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PHASE-LOCKED LOOPS

Although the first description of the phase-locked loop (PLL)
was published by Appleton (1) in 1923, the PLL did not at-
tract widespread attention till much later. Today PLLs of var-
ious types are used extensively in electrical engineering, from
telecommunication systems to measurement equipment.

Depending on the loop components, especially on the oper-
ation of the phase detector, analog, digital, sampling, and hy-
brid PLLs are distinguished. The behavior of these circuits is
described by differential, difference, and mixed integro-differ-
ence equations.

Even though applications of PLLs require a variety of cir-
cuit configurations, and the mathematical models mentioned
above require different kinds of mathematical treatment,
their behavior can be approximated and studied by means of
a simple feedback structure. Unfortunately, the behavior of
this structure is complicated to analyze, because it is nonlin-
ear, may contain edge-triggered digital circuits, and is driven
by random noise. In many cases, analytical results are not
available in closed form; they are often buried in complicated
mathematics that cannot be assimilated easily by the circuit
designer. On the other hand, the design of PLLs for many
applications can be performed successfully, based on a simple
linearized model and by means of a few ‘‘rules of thumb.’’ In
this article one shall differentiate clearly between the essen-
tial elements and secondary effects of loop behavior, the key
assumptions and approximations involved in the analysis will
be highlighted, and the conditions under which the approxi-
mations are valid will be collected. The main goals are to pro-
vide a survey of PLL theory and applications and to summa-
rize the most important design rules and equations.

This article is organized as follows. The next section is de-
voted to the theory of the analog phase-locked loop (APLL).
First the baseband model for the APLL is developed, then the
linear theory of the APLL (tracking, modulation, and noise)
is discussed. Finally, the most important nonlinear effects
(acquisition, cycle slips, hang-up) are considered. The subse-
quent section discusses the most common applications of
PLLs.

The key element of the loop that determines the practical
performance of a PLL is the phase detector. To obtain the
best circuit performance, different phase detectors have been
developed for various applications. The operation of the most
widely used phase detectors is then discussed.
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The Digital Phase-Locked Loop (DPLL) has become popular
in many applications recently. A section is devoted to DPLL
circuits.

In other applications, analog, discrete-time, and edge-trig-
gered digital circuits have to be used, or their mixed applica-
tion assures the best loop performance. These loops are called
hybrid phase-locked loops (HPLL). The most commonly used
HPLLs are the sampling phase-locked loop (SPLL) and the
charge-pump phase-locked loop. The operation of SPLLs and
charge-pump PLLs will be discussed.

ANALOG PHASE-LOCKED LOOP
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In an APLL, all loop components are analog circuits, that is, Figure 1. APLL block diagram showing inputs and outputs for vari-
their operation can be modeled by ordinary differential equa- ous telecommunication applications.
tions. For the sake of simplicity, an analog multiplier shall be
used as a phase detector in this section. This circuit is re-
ferred to as a sinusoidal APLL.

frequency. By proper design of the PD, VCO, and loop filter,The APLL was the first, and is the most widely studied
the same APLL configuration can be used for tracking andversion of the PLL. Many excellent books (2–11), two IEEE
carrier recovery, modulation and demodulation, and so forth.special issues (12,13) and a tutorial (14) have been devoted to

A nonzero output voltage must be provided by the PD, inthe theory and applications of the APLL.
order to control the VCO frequency if the input frequency dif-In many applications, the block diagram of the APLL has
fers from the VCO center frequency. Consequently, the PLLto be completed with extra loop components such as a fre-
tracks the phase of input signal with some phase error. How-quency divider, mixer, and so on. That is why the results de-
ever, this phase error can be kept very small in a well-de-veloped for the APLL cannot be used directly in many cases.
signed PLL.However,

• the theory of the APLL is very well developed and is easy Acquisition and Tracking
to understand;

In every application, the PLL tracks the phase of the incom-
• equations describing the loop behavior in different appli-

ing signal. However, before a PLL can track, it must firstcations can be developed in closed form;
reach the phase-locked condition.

• having understood the operation of the APLL, it is easy In general, the VCO center frequency �0 differs from the
to study more complex PLL configurations; and frequency �i of the incoming signal. Therefore, first the VCO

• the APLL equations give a simple but useful approxima- frequency has to be tuned to the incoming frequency by the
tion for many circuit design problems. loop. This process is called frequency pull-in. Then the VCO

phase has to be adjusted according to the input phase. This
This article presents a concise treatment of the sinusoidal process is known as phase lock-in.

APLL. First, the baseband model for the APLL is developed. In the following, three important loop characteristics are
Then the so-called linear APLL theory is discussed. In the defined.
majority of applications, the APLL operates in its linear re-
gion. The linear theory can be applied only if the phase-locked

Pull-in Range. ��P � ��i � �0� is the maximum initial fre-condition has been achieved and is maintained. Under phase-
quency difference between the input and VCO center fre-locked condition the average input and voltage-controlled os-
quency both in positive and negative directions, for which thecillator (VCO) frequencies are exactly equal and the VCO
PLL eventually achieves the phase-locked condition. The pull-phase tracks the input phase. The phase-locked condition is
in range is related to the dynamics of the APLL.achieved as a result of a highly nonlinear, so-called acquisi-

tion, process. In the last part of this section, the most impor-
tant aspects of nonlinear APLL theory are discussed. Lock-in Range. ��L � ��i � �0� is the frequency range over

which the PLL achieves the phase-locked condition without
cycle slips. Cycle slips will be defined later.Basic Loop Configuration

A PLL is a feedback system that continuously tries to track
Hold-in Range. Suppose the phase-locked condition hasthe phase of an input signal. It contains a phase detector (PD),

been achieved in the PLL. Now vary the input frequency �ia time-invariant linear loop filter, and a voltage-controlled os-
slowly and the VCO frequency will follow it. The hold-incillator (VCO); the oscillator to be synchronized. As shown in
range ��H � ��i � �0� is determined by the lower and upperFig. 1, the phase detector compares the phase of the input
values of �i, for which the phase-locked condition is lost. Thesignal against the phase of the VCO output and produces an
hold-in range represents the maximum static tracking rangeerror signal. This error signal is then filtered, in order to re-
and is determined by the saturation characteristics of themove noise and other unwanted components of the input spec-

trum, and the filter output controls the instantaneous VCO nonlinear loop elements in the PLL.



160 PHASE-LOCKED LOOPS

Loop Equation and Nonlinear Baseband Model where gI(t) and gQ(t) are the low-frequency in-phase and quad-
rature components of the narrowband signal g(t).

The block diagram of the APLL to be studied is shown in Fig.
Let ni(t) be modeled by a narrowband Gaussian random

2, where F(p) denotes the transfer function of the loop filter.
process of zero mean and symmetrical power spectral density.

In the equations developed below, the time variable t is sup-
Then the sample function of the narrowband noise can be ex-

pressed for conciseness where it does not cause misunder-
pressed from Eqs. (3) and (4) in canonical form (6,15) as

standing. In order to write the differential equations in com-
pact form, the operation of differentiation d/dt in the time- ni =

√
2[nI cos(ω0t) − nQ sin(ω0t)] (5)

domain is denoted by multiplication by the Heaviside operator
p. Recall that if the transfer function F(s) of a linear network

The in-phase and quadrature components areis given in the complex frequency domain s then F(p) �
F(s)�s�p. For more details on the Heaviside operator see page
73 in (6). nI = 1√

2
[ni cos(ω0t) + n̂i sin(ω0t)] (6)

It shall be assumed during the PLL analysis that the loop
components are linear; the only source of nonlinearity is the and
phase detector. The instantaneous VCO frequency can be var-
ied about its center value �0 by the VCO control voltage.

Almost all signals and processes used in electrical engi- nQ = 1√
2

[n̂i cos(ω0t) − ni sin(ω0t)] (7)

neering can be considered narrowband (15). Let the incoming
signal where n̂i(t) is the Hilbert transform of ni(t) (15).

The VCO output is also a narrowband signal
s(t,�) =

√
2A sin� (1)

r(t, �̂) =
√

2Vo cos �̂ (8)
be a narrowband signal, where A(t) describes the amplitude

where �̂(t) is the loop estimate of �(t) that can be expressed,modulation produced at the transmitter on purpose and/or
with respect to the VCO center frequency ascaused by the time-varying channel through which the signal

is transmitted. Let the phase of the incoming signal be ex-
pressed with respect to the VCO center frequency as �̂ = ω0t + θo (9)

In Eq. (8) and Eq. (9) Vo and 	o(t) denote the rms amplitude� = ω0t + θi (2)
and phase of the VCO output.

The PD multiplies the input signal x(t) � s(t, �) � ni(t) andwhere 	i(t) is the input phase modulation produced at the
VCO output r(t, �̂) and produces both difference- and sum-transmitter and/or caused by the channel.
frequency terms. The PD always contains a low-pass filterAs shown in Fig. 2, the incoming signal s(t, �) is corrupted
that eliminates the sum-frequency component. By means ofby additive input noise ni(t). In almost all applications, the
simple trigonometric identities is obtained for the PD outputadditive input noise is a narrowband process centered about

�0. By means of the analytic signal approach (15), nar-
rowband processes or signals can be expressed as a product
of a slowly varying complex envelope and a sinusoidal carrier.

vd = AVo sin θe + Vo(nI cos θo + nQ sin θo)

= Kd[A sin θe + N(t, θo)]
(10)

For example, an arbitrary narrowband signal g(t) centered
where the phase error is defined byabout �0 can be expressed in terms of a complex envelope

g̃(t) as
θe(t) = �(t) − �̂(t) = θi(t) − θo(t) (11)

g(t) = Re{g̃(t) exp( jω0t)} (3)
and Kd � Vo, a dimensionless quantity, is the gain of the PD.
The equivalent noise process is defined bySince the carrier frequency component has been removed, the

complex envelope is a slowly varying function N(t, θo) = nI cos θo + nQ sin θo (12)

g̃(t) = gI (t) + jgQ(t) (4)
The statistical properties of N(t, 	o) are given in the follow-
ing section.

