. Q is a type 2N2222A transistor. Verti-
cal axis: VBE; horizontal axis: VCE. ries connection of a linear resistor, a linear inductor, and a
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Figure 23. SPICE deck to simulate the tran-
sient response of the Colpitts oscillator

COLPITTS OSCILLATOR

VCC 1 4 PWL(0 0 1N 5 5M 5)
VEE 5 4 DC �5
RL 1 2 33
L 2 3 100U
Q 3 4 0 Q2N2222A
C1 3 0 47N
C2 4 0 47N
REE 0 5 400

.MODEL Q2N2222A NPN(IS=14.34F XTI=3 EG=1.11 VAF=74.03 BF=255.9 NE=1.307
+ ISE=14.34F IKF=.2847 XTB=1.5 BR=6.092 NC=2 ISC=0 IKR=0 RC=1
+ CJC=7.306P MJC=.3416 VJC=.75 FC=.5 CJE=22.01P MJE=.377 VJE=.75
+ TR=46.91N TF=411.1P ITF=.6 VTF=1.7 XTF=3 RB=10)

.OPTIONS RELTOL=1E-5 ABSTOL=1E-5

.TRAN 10N 4M 3M

.END shown in Fig. 21.

pn-junction, as shown in Fig. 27, which can exhibit chaotic The case of a cubic nonlinearity—the electrical analog of
the forced Duffing equation—has been studied extensivelybehavior when driven by a sinusoidal voltage source (7,8). In

this case chaos is due to parasitic nonlinear capacitive effects (6). The undriven system has three equilibrium points, one of
which is a saddle. The two remaining equilibria are stablein the diode. The behavior of the circuit can be confirmed by

using SPICE (9) (see Figs. 28 and 29). fixed points. Chaos arises when the trajectory is driven close
to the saddle.

The same qualitative behavior, shown in Fig. 31, occursDriven Negative-Resistance Circuit
when a simpler piecewise-linear nonlinearity is used instead

Chaos in the driven RL-diode circuit is due to relatively com- of a cubic. Here A � 2 V, f s � 5000 Hz, R � 660 �, L � 33
plex nonlinear dynamical behavior in the pn-junction diode. A mH, and C � 68 nF (37).
simpler nonautonomous circuit containing only linear energy-
storage elements is the driven negative-resistance circuit
shown in Fig. 30. This consists of a series connection of a
periodic voltage source, a linear resistor, a linear inductor,
and a parallel connection of a nonmonotone voltage-controlled
nonlinear resistor and a linear capacitor.

This circuit is described by a pair of first-order nonautono-
mous ordinary differential equations:

dV1

dt
= − 1

C1
f (V1) + 1

C1
I2

dI2

dt
= − 1

L
V1 − R

L
I2 + A

L
sin(2π fst)

where the voltage-controlled nonlinear resistor is described
by IR � f (VR).
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Figure 25. Experimentally measured staircase structure of lockings
for a forced neon bulb relaxation oscillator. The winding number is
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given by f s/fd, the ratio of the frequency of the sinusoidal driving sig-
nal to the average frequency of current pulses through the bulb.Figure 24. Driven neon bulb relaxation oscillator.
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Figure 26. Magnification of Fig. 25 showing self-similarity.

The V–I characteristic of the nonlinear resistor is as
shown in Fig. 32. The relationship may be written explicitly
as

f (VR) = GbVR + 1
2 (Ga − Gb)(|VR + E| − |VR − E|)

where Ga � �2.2 mS, Gb � 1 mS, and E � 1.6875 V. This
element is readily implemented by means of a negative-resis-
tance converter.

A complete circuit realization of the driven negative-resis-
tance oscillator with a piecewise-linear nonlinear resistor is

DRIVEN RL-DIODE CIRCUIT

D 3 0 DIODE
R 1 2 15
L 2 3 10.0M
VS 1 0 SIN(0 6 100K)

.MODEL DIODE D(IS=8.3FA RS=9.6 TT=4US CJ0=300PF M=0.4 VJ=0.75)

.TRAN 0.001US 2MS 1MS

.OPTIONS RELTOL=1.0E-5 ABSTOL=1.0E-5

.END
shown in Fig. 33. A component list for the practical imple-

Figure 28. SPICE deck to simulate the behavior of the RL-diode cir-mentation of this circuit is given in Table 4. The behavior of
cuit shown in Fig. 27.the circuit may be confirmed by SPICE simulation (see Figs.

34 and 35).

DISCRETE-TIME CHAOTIC CIRCUITS

Although a discrete-time, discrete-state deterministic dynami-
cal system may exhibit long periodic steady-state trajectories,
it cannot exhibit chaos. By contrast, a discrete-time system of
order one or more can exhibit chaos if it has continuous state
variables and is described by a nonlinear map. If the system
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Figure 29. Spice simulation of driven RL-diode circuit.Figure 27. Driven RL-diode circuit.
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Figure 30. Driven negative-resistance oscillator.

Table 4. Component List for the Practical Implementation
of Negative-Resistance Circuit Shown in Fig. 33

Element Description Value

A1 Op amp
(1/2 AD712 or equivalent)

R Potentiometer 1 k�

L Inductor 33 mH
C Capacitor 68 nF
R1 1/4 W resistor 1 k�

R2 1/4 W resistor 2.2 k�

R3 1/4 W resistor 1 k�

R4 1/4 W resistor 100 �

D1 Zener diode 4.7 V
D2 Zener diode 4.7 V

is first-order, then the nonlinear map must also be nonin-
vertible.