It follows from Eq. (10) and Eq. (12) that

• even in the noise-free case, the PD output depends not
only on the phase error 	e(t) but also on the amplitude
A(t) of the incoming signal; and

• the equivalent noise process N(t, 	o) is independent of
	e(t); it appears as an additive term in the PD output.

The instantaneous VCO frequency 	̇o(t) � d	o(t)/dt refer-
enced to �0 is related to its input through

s(t, Φ)

r(t, Φ)

x(t)
F(p)

vd(t) vf (t)

ni(t)

ve(t)

vc(t)

+

+
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Figure 2. APLL block diagram indicating the additive input noise
that corrupts the input signal.

θ̇o = Kvvc + �̇2 = Kv(v f + ve) + �̇2 (13)
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where vc(t) � vf (t) � ve(t) denotes the VCO control voltage, tion if the loop nonlinearity g( 
 ) is selected according to the
vf (t) � F(p)vd(t) is the output voltage of the loop filter, ve(t) actual PD characteristics and ng(t) describes the equivalent
denotes the external control voltage, Kv is the VCO gain in noise process for the case to be studied. If an analog multi-
rad/Vs, and �2(t) denotes the VCO jitter, that is, the phase plier is used as the PD and the signals are sinusoidal, then
noise. g( 
 ) � sin( 
 ) and ng(t) � N(t, 	o). Lindsey and Chie (11) have

Taking into account the transfer function of the loop filter, collected g( 
 ) and ng(t) for many other loop configurations.
from Eq. (10) and Eq. (13), Note that the input and output of the baseband model are

not measurable signals but are the input and output phase
modulations, respectively. If the real input and output signalsθo = KF (p)

p
[A sin θe + N(t, θo)] + Kv

p
ve + �2 (14)

have to be determined, then s(t, �) and r(t, �̂) can be ex-
pressed using Eqs. (1) and (8).where K � KdKv defines the loop gain in rad/Vs . Substituting

Eq. (14) into Eq. (11), the following nonlinear stochastic
Statistical Properties of Equivalent Noiseintegro-differential equation is obtained
In order to use the baseband model in calculations, one needs
to know the statistical properties of the equivalent noise pro-θe = θi − KF (p)

p
[A sin θe + N(t, θo)] − Kv

p
ve − �2 (15)

cess N(t, 	o) that depends on both the additive input noise
ni(t) and the output phase 	o(t). This section summarizes thewhich describes the operation of APLL. In general, the input
properties of the in-phase and quadrature components ofphase modulation 	i(t) consists of three terms
ni(t) and gives the statistical properties of N(t, 	o).

Recall that the additive input noise is modeled by a nar-θi = d + M + �1 (16)
rowband Gaussian random process with zero mean. It can be

where d(t) describes the Doppler effect appearing in the chan- expressed either in canonical form or as a sinusoidal signal
nel, M(t) is the digital or analog phase/frequency modulation,
and �1(t) denotes the jitter, that is, phase noise of the trans-
mitter oscillator.

ni =
√

2[nI cos(ω0t) − nQ sin(ω0t)] =
√

2Nn(t) cos(ω0t + θn)

(17)
The loop equation given by Eq. (15) has two important ad-

vantages. Due to the introduction of a phase error, the high- where the envelope Nn(t) and phase 	n(t) processes are defined
frequency terms have been dropped and all signals involved by
in the loop equations have become low-frequency signals, that
is, slowly varying functions. This means that, for example, in
a computer simulation a low sampling frequency can be used,
that is, a short simulation time is required. A further advan-

Nn(t) =
√

n2
I (t) + n2

Q(t) and θn(t) = tan−1
[nQ(t)

nI(t)

]
(18)

tage of the phase error description is that it simplifies the
problem to be studied. In many cases, such as the acquisition Note that the envelope Nn(t) differs from the complex enve-
problem, Eq. (15) becomes an autonomous differential equa- lope defined by Eq. (3). If the power spectral density of ni(t) is
tion that is relatively easy to study. symmetrical about �0, then a very simple relationship exists

Note that, in an implemented APLL, the phase error does between the autocorrelation functions of ni(t) and Nn(t)
not exist as an explicit variable; it has been introduced only
to derive a simple mathematical model for the APLL. How- Rn(τ ) = 2r(τ ) cos(ω0τ ) (19)
ever, if 	e(t) is known, then all signals appearing in an imple-
mented APLL can be expressed easily by the equations devel- where Rn(�) and r(�) denote the autocorrelation functions of
oped above. ni(t) and Nn(t), respectively.

The baseband model of the APLL can be developed from If ni(t) has a symmetrical power spectral density about �0
Eq. (15) as shown in Fig. 3. The sinusoidal nonlinearity in Eq. then the most important properties of the in-phase nI(t) and
(15) is due to the particular type of PD and the sinusoidal quadrature nQ(t) components of ni(t) are as follows (10,15):
VCO and input waveforms. However, other kinds of PD and
signals can be also applied. Fortunately, the unified baseband 1. If ni(t) is a Gaussian process, then both nI(t) and nQ(t)
model shown in Fig. 3 remains valid for each loop configura- are also Gaussian.

2. If ni(t) has zero mean, then both nI(t) and nQ(t) have zero
mean values. Note that ni(t) is a bandpass signal, that
is, it always has zero mean.

3. The in-phase and quadrature components have the
same variance as the narrowband noise ni(t).

4. The correlation functions of nI(t) and nQ(t) can be ex-
pressed (6) as

nI(t)nI(t + τ ) = nQ(t)nQ(t + τ ) = r(τ )

nI(t)nQ(t + τ ) = −nQ(t)nI(t + τ ) = 0
(20)
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where overbar symbolizes the time-averaging operation.
The first equation shows that the autocorrelation func-Figure 3. Unified baseband model of APLL.
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tions of Nn(t), nI(t) and nQ(t) are equal to each other, • the phase error remains in the neighborhood of its quies-
cent value, that is, one may write g(	e) � g(	ss) �while the second one means that nI(t) and nQ(t) are inde-

pendent. dg(	e)/d	e�	ss
�	e, where 	ss is the quiescent value of 	e(t)

and �	e(t) denotes its perturbation.5. Both the in-phase and quadrature noise components
have the same power spectral density that is related to
the power spectral density SN( f) of ni(t) as In this section the linear baseband model for the APLL

will be developed, and then the transfer functions for differ-
ent APLL applications will be determined. After evaluating
the stability properties, the tracking (transient and modula-
tion) behavior and the noise performance of the APLL are

SI( f ) = SQ( f )

=
{

SN ( f − f0) + SN ( f + f0), −B ≤ f ≤ B

0, elsewhere
(21)

studied, based on the linear baseband model.

where SN( f) occupies the frequency band f 0 � B 
 �f � 

Linear Baseband Model. Recall that the behavior of thef 0 � B and f 0 � B.

APLL can be described by the following nonlinear stochastic
differential equation:To complete the APLL baseband model, the statistical

properties of N(t, 	o) have to be determined. The problem is
that the equivalent noise depends not only on ni(t), but also
on 	o(t). Due to the closed loop, the noise modulates the VCO

θe = θi − KF (p)

p
[Ag(θe) + ng] − Kv

p
ve − �2 (22)

and 	o(t) also becomes a random process. Because the PD is
where, for simplicity of notation, the dependence on t in allnonlinear, the fluctuations in 	o(t) intermodulate with the in-
variables has been omitted, the function g( 
 ) describes thecoming signal and additive input noise ni(t).
nonlinearities of the loop, and ng(t) denotes the equivalentThe nonlinear operation of the PD makes exact analysis
noise process that depends on the additive input noise andimpossible, so some kind of approximation must be used. Vit-
the characteristic of phase detector. In this section, it shall beerbi (3) introduced two assumptions, in order to get a simple
assumed that the APLL operates under phase-locked con-but useful result:
dition.

1. The additive bandpass noise ni(t) has a symmetrical First the quiescent value of the phase error must be deter-
power spectral density; and mined. Let ng(t) � �2(t) � 0 and let the input phase modula-

tion be2. The bandwidth of ni(t) is much wider than the band-
width of 	o(t).

θi = (ωi − ω0)t + θi0 = �ωit + θi0
The bandwidth of 	o(t) is determined by the noise bandwidth
of the loop, which will be defined later. In this case, the corre- where ��i is the initial frequency detuning and 	i0 denotes
lation time (6) of the additive input noise is much less than the phase of the incoming signal. Taking into account that
that of the output phase. Consequently, 	o(t) can be thought under steady-state conditions all signals are constant and
of as a slowly varying function compared to ni(t) and the two that the Heaviside operator p means d/dt in the time-domain,
processes are approximately independent (3). from Eq. (22) the quiescent value 	ss of 	e(t) can be obtained

Under these assumptions the equivalent noise process can as
be approximated by white noise. The process N(t, 	o) shall be
treated as though it were white so that 	o(t) embedded in
N(t, 	o) does not enter into the APLL analysis, either linear θss = g−1

(
�ωi − Kvve0

KF (0)A

)
(23)

or nonlinear. Thus, if the additive input noise ni(t) is white
with spectral density N0/2, then the power spectral density of where ve0 denotes the external dc control voltage of F(0) is the
the equivalent noise ng(t) indicated in Fig. 3 is uniform with dc gain of the loop filter.
value N0/2. If the phase error remains in the neighborhood of 	ss then

Fortunately, the assumptions listed above are valid for al-
�g � dg(	e)/d	e�	ss

�	e, where �	e � 	e � 	ss. Furthermore, let
most all practical applications of the APLL and the design of Kg � dg(	e)/d	e�	ss

be lumped with Kd. Then the linear loop
different circuit configurations operating in either the linear equation for the phase error takes the form
or nonlinear region can be performed based on a simple base-
band model.

Linear Operation of the APLL
θe = θi − KF (p)

p

(
Aθe + ng

Kg

)
− K v

p
ve − �2 (24)

Linear APLL theory is used extensively in designing APLLs where, in order to have a compact notation, 	e(t) is not distin-
for different applications from telecommunication to measure- guished from its perturbation �	e(t), and the new value of loop
ment engineering. Furthermore, many system parameters gain is K � KgKdKv. Note that Kg is measured in rad�1 and the
used in circuit development and characterization are intro- new value of loop gain K is given in (vs)�1. The output phase
duced and defined in the linear theory. can be expressed as

The linear operation of APLL assumes that

• the phase-locked condition has been achieved and is
maintained, and

θo = KF (p)

p

(
Aθe + ng

Kg

)
+ K v

p
ve + �2 (25)
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APLLs are classified according to the type and order of the
loop. Let

G(s) = AKF(s)
s

(30)

denote the open-loop transfer function. The loop type is given
by the number of poles at the origin, that is, the number of
perfect integrators in G(s), while the loop order is equal to the
number of poles in G(s).

In the following are considered, as examples, a few impor-
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tant loop filter configurations, and the closed-loop APLL char-
acteristics are determined. The closed-loop parameters forFigure 4. Linear baseband model of APLL.
other loop filter configuration are given in Table 1.

Case I: F(s) � 1; First-Order, Type-One Loop. Substituting
The linear baseband model can be constructed from Eqs. F(s) � 1 into Eqs. (28) and (29), the closed-loop transfer func-

(24) and (25). The linear model shown in Fig. 4 will be needed tion
in the following section to develop the loop transfer functions
and to determine the most important properties of the APLL.
Although every real APLL is nonlinear, in many applications

H(s) = 1

1 + s
AK

(31)

after the acquisition process the APLL must operate in its
linear region in order to avoid distortion.

and error function

Transfer Functions. In order to describe the behavior of
APLL by means of transfer functions, Eq. (24) has to be re-
arranged as 1 − H(s) =

s
AK

1 + s
AK

(32)

can be expressed. The transfer function H(s) has a well-de-
θ̃e(s) = [1 − H(s)]

[
θ̃i(s) − K v

s
ṽe(s) − �̃2(s)

]
− H(s)

ñg(s)
AKg

(26)

fined 3-dB bandwidth, which we call the closed-loop band-
width and label �3dB. Note that the closed-loop bandwidthand substituting Eq. (11) into Eq. (25) the output phase has

to be expressed as
• is equal to AK; and
• varies with the amplitude A of the input signal.θ̃o(s) = H(s)

[
θ̃i(s) + ñg(s)

AKg

]
− [1 − H(s)]

[
K v

s
ṽe(s) − �̃2(s)

]
(27) The disadvantage of a first-order APLL is that only one

free design parameter is available. The loop gain K deter-
where is introduced the Laplace transform variable s. Hereaf- mines all parameters of the APLL. For example, the quiescent
ter a tilde denotes the Laplace transform of the signal over phase error 	ss given by Eq. (23) and the closed-loop band-
which it appears. width appearing in Eq. (31) cannot be selected independently

Note that only two transfer functions are required to char- of each other; a small 	ss results in a large closed-loop band-
acterize the APLL completely, namely, the closed-loop trans- width. It is not possible to implement simultaneously a small
fer function tracking error and a small closed-loop bandwidth. This prob-

lem can be overcome by introducing more free parameters,
that is, a first-order loop filter.H(s) = AKF(s)

s + AKF (s)
(28)

Case II: Second-Order, Type-Two Loop. The circuit diagram
of the most frequently used active loop filter is shown in Fig.

and the error function 5. Due to the finite DC gain, the transfer function of the loop
filter

1 − H(s) = s
s + AKF(s)

(29)

F(s) = 1 + sτ2

sτ1
(33)

have to be determined. The closed-loop transfer and error
functions have low-pass and high-pass characteristics, respec-

cannot be implemented, but is approximated closely by an op-tively. The parameters of H(s) and [1 � H(s)] are determined
erational amplifier. The time constants in Eq. (33) are: �1 �by the loop-filter F(s), the loop gain K, and the rms amplitude
R1C and �2 � (R1 � R2)C. A loop implemented with an activeA of the incoming signal. If A(t) varies due to either amplitude
loop filter is often referred to as an ideal second-order APLL.modulation or a time-varying channel, then all parameters of

After substituting Eq. (33) into Eq. (28) and (29) theH(s) and [1 � H(s)], for example, the cut-off frequency, also
closed-loop transfer functionvary with time. In the majority of applications, this time de-

pendence is not allowed, that is, an AGC circuit preceding
the APLL must be used in order to fix the amplitude of the
input signal.

H(s) = 2ζωns + ω 2
n

s2 + 2ζωns + ω 2
n

(34)
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Table 1. Parameters of the Linearized APLL

Loop

Order Type Loop Filter F(s) Key Parameters H(s)

First One 1 BL � AK/4 4 BL

s � 4 BL

Second One Passive lag filter �2
n � AK/�1

2��n � 1/�1
1

1 � s�1

�2
n

s2 � 2��n s � �2
n

BL � AK/4

Passive lead-lag filter �2
n � AK/�1

1 � s�2

1 � s�1
2��n �

1 � AK�2

�1

�2��n �
�2

n

AK� s � �2
n

s2 � 2��n s � �2
n
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�n
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�2

�
1
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n � AK/�1

1 � s�2

s�1
2��n �

AK�2

�1

2��n s � �2
n

s2 � 2��n s � �2
n

2BL � �n �� �
1
4�
�

is obtained and then the error function, APLL parameters that have to be selected in design of every
APLL. The main advantage of the ideal second-order APLL is
that these parameters can be selected independently of each
other:

1 − H(s) = s2

s2 + 2ζωns + ω 2
n

(35)

where the natural frequency �n and the damping factor � of • The high dc gain of the operational amplifier ensures
loop are given by that 	ss � 0; furthermore 	ss does not depend on A.

• Equation (37) shows that �n can be calculated from the
required closed-loop bandwidth and damping factor.ωn =

√
AK
τ1

and ζ = τ 2 ωn

2
(36)

Then AK/�1 is given by Eq. (36).

• The transient behavior of the loop is controlled by theThe closed-loop bandwidth can be expressed as
damping factor. From Eq. (36), �2 can be calculated.

ω3dB = ω n

[
2ζ 2 + 1 +

√
(2ζ 2 + 1)2 + 1

]1/2
(37)

The magnitudes of the APLL frequency response and error
response are plotted in Figs. 6 and 7, respectively, for several
values of damping factor. Note that H(s) and [1 � H(s)] really
have low-pass and high-pass characteristics, respectively as
claimed.

The quiescent value of the phase error, the loop’s transient
behavior, and the closed-loop bandwidth are the three basic
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Figure 6. Frequency response of APLL implemented with an active
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loop filter for several values of damping factor: (a) � � 0.3; (b) � �

0.707; (c) � � 1; and (d) � � 2.Figure 5. Circuit diagram of the most widely used active loop filter.
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Figure 7. Error response of an ideal second-order APLL for various application of a passive lead-lag filter results in a nonzero 	ss
values of damping factor: (a) � � 0.3; (b) � � 0.707; (c) � � 1; and (d) given by Eq. (23).
� � 2. Other loop filters are also used in practical APLL circuits.

A short summary of loop parameters and closed-loop transfer
functions is given in Table 1 for different loop filter configu-

A further advantage of second-order loops is that they are rations.
unconditionally stable for all values of loop gain. However,
note that all closed-loop parameters depend on the rms ampli- Stability Considerations. So far, stability of the APLL has
tude of the incoming signal. been assumed. A necessary and sufficient condition for stabil-

Case III: Second-Order, Type-One Loop. The passive lead- ity is that all of the poles of the closed-loop transfer function
lag filter offers a very simple APLL configuration. The circuit lie in the left half-plane. As shown by Eqs. (31), (34) and (39),
diagram of the loop filter is shown in Fig. 8; its transfer func- the positions of the poles vary as the loop gain is changed.
tion is The locus that the poles trace out in their migrations in the

complex s-plane as the loop gain varies from zero to infinity
is known as the root locus plot.F(s) = 1 + sτ2

1 + sτ1
(38)

The root loci for the active and passive loop filters are
shown in Figs. 9 and 10, respectively. Root loci for other loop

where �1 � (R1 � R2)C and �2 � R2C. filters are given in (3) and (10).
The closed-loop transfer function can be expressed in the The root loci for the first- and second-order APLLs lie en-

form tirely in the left half-plane, that is, these circuits are uncondi-
tionally stable. However, the third-order APLL may become
unstable for low values of AK (10). Because A is the rms am-
plitude of the input signal, a third-order APLL may become
unstable for weak signals, even if it is stable under normal

H(s) =
s
(

2ζωn − ω2
n

AK

)
+ ω2

n

s2 + 2ζωns + ω2
n

(39)

operating conditions. The unconditional stability of the sec-
with ond-order APLL makes it popular in situations where the am-

plitude of the input signal is not constant.