Switched-Capacitor Chaotic Circuit

A continuous-state, discrete-time dynamical system of the
form

Xk+1 = G(Xk)–4 –3 –2 –1 0 1 2 3 4
V1(V)

I 2
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)
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Driven negative-resistance circuit

can be implemented electronically using switched-capacitor
Figure 31. Simulation of driven negative-resistance circuit with (SC) circuits. Such circuits may exhibit chaos if the map G is
piecewise-linear resistor as in Fig. 32. nonlinear and at least one of the eigenvalues of DxG( � ) has

modulus greater than unity in magnitude for some states X.
One of the most widely used deterministic ‘‘random’’ num-

ber generators is the linear congruential generator, which is a
discrete-time dynamical system of the form

where A, B, and M are called the multiplier, increment, and
modulus, respectively.

If A � 1, then all equilibrium points of (1) are unstable.
With the appropriate choice of constants, this system exhibits
a chaotic solution with a positive Lyapunov exponent equal to
ln A. However, if the state space is discrete, for example, in

Ga

(Gb – Ga)E

(Ga – Gb)E

Gb

Gb

VR

IR

–E E

the case of digital implementations of (1), then every steady-
Figure 32. V–I characteristic of the negative resistor in Fig. 30. state orbit is periodic with a maximum period equal to the

number of distinct states in the state space; such orbits are
termed pseudorandom.

By using an analog state space, a truly chaotic sequence
can be generated. A discrete-time chaotic circuit with an
analog state space may be realized in switched-capacitor tech-
nology.

Example: Parabolic Map. Figure 36 shows an SC realization
of the parabolic map

xk+1 = V − 0.5x2
k

which, by the change of variables Xk � Axk � B, with B � 0.5
and A � (�1 � �1 � 2 V)/(4 V), and 0 V � V � 4 V, is equiva-
lent to the logistic map
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Figure 33. Practical implementation of driven negative-resistance Xk+1 = PXk(1 − Xk)

oscillator using an op amp, resistors, and zener diodes to implement
the voltage-controlled nonlinear resistor. with P � 1/(2A) in the range 2 � P � 4 (19).
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Figure 35. SPICE simulation of driven negative-resistance circuit.

In the case considered, V � P(P � 2)/2. For 0 V � V � 1.5
V, 2 � P � 3 and the steady-state solution of the SC parabolic
map is a fixed point. As the bifurcation parameter V is in-
creased from 1.5 to 3 V, the circuit undergoes a series of pe-
riod-doubling bifurcations to chaos. V � 4 V corresponds to
fully-developed chaos on the open interval (0 � Xk � 1) in the
logistic map with P � 4.

CONCLUDING REMARKS

We have illustrated a very limited selection of autonomous
and nonautonomous electronic circuits that exhibit chaos. So
many other electronic circuits and systems are now known to
exhibit complex nonlinear dynamical behavior, including
chaos, that it would be impossible to mention all of them. The
interested reader is referred to special issues of the IEEE
Transactions on Circuits and Systems (October 1993) and the

DRIVEN NEGATIVE-RESISTANCE OSCILLATOR

VS 1 0 SIN(0 2.0 5K)
R 1 2 660
L 2 3 33.0M
C 3 0 68.0N
* VOLTAGE-CONTROLLED NONLINEAR RESISTOR
V+ 111 0 DC 9
V� 0 222 DC 9
R1 5 0 1K
R2 4 5 2.2K
R3 3 4 1K
R4 7 4 100
XA1 3 5 111 222 7 AD712
D1 4 6 ZENER4E7
D2 0 6 ZENER4E7
.MODEL ZENER4E7 D(BV=4.7)

* AD712 SPICE Macro-model 1/91, Rev. A
* Copyright 1991 by Analog Devices, Inc.
* (reproduced with permission)
*
.SUBCKT AD712 13 15 12 16 14
*
VOS 15 8 DC 0
EC 9 0 14 0 1
C1 6 7 .5P
RP 16 12 12K
GB 11 0 3 0 1.67K
RD1 6 16 16K
RD2 7 16 16K
ISS 12 1 DC 100U
CCI 3 11 150P
GCM 0 3 0 1 1.76N
GA 3 0 7 6 2.3M
RE 1 0 2.5MEG
RGM 3 0 1.69K
VC 12 2 DC 2.8
VE 10 16 DC 2.8
RO1 11 14 25
CE 1 0 2P
RO2 0 11 30
RS1 1 4 5.77K
RS2 1 5 5.77K
J1 6 13 4 FET
J2 7 8 5 FET
DC 14 2 DIODE
DE 10 14 DIODE
DP 16 12 DIODE
D1 9 11 DIODE
D2 11 9 DIODE
IOS 15 13 5E-12
.MODEL DIODE D
.MODEL FET PJF(VTO=�1 BETA=1M IS=25E-12)
.ENDS

.TRAN 0.1MS 60MS 10MS

.OPTIONS RELTOL=1.0E-5 ABSTOL=1.0E-5

.PRINT TRAN V(1) V(3)

.END

Figure 34. SPICE deck to simulate the transient response of the
driven negative-resistance oscillator. Node numbers are as in Fig. 33.
The op amps are modeled by the Analog Devices AD712 macromodel.
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Figure 36. Switched-capacitor realization of the parabolic map
xk�1 � V �0.5X 2

k. The switches labeled o and e are driven by the odd
and even phases, respectively, of a nonoverlapping two-phase clock.
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