ωn =
√

AK
τ1

and ζ = ωn

2

(
τ2 + 1

AK

)
(40)

Note that if AK is large enough, then these equations reduce
to Eqs. (34) and (36).

The design procedures for APLLs using passive lead-lag
or active filters are similar. The only difference is that the
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Figure 10. Root locus for second-order APLL including a passive
lead-lag filter.Figure 8. Circuit diagram of the passive lead–lag loop filter.
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There is another technique that is very often used for the vertical axis. In these cases both �n and � vary, but at least
the second-order APLL remain stable for any value of incom-design of APLLs. Bode plots offer a simple but useful graphic

tool for the analysis (10), since ing amplitude.

• all the important closed-loop parameters appear as dis- Linear Tracking. In many applications the phase of the in-
tinctive points on the Bode plot; and coming signal must be tracked with a small phase error. To

evaluate the tracking properties of APLL, one determines the• the loop stability can be also determined.
phase error response to different input phases 	i(t). Three
cases will be considered:The Bode plot consists of a pair of graphs, where both the

magnitude and phase of the open-loop transfer function are
1. Transient response to phase step, frequency step andplotted. The open-loop transfer function of an APLL is given

frequency ramp,by Eq. (30) that is repeated here for convenience
2. Sinusoidal modulation; and
3. Modulation with an arbitrary stationary process.G(s) = AK

F(s)
s

(41)

In this section the linearized loop equation will be used toThe frequency �B, where the open-loop gain becomes 0 dB is
determine the tracking properties of the loop. Recall that Eq.a good approximation of the closed-loop bandwidth. The Bode
(26) is valid for perturbations of the variables about their qui-criterion for stability is that the absolute value of the phase
escent values.of G( j�) at �B must be less than 180�.

From Eq. (26) is obtained the phase error response to theFigure 11 shows the Bode plot for the most commonly used
input phasesecond-order APLLs implemented with (a) active and (b) pas-

sive lead-lag loop filters. The pole and zero frequencies and
the most important closed-loop parameters are indicated on θ̃e(s) = [1 − H(s)]θ̃i(s) = s

s + AKF(s)
θ̃i(s) (42)

the Bode plot. Note that the absolute value of the phase shift
never exceeds 180�, that is, these loops are unconditionally This linear approximation is valid if 	e(t) remains small
stable. The Bode plot shows that the damping factor is con- enough both during the transient and under steady-state con-
trolled by the zero frequency of the loop filter. Placing the ditions. For the sinusoidal PD and if 	ss � 0, the phase error
zero at the unity-gain point �B yields a damping factor � � has to be less than 1 radian. In this case one may use the
0.5. The natural frequency �n is assigned by the frequency at approximation sin 	e � 	e.which the extension of the �40 dB/decade line segment By means of the final value theorem of the Laplace trans-
crosses the unity-gain ordinate. form, the steady-state value of the phase error can be ex-

The open-loop transfer function is proportional to the am- pressed directly from the error function
plitude of incoming signal, as shown by Eq. (41). If A varies,
then the Bode plot has to be shifted up or down along the lim

t→∞
θe(t) = lim

s→0
s[1 − H(s)]θ̃i(s) (43)

The most commonly encountered excitations can be expressed
as

θi(t) =
(

�θi + �ω i t + �ω̇ i
t2

2

)
u(t) (44)

where u(t) is the unit step function and the first, second, and
third terms denotes a phase step, frequency step and fre-
quency ramp, respectively. The steady-state values of the
phase error for different loop filter configurations are given in
Table 2.

A heuristic derivation of the steady-state phase response
to a frequency step helps one better to understand the opera-
tion of the loop. In steady-state, the input and VCO frequen-
cies are equal. The control voltage needed to retune the VCO
by ��i is ��i/Kv. The dc gain of the loop filter is F(0), that is,
the steady-state value of the PD output is ��i/KvF(0). The
phase error required to produce this output voltage is

θe = �ωi

AKdK vF(0)
= �ωi

AKF (0)
(45)
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Table 2 shows the most important advantage of the ideal
second-order APLL. In real applications, the frequency of theFigure 11. Bode plot of second-order APLLs implemented with (a)

active and (b) passive lead–lag loop filters. incoming signal always differs from the VCO center fre-
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Table 2. Steady-State Values of the Phase Error Response to a Few Commonly Encountered Excitations

Loop Steady-State Phase Error Response (in rad) to
Loop Filter

Order Type F(s) Phase Step Frequency Step Frequency Ramp

First One 0 �1
��
AK

Second One 0 0 ��̇
�2

n

1 � s�2

s�1

Two 0 ���
AK

1 � s�2

1 � s�1

quency. Even if an ideal integrator cannot be implemented, should not forget that if the APLL is used to process angle-
modulated signals, then a smaller phase error results in lessthe high dc gain of the operational amplifier used in the active

loop filter keeps the steady-state phase error extremely small, distortion.
Inspecting Figs. 7 and 12, it can be seen that the trackingindependent of the frequency error. Due to the constant and

zero phase error, error becomes very large at �n in the second-order loop for
small damping factors. Recall that the linear approximation
can be used only if the phase error remains small enough,• the PD gain Kd lumped with Kg � dg(	e)/d	e�	ss

becomes
even at �n.constant, that is, the closed-loop parameters do not de-

It has been assumed above that the input angle-modula-pend on the frequency error; and
tion is produced by a single sinusoidal signal. In general, the• the widest linear region of the analog multiplier can be
modulating signal is a random process and all that may beexploited, where sin 	e � 	e.
known are its mean and covariance function. In this case the
aim is to determine the power spectral density and varianceThe error responses of different APLLs to commonly used
of the phase error process caused by the input PM and FM.inputs can be found in the literature. [For a good survey of

Let the input phase modulation process 	i,PM(t) be a wide-sources see (11), Table III p. 19.]
sense stationary process with zero mean and power spectralNext, we determine the loop response to angle-modulated
density Si,PM(�). As shown in (3), the power spectral density ofinput signals. For sinusoidal phase modulation one may write
the phase error process in steady-state can be expressed as

θi(t) = �θ sin(ω mt) (46)
Se,PM (ω) = |1 − H(ω)|2Si,PM(ω) (51)

where �	 is the peak phase deviation and �m denotes the
and its variance ismodulation frequency.

The steady-state phase error response can be calculated
from Eq. (42) as σ 2

e,PM = 1
2π

∫ ∞

−∞
Se,PM(ω) dω (52)

θe(t) = |1 − H(ω m)|�θ sin(ω mt + 
) (47)

where the gain �1 � H(�m)� and phase shift � are given by

|1 − H(ω m)|e j
 ≡ [1 − H(s)]|s= jω m
(48)

Let the input frequency modulation be expressed as

θi(t) =
∫ t

0
�ω sin(ω mτ ) dτ = �ω

ω m
cos(ω mt) (49)

where �� denotes the peak frequency deviation. The phase
error is

θe(t) = |1 − H(ω m)|�ω

ω m
cos(ω mt + 
) (50)

where �1 � H(�m)� and � are given by Eq. (48). The error re-
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sponse is shown in Fig. 12 for the first-order and ideal second- Figure 12. Phase error generated by sinusoidal FM in (a) first-order
order loops. The high-frequency asymptote is the same for and ideal second-order APLL for (b) � � 1 and (c) � � 0.3. The modula-
both loops, but the responses are completely different below tion frequency �m and the peak frequency deviation �� are normal-
the closed-loop bandwidth. The second-order APLL ensures a ized to AK in the first-order loop and to �n in the second-order loop.

To make the figures comparable, AK � �n.much smaller tracking error than the first-order loop. One
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The variance of 	e(t) represents the mean square value of the The power spectral densities of the phase error Se,N(�) and the
output phase So,N(�) processes becomephase error process, which must be kept small for almost all

t in order to make the linear model valid. If the input of the
phase modulator generating 	i(t) is a stationary random pro-
cess of zero mean and power spectrum Sm(�) then

Se,N (ω) = So,N (ω) = |H(ω)|2 N0

2A2 (58)

from which is obtained the variances of the phase error andSi,PM(ω) = K 2
PMSm(ω) (53)

the output phase

where KPM is the modulator gain. Substituting Eq. (53) into
Eq. (51), the parameters of the phase error process can be ex- σ 2

e,N = σ 2
o,N = N0

2A2

1
2π

∫ ∞

−∞
|H(ω)|2 dω (59)

pressed.
In the case of FM, the input phase modulation is

Let the noise bandwidth BL of the loop be defined as the band-
width of an ideal low-pass filter, whose output variance is
�2

e,N when it is driven with Gaussian white noise of power
spectral density N0/2A2

θi(t) = KFM

∫ t

0
m(t) dτ (54)

where KFM denotes the modulator gain. Even if the modulat-
ing process m(t) is stationary its integral will not necessarily

BL = 1
2π

∫ ∞

0
|H(ω)|2 dω (60)

be, so that the relationship between the power spectral densi-
ties of the input frequency modulation process and the phase Then Eq. (59) becomes
error process cannot be given. However, Viterbi has shown in
(3) that the power spectrum of the phase error process can be
expressed as

σ 2
e,N = σ 2

o,N = N0BL

A2 (61)

The noise bandwidths for the most important loop filter con-
figurations are given in Table 1.Se,FM(ω) = K 2

FM
|1 − H(ω)|2

ω2 Sm(ω) (55)
Noise bandwidth for the ideal second-order loop is plotted

against damping in (10) (see Fig. 3.3 on p. 32). The minimumwhere Sm(�) is the power spectrum of the input of FM modu-
BL is achieved for � � 0.5, but the noise bandwidth does notlator. The variance of the phase error process is
exceed the minimum by more than 25% for any damping be-
tween 0.25 and 1.0.

Since the input additive noise and angle-modulaton are in-
dependent processes, the total variance of the phase error is

σ 2
e, FM = 1

2π

∫ ∞

−∞
Se, FM(ω) dω (56)

the sum of Eqs. (52) and (59). Taking into account Eqs. (51)
and (60) we get for PMNoise Performance for High SNR. As demonstrated earlier,

narrowband additive input noise ni(t) can be modeled by an
equivalent noise process ng(t) entering the baseband model
after the PD nonlinearity g( 
 ), as shown in Fig. 3. If an ana-

σ 2
e = σ 2

e,PM + σ 2
e,N = 1

2π

∫ ∞

−∞
|1 − H(ω)|2Si,PM(ω) dω + N0BL

A2

(62)log multiplier is used as the PD, then ng(t) � N(t, 	o). The
statistical properties of N(t, 	o) have been summarized earlier. The linear approximation can be used only if the total vari-
Recall here the most important characteristics of N(t, 	o). Let ance of 	e(t) is small enough. For the ideal second-order loop,
ni(t) have a symmetrical power spectral density N0/2 and let

�2
e has to be less than 0.2 (10). If, in addition to the input

the bandwidth of 	o(t) be much less than that of ni(t). In this noise and angle-modulation, other random processes such as
case the equivalent noise ng(t) is a Gaussian process with uni- VCO noise or frequency modulation of the VCO output signal
form spectral density N0/2. Furthermore, if the variance of are present then the effects of these processes must also be
the phase error caused by noise and input angle-modulation, accommodated in �2

e by applying the technique described
if any, is sufficiently small, then the linear baseband model above.
shown in Fig. 4 can be used to evaluate the noise performance Since there is no ‘‘signal’’ in the baseband model of the
of the APLL. Provided that the linear model is valid, the su- APLL, an unambiguous definition of the signal-to-noise ratio
perposition theorem holds and the effect of noise and input (SNR) in the loop cannot be given. The variance of the phase
angle-modulation can be determined independently of each error is used by Viterbi (3) and Lindsey (6) to define the SNR
other. in the APLL

The equivalent noise process having a power spectral den-
sity SN(�) � N0/2 is wide-sense stationary with zero mean.
Let the point where ng(t) is applied to the loop be considered SNRL = A2

N0BL
(63)

as input, and let 	e(t) and 	o(t) be considered as outputs. The
magnitude of the two frequency responses is obtained as

Nonlinear Operation of APLL

The linear theory of the APLL has been very well developed
and is very easy to understand. In the majority of circuit de-

∣∣∣∣ KdK vF(ω)

jω + AKdKvF(ω)

∣∣∣∣ = |H(ω)|
A

(57)
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sign and development, the linear APLL model is applied and where 	i0 is constant. Substituting F(p) � 1, N(t, 	o) � �2 � 0
and d	i/dt � ��i into Eq. (15) one gets a nonlinear differentialnonlinear effects are considered only as unwanted problems.

However, in many important situations the nonlinear equation
model of the APLL has to be considered, for example, if the
lock limits or acquisition properties have to be determined, if
the APLL operates at low SNR, and so forth.

dθe

dt
= �ωi − K vve0 − AK sin θe = �0 − AK sin θe (67)

In contrast to the linear APLL theory, a unified theory de-
scribing the nonlinear operation of APLL in closed form does Observe that Eq. (67) is an autonomous differential equation.
not exist. Many times individual methods and heuristic argu- To get the nonlinear transient response of APLL to the
ments are used to solve the problem. The details of the non- input frequency step, Eq. (67) must be solved. The initial
linear mathematical analysis are beyond the scope of this ex- value 	e0 of the phase error depends on the phase error mea-
position. In this section only the most important aspects of sured under the previous steady-state conditions and 	i0.
nonlinear APLL theory will be discussed; the interested A better insight into the APLL operation can be obtained
reader should refer to the literature for further details, when if we plot 	̇e � d	e/dt, called the frequency error, as a function
the need arises. The latest results on nonlinear theory can be of 	e , as shown in Fig. 13. A plot of a single solution in the
found in three IEEE publications (11–13), while the nonlin- phase plane is called a trajectory. The trajectory starts from
ear APLL theory is given in many excellent books (3–10). the initial value 	e0 of the phase error and goes to its steady-

state value for which d	e/dt � 0. An ensemble of trajectories
emerging from different initial conditions is known as phase-Nonlinear Tracking in the Absence of Noise. In this section
plane portrait or flow. A trajectory shows the dynamic behav-we assume that the phase-locked condition has been achieved,
ior of a loop in function of time as it settles (or fails to settle)but the frequency or phase of input signal is changed. First
toward equilibrium.the hold-in range is determined, then the nonlinear transient

As shown in Fig. 13, all trajectories of a first-order APLLresponse to a phase or/and frequency step is determined by
coincide with each other. Let the trajectory be started frommeans of the phase-plane portrait. In this chapter only the
an initial phase error 	e0. If d	e/dt is positive for that value ofnoise-free case is considered.
	e�, then the phase error will increase as a function of time.Let �i denote the frequency of the input signal. Then the
In fact, the APLL follows the trajectory plotted in Fig. 13 andinput frequency error can be expressed from Eq. (2) as ��i �
moves toward the right until it reaches the steady-state for�i � �0. The hold-in range is equal to the input frequency
which d	e/dt � 0. Similarly, if d	e/dt is negative for 	e0, thenerror, which can be tracked by the APLL, that is, for which
the phase error decreases until it reaches the steady-statethe phase-locked condition is maintained. Mathematically the
conditions. In either case, the point belonging to steady-statehold-in range is equal to the maximum frequency error for
is stable, since, after a small perturbation of 	e in either direc-which Eq. (15) has a steady-state solution
tion, the system will tend to return to the steady-state.

Since almost all phase detectors have a periodic character-
istic, they cannot distinguish a phase step of �	i � 2�n, n �sin θe = �ω i − K vve0

AKF (0)
= �0

AKF(0)
(64)

1, 2, 3, . . . from one of �	i. Therefore the APLL never loses
lock when it is driven by a pure phase step, irrespective of

where ve0 is a dc voltage, �0 � ��i � Kvve0 denotes the initial the magnitude of the loop order.
equivalent frequency detuning, and F(0) is the dc gain of loop In the first-order APLL, a frequency step breaks the lock
filter. Because the sine function cannot exceed unit magni- if, and only if, the frequency error exceeds the hold-in limit.
tude, the hold in range is In this case, the phase-locked condition cannot be recovered

and the APLL remains unlocked.
In a second-order loop, the frequency step may also break|�ωH − K vve0| = AKF(0) (65)

the lock if its magnitude is large enough. However, after a

The physical meaning of the hold-in range is that the PD out-
put voltage is bounded and so the maximum VCO frequency
detuning is also bounded.

Equation (65) states that the hold-in range can be made
arbitrarily large by using very high loop gain K. Of course,
this is not entirely correct because some other loop component
will then saturate before the phase detector. In the ideal
second-order loops, saturation of the loop amplifier generally
limits the hold-in range. Note that the hold-in range is a
static parameter, that is, its value does not depend on the or-
der of APLL.

Consider next the nonlinear tracking properties, that is,
the dynamics of a first-order APLL in the absence of noise.
Assume that the APLL is operating in steady-state when the
input frequency is suddenly changed so that
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θi(t) = �ω i t + θi0 (66) Figure 13. Phase-plane portrait for first order APLL.
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if the loop is overdamped (� � 1) or underdamped (� � 1),
respectively. The steady-state phase-locked conditions which
are reached asymptotically are called equilibria.

The unstable singularity is called a saddle point. Even if
the loop state gets just into a saddle point, where it is in equi-
librium, it cannot remain there, because any disturbance,
such as noise, will displace it slightly and then the saddle
point repels the loop state.

A trajectory that terminates on a saddle point is called sep-
aratrix. The separatrices are marked by heavy curves in Fig.
14.

Consider a stable singular point and the two separatrices
that terminate on the two adjacent saddle points. If the initial
conditions lie between these separatrices and the initial
phase error is in the 2� interval centered about the stable
equilibria to be achieved, then the trajectories emerging from
these initial conditions will terminate at that equilibrium

θe

θ

π–

e

A⋅K

Saddle
0

Focus
π

Saddle

  ssθ θ  ss

π2
Focus

π3
Saddle

⋅

point without cycle slip. If the initial conditions lie outside
these separatrices, then the loop slips one or more completeFigure 14. Phase-plane trajectories of the ideal second-order APLL
cycles before achieving the phase-locked condition.for � � 0.707.

We are now ready to evaluate the nonlinear transient
graphically for a second-order APLL. First, the initial condi-
tions have to be determined from Eq. (66) and the previoustransient the APLL may achieve the phase-locked condition
steady-state conditions. Then the initial conditions have to beagain.
plotted on the phase-plane portrait, and the trajectory emerg-To obtain the phase-plane trajectories for the ideal second-
ing from them gives the actual transient response of APLL.order APLL, first the time variable has to be eliminated in

The phase-plane portrait is a very useful tool for the deter-Eq. (15). Substituting F(p) � (1 � p�2)/p�1 and Eq. (66) into
mination of APLL dynamics. Phase-plane portraits for otherEq. (15) one obtains
loop configurations can be found in (3) and (6).

Acquisition Behavior in the Absence of Noise. Before a PLL
d 2θe

dt2 +
(

AK
τ2

τ1
cos θe

)
dθe

dt
+ AK

τ1
sin θe = 0 (68)

can track, it must first acquire the phase-locked condition. In
general, the PLL quiescent frequency differs from the fre-Letting t � �/(AK �2/�1), so that d	e/dt � AK �2/�1 d	e/d�, one
quency of the incoming signal. Therefore, first the VCO fre-can eliminate one constant from Eq. (68). Taking into account
quency has to be tuned to the incoming frequency by the loop.that AK �2/�1, � 0, Eq. (68) can be written as
This process is called frequency pull-in. Then the VCO phase
has to be adjusted according to the input phase. This process
is known as phase lock-in.

d 2θe

dτ 2 + cos θe
dθe

dτ
+ τ1

AKτ 2
2

sin θe = 0 (69)
The two parts of the acquisition process can be recognized

easily by plotting the phase error as a function of time. Figure
If one divides Eq. (69) by 	̇e � d	e/d� and recognizes that 15 shows that the phase error 	e(t) generally goes through
d2	e/d�2 � d	̇e/d�, then the first term of Eq. (69) becomes 	̈e/	̇e multiple periods of 2� before finally settling in to the phase-
� (d	̇e/d�)/(d	e/d�) � d	̇e/d	e. Eliminating � in Eq. (69), one locked condition. When the phase exceeds 2�, a cycle slip oc-
may treat the phase error 	e and the normalized frequency curs between the incoming and VCO phases. The position of
error 	̇e as independent variables (3)

dθ̇e

dθe
= − cos θe − τ1

AKτ 2
2

sin θe

θ̇e
(70)

To get the phase-plane portrait, the solution of Eq. (70)
must be determined for different initial conditions. The
phase-plane trajectories for an ideal second-order APLL are
shown in Fig. 14.

The phase-plane portrait of an APLL with a periodic phase
detector characteristic is also periodic with the same period
in variable 	e, but is aperiodic in 	̇e. Trajectories proceed as a
function of time clockwise only as marked by arrows in Fig.
14. Intersection of trajectories may occur only at singular
points, that assign the possible steady-state solutions of loop
equation. Both stable and unstable singular points appear;

e (t)

t

θ
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equilibrium occurs at stable singularities. In second-order
APLLs, an equilibrium is called a stable node or stable focus Figure 15. Distinction between pull-in and lock-in.
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Table 3. Acquisition Parameters of First- and Second-Order
APLLs

Loop Filter Acquisition Range Acquisition Time
Loop Order F(s) (rad/s) (s)

First 1 4BL
2
BL

Second 2�AK��n
1 � s�2

1 � s�1

�2
0

2��3
n

�1 � s�2

s�1

�2
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2��3
n0

0 1 2
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mains near the equilibrium and the phase transient is almostFigure 16. Acquisition behavior of first-order APLL. The initial val-
exponential, as expected from the linear theory of the APLL.ues of phase error 	i0 are (a) 45�; (b) 135�; (c) 170�; (d) 178.86� and
However, if 	i0 � 135�, the waveforms diverge considerably(e) 179.886�.
from exponential and the acquisition time becomes very long.
The acquisition parameters of the first-order loop are given in

cycle slips can be seen easily if one plots the modulo-2� pro- Table 3.
cess for 	e(t), shown in Fig. 15 by the lower curve. The jumps As explained above, the first-order loop always achieves
of 2� in 	e(t) indicate the occurrence of a cycle slip. Note that the phase-locked condition without cycle slips. The same is
there are no cycle slips during the lock-in process. not valid for the second- and higher-order loops; for these, the

Acquisition is inherently a highly nonlinear phenomenon. lock-in range is smaller than the pull-in range. The phase-
It is started from given initial conditions and no external exci- plane portrait for an ideal second-order APLL is shown in
tation is applied, apart from the initial phase and frequency Fig. 14.
error. This means that acquisition can be described by an au- Gardner has proposed a simple method to estimate the
tonomous nonlinear differential equation and it can be stud- lock-in range (10). Let F(�) denote the high-frequency asymp-
ied by the phase-plane portrait introduced in the previous totic response of the loop filter. For a second-order loop
section. F(�) � �2/�1. If the deviation of the input frequency from the

If the loop acquires lock by itself, the process is called self- VCO center frequency is greater than 1/�2, then the second-
acquisition. If it is assisted by extra circuits, it is called aided order loop behaves like a first-order one, with open loop-gain
acquisition. Since self-acquisition is relatively slow and unre- K � KdKvF(�). As a useful engineering approximation one
liable, acquisition-aids are often used. For a good survey of may say that higher-order loops have the same lock-in range
different aided acquisition techniques, see (10). as first-order ones with equivalent gain. If ve0 � 0, one may

The acquisition behavior of a first-order APLL is described write
by Eq. (15) and can be studied by means of the phase-plane
portrait shown in Fig. 13. Under steady-state conditions, ωL ≈ ±AKF(∞) (72)
d	e/dt � 0. It is clear from Eq. (15) and Fig. 13 that d	e/dt

The frequency pull-in, or simply pull-in, is much slowerbecomes zero at any of the following values of phase error:
than the lock-in process. The acquisition problem cannot be
solved in closed form; some approximation must be used.
Richman has developed a model (16) for the analysis of pull-
in process. Consider an ideal second-order APLL. The loop
filter can be divided into two parallel paths

θss = sin−1
(

�0

AK

)
+ 2nπ, n = 0,1, 2, . . .

θ̂ss = − sin−1
(

�0

AK

)
+ (2n − 1)π, n = 0,1, 2, . . .

(71)

provided ��0� 
 AK. Referring to Fig. 13 one sees that the F(s) = 1 + sτ2

sτ1
= 1

sτ1
+ τ2

τ1
(73)

equilibrium points denoted 	ss are stable, 	̂ss are unstable. If
the phase error is equal to 	̂ss then any perturbation in either as shown in Fig. 17. Note that there is a high-frequency ac
direction, caused by noise, for example, will cause 	e to move path from the PD output to the VCO input with flat gain of
until it reaches the next stable equilibrium. If ��0� � AK, no �2/�1 and a dc path which contains a perfect integrator.
stable equilibrium exists and the loop never reaches the
phase-locked condition, but 	e(t) moves along the sinusoidal
trajectory.

Figure 13 shows that an infinitely large number of equilib-
rium points exists. Since every cycle of the trajectory has a
stable equilibrium, 	e cannot change by more than one cycle
before phase-locking. Thus the pull-in and lock-in ranges are
equal, so cycle slipping never occurs during acquisition in the
first-order loop.

The phase transients of the first-order APLL during acqui-
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∫(⋅)dt—1
 2τ

—
 2
 1τ

τ

0 =   0 + KvvIω ω
sition are shown in Fig. 16 for different values of the initial
phase error 	i0. Note that for small 	i0, the loop operation re- Figure 17. Pull-in model for the ideal second-order APLL.
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where the phase transients are plotted for different initial
values of phase error. It must be emphasized that the hangup
effect appears in every APLL, independently of the loop order.

It is obvious from Fig. 17 that the rate of VCO control volt-
age is proportional to the dc output vp of the phase detector
that is, in reality, a slowly varying signal. Voltage vp can be
considered as a restoring force. If vp is very small, as occurs
near the reverse null, then restoring force is also small and
the loop converges extremely slowly toward the phase-locked
condition.

Techniques and design rules that help to avoid the hangup
effect are given in (17).

False Lock to Data Sidebands. The recovery of suppressed
carriers is also performed by PLLs. The most commonly used

Input

∆ω

ω

ω

ω

signal

VCO

without FM

VCO

with FM

ω0

ω i

ω0

circuit configurations will be discussed later. Since the carrier
is completely suppressed in these cases, the carrier recoveryFigure 18. Pull-in spectra. The instantaneous center frequency of
circuit must regenerate a harmonic of the carrier (squaringthe VCO is denoted by �̂0.
loop) or, equivalently, must generate a phantom carrier (Cos-
tas loop). In both solutions, the loop operation can be modeled
by a proper nonlinear operation followed by a CW trackingOne can understand the pull-in process easily by plotting

the relevant spectra in the loop. Initially, the input and the loop.
In addition to the regenerated signal, discrete frequencyVCO frequencies are �i and �0, respectively, as shown by the

upper two traces of Fig. 18. Let �̂0(t) denote the instantaneous components spaced by integer multiples of half the symbol
rate also appear about the desired frequency due to the non-VCO center frequency, which is a slowly varying function,

and which is determined by the integrator output vI. The fre- linear operation (18,19). If the quiescent frequency of the
VCO is close enough to one of these sidebands, then the loopquency difference �� � �̂0 � �i is called the beat-note.

The analog multiplier used as a phase detector generates will lock onto that spectral component instead of the desired
frequency. This phenomena is called false lock to data side-the beat-note, which gets through the ac path and modulates

the VCO, generating FM sidebands as shown in the lower bands. The probability of false lock is especially high when
the SNRL is high.trace of Fig. 18. Observe that the FM sideband (�̂0 � ��) coin-

cides with �i and produces a negative dc voltage at the PD Note that this kind of false lock is completely different
from that which appears in a superheterodyne PLL receiver.output denoted by vp in Fig. 17. This dc voltage is integrated

by the dc path and the slowly varying output vI(t) of inte- In that case, false lock is caused by the narrowband IF filter,
which is included in the so-called long loop. For a comprehen-grator pushes �̂0 toward �i. The pull-in process is terminated

when �̂0 � �i. sive discussion of the false lock problem in long loops, and for
further references, see (10).Many approximate formulas for pull-in limits and pull-in

time have been developed by different authors for various
loop configuration. For a good survey, see Sec. 5.3 of (10). For- APLL Behavior in the Presence of Noise. When one tests the

behavior of a real APLL and reduces the SNRL below about 7mulas giving the acquisition parameters of first- and second-
order loops are given in Table 3. dB, the fluctuation in phase error, called phase jitter, becomes

more than predicted from Eq. (62). In this section, the behav-
ior of the APLL for low SNRL when the linear approximationHangup Phenomenon. APLLs occasionally have extremely

long acquisition time that cannot be tolerated in many appli- is no longer applicable is briefly discussed.
We have seen that PLLs have an infinitely large numbercations. In these cases, the loop seems to stick for a long time

at a certain value of phase error before moving toward the of stable equilibrium points. At low SNRL, the phase error
migrates among the different stable equilibrium points, thatphase-locked condition. This phenomena, studied by Gardner

in (17), is known as the hangup effect. is, the probability density function (pdf) of 	e appears as a
multimodal function with each mode centered about a stableAlmost all phase detectors have a phase error characteris-

tic which is periodic. Due to this periodicity, the loop equation equilibrium point.
To understand the problem, let the SNRL be very high athas two steady-state solutions in every period. The locations

of steady-state solutions have been called the normal equilib- the beginning and then let it be reduced later.
For high SNRL, a small fluctuation in phase error aboutrium null and reverse null by Gardner (10).

The slope of the PD characteristic is positive at the normal 	ss appears. This small fluctuation can be determined by
means of linear APLL theory.equilibrium null providing negative feedback for the loop. At

the reverse null, the slope becomes negative causing positive If the SNRL is reduced then the linear approximation re-
sults in a large error [see Fig. 3.4 in (10)]; even more, cyclefeedback in the APLL.

Consider an APLL implemented with an analog multiplier slips occur. Migration caused by the cycle slipping problem
can be studied only in the context of nonlinear theory.and assume that �0 � 0, that is, that the steady-state phase

error is zero. The phase trajectories originating near 180� re- The detailed study of nonlinear APLL theory goes beyond
the scope of this chapter. This section will only summarizemain in that vicinity for a long time before decaying toward

equilibrium at 0�. Examples for hangup are shown in Fig. 16, the basic ideas and the most important results. Interested
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readers may refer to the original sources of nonlinear APLL
theory (3,7).

The migration of phase error among the different stable
equilibrium points is illustrated in Fig. 19. The figures show
how the steady-state pdf of phase error is developing from its
initial position. Let the APLL initially be in phase lock so
that p(	e, t�	ss, t0) � �(	e, � 	ss). With time, the initial phase
begins to diffuse in the vicinity of 	ss, due to noise, but cycle
slip does not yet appear. However, after a sufficiently long
period, more and more cycle slips appear in both directions.
The average time for the occurence of cycle slips depends on
SNRL. After a long time, the probability density of phase error
will appear as a multimodal function, with each mode cen-
tered about a stable equilibrium point. If one considers the
equilibrium points as attractors, then one may say that the
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phase error migrates among the basins of all of these at- Figure 20. Probability density functions of reduced phase error for
tractors in the long run. As a result, the pdf of the phase error a first-order APLL with zero detuning. The curves are given for
possesses an unbounded variance. SNRL values of (a) 0 dB (b) 5 dB and (c) 10 dB.

Tikhonov (21,22) and Viterbi (23) have shown that the
phase error process reduced by modulo-2� is stationary and

Fokker–Planck equation gives the pdf for the reduced phasepossesses a bounded variance. If one treats the cycle slip ef-
error process in closed form. Consider the first-order APLLfect as an independent problem and if one is interested in the
implemented with a sinusoidal phase detector. Viterbi (3) hassteady-state behavior of the APLL, then one may attend to
shown that, for zero detuning, the pdf of the reduced phasedetermining the pdf of the reduced modulo-2� phase error
error process isprocess, which is denoted by �(t).

The loop operation can be described in the presence of
noise by a nonlinear stochastic differential equation [see Eq. p(φ) = exp(α cos φ)

2πI0(α)
, −π ≤ φ < π (74)

(15)]. An exact nonlinear theory for APLLs can be developed
by means of Fokker–Planck theory (6). The solution of the where � � 4A/N0K � SNRL is the loop signal-to-noise ratio

and I0(�) denotes the zeroth-order modified Bessel function.
Typical probability densities of �(t) for a first-order loop and
zero detuning are shown in Fig. 20; probability density func-
tions for other parameters are given in (3). The measured and
calculated probability density functions are compared in (7).

The Tikhonov probability density function can also be used
to describe the behavior of higher-order APLLs. Lindsey has
shown in (6) that, if the parameter � is suitably modified,
then the steady-state pdf of higher-order loops can be approxi-
mated by Eq. (74).

Cycle slips in the carrier recovery circuit destroy the per-
formance of digital telecommunication systems. Cycle slips
may occur either in isolated form or in bursts (24).

Consider again a first-order APLL with zero detuning. Us-
ing the Fokker–Plank technique, Lindsey has shown in (6)
that the mean time between cycle slips is

τ = π2αI0(α)

2BL
(75)

These values agree perfectly with the measured data (24). Ob-
serve that � is inversely proportional to the noise bandwidth
of the APLL, that is, for efficient carrier recovery a nar-
rowband loop must be used.

Equation (75) can approximate the mean time between cy-
cle slips in higher-order APLLs if the parameter � is modified
appropriately (6). A better theory, giving more accurate re-
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sults, has been published in (25); for measured data, see (24).
Figure 19. Qualitative behavior of the phase error pdf with time.
Initially, the APLL is (a) in equilibrium position 	ss; then (b) the pdf

PLL APPLICATIONSexpands due to diffusion. Later a cycle slip appears and the phase
error migrates (c) to the adjacent stable equilibrium on the right side.

The baseband model of the analog phase-locked loop and theThen after a long period (d) the pdf appears as a multimodal function
about the stable equilibrium positions. linear and nonlinear APLL theories were discussed in the
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previous sections. The operation principle and versatility of The filter characteristic is determined by the closed-loop
transfer function. A further advantage of PLL bandpassPLLs cannot be understood without surveying the bases of

different PLL applications. The aim of this section is to pro- tracking filters is that they reject the amplitude modulation,
that is, they can also be used as limiters.vide this survey and not to discuss the latest circuit configu-

rations developed for various PLL applications. The block diagram of a bandpass tracking filter is shown
in Fig. 21. If the loop parameters depend on the amplitudeAlthough various circuit configurations have been devel-

oped for different applications, the baseband model discussed of the input signal, an AGC circuit must precede the PD
in order to keep the filter parameters constant. Note thatabove can be adopted, with minor modification, to these loop

configurations. the problems of and the difficulties associated with the de-
sign and implementation of a high-frequency bandpass filterIn all PLL applications, the phase-locked condition must

be achieved and maintained. In order to avoid distortion, are reduced to the design and implementation of a base-
band loop filter. The design of PLL bandpass filters is dis-many applications require operation in the linear region, that

is, the total variance of the phase error process appearing due cussed in detail in (32).
to noise, modulation, and so on, must be kept small enough.

Recall that only the PD output, VCO control voltage, input CW Carrier Recovery
phase 	i(t), and output phase 	o(t) appear in the PLL base-

In every coherent receiver the carrier has to be recoveredband model. All these signals are low-frequency signals, 	i(t)
from the noisy input signal (15). Here, it is assumed that theand 	o(t) are the phase modulations of the input and output
carrier is present all the time in the received spectrum; thesignals. Sometimes it is not easy to determine the spectrum
recovery of a suppressed carrier will be considered later. Theof the original bandpass input and output signals. If an ana-
aim of CW carrier recovery is to retrieve the unmodulatedlog multiplier is used as the phase detector, then, by knowing
carrier and to suppress as much noise, modulation, and inter-the spectrum of the PD output and exploiting the frequency
ference as possible. Note that the CW carrier recovery circuitshifting property of the analog multiplier, the output spec-
is a narrowband bandpass tracking filter implemented by atrum can be determined easily.
PLL, as shown in Fig. 21.Different phase detectors are used in different applica-

The noise-free recovery of a carrier in a noisy environmenttions, in order to achieve the best circuit performance. The
requires a very narrowband PLL [see Eq. (61)]. As shown bymost commonly used PD circuit configurations will be dis-
Table 3, the acquisition properties of narrowband PLLs arecussed later; many of these are edge-triggered. The operation
very poor. We may overcome this problem by using two differ-of PLLs implemented by an edge-triggered PD cannot be de-
ent loop bandwidths: a wide one during the acquisition pro-scribed exactly by the simple APLL model. However, Gardner
cess and a narrow one in steady-state, after the phase-lockedhas shown that, even in these cases, the APLL theory can be
condition has been achieved (10).used as a good approximation of the real operation if the

The Doppler effect must also be considered in many car-closed-loop bandwidth is less than one tenth of the input fre-
rier recovery circuits. The ideal second-order PLL can trackquency (26).
a frequency ramp, but the reduction of tracking error re-The PLL is one of the most commonly used circuits in elec-
quires a wide loop bandwidth (see Table 2). On the othertrical engineering. A detailed discussion of different applica-
hand, the noise-rejection performance of a PLL is inverselytions is beyond the scope of this article; for a comprehensive
proportional to the loop bandwidth. For low SNR, this con-survey of applications, see (11) and (14).
tradiction can be solved by using third- or higher-order loopIn addition to the conventional applications, new applica-
configurations (33).tions for the various PLLs have been published recently. It

has been shown that both the analog (27) and sampling PLLs
(28) may exhibit chaotic behavior. Bernstein and Lieberman PLL Amplifier
have proposed the application of an ideal sampling PLL for

The implementation of high-gain amplifiers in the extremelyrandom number generation (29). The quality of generated
high-frequency region is very expensive. As shown in Fig. 22,random numbers has been evaluated by the run test in (30).
the PLL can be also used for amplification of angle-modulatedBy means of a chaotic APLLs, very simple chaotic telecommu-
signals. In the simplest circuit configuration, the multipliersnication systems can be implemented (31).
denoted by their multiplication factor N and the amplifier fol-

Tracking Bandpass Filter

Bandpass filters that must select very narrowband angle-
modulated signals cannot be implemented by conventional
analog filters, due to their temperature dependence. In other
applications, the carrier frequency of an angle-modulated sig-
nal varies. These problems can be overcome if a PLL tracking
the carrier is used as a bandpass filter. The PLL separates
the spectrum of the angle-modulated signal from other in-
terfering signals, or limits the transmitted spectrum to within
specified bounds. The output phase modulation is determined

Input
signal

Filtered
signal

Noise
ni(t)

s(t, Φ)
s(t, Φ)

++
PD VCOAGC

x(t)
F(s)

by the closed-loop transfer function as given by Eq. (27)
Figure 21. PLL configuration for bandpass tracking filter and CW
carrier recovery. The AGC circuit is used to keep the input amplitude,
that is, loop parameters, constant.θ̃o = H(s)θ̃i(s) (76)
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phase noise, to avoid the generation of spurious output sig-
nals, and to minimize the unwanted output FM caused by the
periodic output of the phase detector. These requirements can
be satisfied with special PD configurations, such as phase-
frequency detector with a charge pump circuit or sample-and-
hold phase detector. The operation of these PDs will be dis-
cussed later. Many system aspects must be considered during

Signal
to be

amplified
Amplified

signal
PD VCO N

N

F(s)
s(t, Φ) s(t, Φ)

the development of frequency synthesizers. A detailed discus-
Figure 22. Amplification of angle-modulated high frequency signals sion of these questions can be found in (36–39).
by PLL. In addition to frequency synthesis, PLLs can be also used

as FM or PM modulators. The corresponding transfer func-
tions for FM and PM are

lowing the PLL are missing. The gain is determined by the
ratio of VCO output and input powers. Note that the amplifi-
cation is performed in the baseband. In addition to amplifica-
tion, the PLL also operates as a limiter and filter for the in-

sθ̃o(s) = [1 − H(s)]K vṼFM (s)

θ̃o(s) = H(s)
N

AK
ṼPM(s)

(77)

coming angle-modulated signals.
Sometimes it is cheaper to implement the VCO and power where Kv and N/AK are the gains of the FM and PM modula-

amplifier below the input frequency band, as shown in Fig. tors, respectively. The closed-loop error [1 � H(s)] and trans-
22. Due to the frequency multiplier placed in the feedback fer H(s) functions are given by Eqs. (29) and (28), respectively.
path of the APLL, the VCO output frequency is f i/N, where The only difference is that the frequency synthesizer has a
f i is the input frequency. The input phase/frequency deviation frequency divider in the feedback path. Therefore, the loop
is also divided by N; however, the modulating frequency re- gain becomes
mains unchanged. Then the output frequency multiplier fol-
lowing the power amplifier restores the original carrier fre-
quency and phase/frequency deviation. K = KdK v

N
(78)

Frequency Synthesis and Angle Modulation by PLL The equations given above and the APLL theory discussed
earlier are valid only if an ordinary differential equation canSignals with high-frequency stability and high spectral purity
describe the operation of the PLL. The phase detectors usedare often required in electrical engineering. In many applica-
in frequency synthesis are edge-triggered circuits. This is whytions, the frequency of generated signal must be varied by a
the exact modeling of these circuits can be performed only bydigital code.
an integro-difference equation (26), (40). However, if theThe PLL is widely used in frequency synthesis to generate
closed-loop bandwidth is less than one-tenth of the referencespectrally pure signals and, if necessary, to operate as an ana-
frequency fR, then the continuous-time approximation can belog or digital frequency or analog phase modulator. Frequency
used and the APLL theory is a good approximation of the cir-multiplication and/or division, furthermore frequency addi-
cuit operation (26).tion and/or subtraction, may be performed, using a PLL in

conjunction with programmable frequency dividers and mix-
Coherent Demodulation by APLLers as shown in Fig. 23. As a result, the output frequency f o

can be expressed as a combination of reference and offset fre- The noise performance of coherent demodulators is much bet-
quencies, division ratios of frequency dividers. In frequency ter than that of their noncoherent counterpart (15). A circuit
synthesis, the PLL input is called reference signal and its fre- configuration, which is suitable for coherent PM, FM, and AM
quency is denoted by fR. To optimize the system performance, demodulation, is shown in Fig. 24.
frequently a multiloop circuit configuration (36) is used.

In frequency synthesis applications, the dominant noise PM Demodulator. Assume first that the input signal s(t, �)
is phase modulated and A(t) � A � constant. The demodu-sources are the VCO, frequency dividers, mixers, and phase

detectors. The main design goals are to minimize the output lated PM signal can be measured at the output of the phase

fo =     fR + fS

Modulated
output

Reference
signal

vPM(t)
PM modulation

input

vFM(t)
FM modulation

input

Offset frequency
fS

fR

VCOPD
+

+
+

+
1
M

F(s)
N
M

1
N

Figure 23. Frequency synthesis by PLL.
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Fig. 24). Since the PLL needs an input signal to be tracked
continuously, the spectrum of the AM signal must contain a
carrier component.

If the carrier is recovered by an ideal second-order PLL,
then the VCO output is

r(t, �̂) =
√

2Vo cos(ω i t + θi0) (82)

and the difference-frequency output of multiplier

A0Vo[1 + m(t)] (83)

contains the demodulated signal m(t); A0Vo is the gain of the
AM demodulator.

A(t)s(t, Φ)

Demodulated
FM output

Input
signal

d  i
dt
θ

2
π

Demodulated
PM output

∼  i(t)

∼ m(t)

∼

θ

VCO

PD F(s)

Demodulated
AM output

Suppressed Carrier Recovery Circuits
Figure 24. Coherent PM, FM and AM demodulation by APLL.

In digital telecommunications, the optimum detection of
transmitted data requires that both the carrier and clock sig-
nals be available at the receiver (15). The carrier and clockdetector. In this case, the PD output signal is given by
recovery circuits are used to retrieve these signals from the
noisy incoming waveform.Ṽd(s) = [1 − H(s)]AKd θ̃i(s) (79)

In order to maximize the power efficiency, modern digital
modulation techniques suppress the carrier completely, thatwhere 	̃i(s) denotes the input PM and AKd is the gain of the
is, all transmitted energy resides in the data sidebands. Nar-PM demodulator. The demodulated PM signal is multiplied
rowband PLLs cannot be used for carrier recovery, becauseby the closed-loop error function which has a high-pass char-
the carrier frequency is missing from the input spectrum.acteristic. Distortion can be avoided if the closed-loop band-

The missing carrier frequency component can be regener-width is less than the lowest modulation frequency. The other
ated by nonlinear circuits called regenerators. The regenera-source of distortion is the PD nonlinearity. This type of distor-
tor can be placed before the narrowband PLL as an entirelytion does not appear if the total variance of the phase error
separate circuit, or it may be included in the loop. Examplesgiven by Eq. (62) remains small enough.
for the first and second solutions are the squaring and Costas
loops, respectively.FM Demodulator. Assume that a frequency modulated in-

Many factors have to be considered during the selectionput signal is applied to a PLL. If the phase-locked condition
and development of a suppressed carrier recovery circuit (20).is maintained, then the VCO frequency follows the incoming
Here, only the basic operating principles of these circuits isfrequency. Since the VCO frequency is proportional to the
surveyed. Interested readers may find a discussion of the car-VCO control voltage, the FM modulation may be recovered
rier recovery problem in the literature (7,10,20,41–43).from the VCO control voltage. By means of the transfer func-

For the sake of simplicity, only binary phase shift keyingtion concept, one may write
(BPSK) modulation shall be considered here. In BPSK, the
binary information to be transmitted is mapped to the phase
of a sinusoidal carrier. If the data bit is a ‘‘1’’, the phase of

Ṽc(s) = H(s)
1

K v
sθ̃i(s) (80)

the carrier is zero; while if the data bit is a ‘‘0’’, the carrier
where 1/Kv is the gain of FM demodulator. This equation phase becomes �180�. If the probabilities of 1s and 0s are
shows that the FM demodulator output, that is, the VCO con- equal, then the carrier is completely suppressed. In the noise-
trol voltage, is proportional to the input FM if the closed-loop free case, the received signal can be expressed in the form
bandwidth exceeds the highest modulation frequency.

The distortion caused by the PD nonlinearity is reduced by vi(t) = m(t) sin(ωit + θi) (84)
feedback so the PD distortion is not critical. However, the
VCO transfer characteristic must be linear, in order to get an

where �i is the carrier frequency and the carrier phase 	i isFM demodulator with low distortion.
arbitrary but constant. The binary data stream is given by
m(t). From the carrier recovery problem of view, the intersym-AM Demodulator. Let the input signal be amplitude modu-
bol interference (ISI) problem (20) can be disregarded, that is,lated
we may assume m(t) � �1. Three basic types of carrier recov-
ery circuits will be discussed in the following: the squaringx(t) = [1 + m(t)]

√
2A0 sin(ω i t + θi0) (81)

loop, the Costas loop and the inverse modulator.

where m(t) carries the information to be transmitted, and A0,
Squaring Loop. In this case, the nonlinear operation is per-�i and 	i0 are constants. The PLL demodulator contains a car-

formed by a square-law device, that is, a frequency doublerrier recovery circuit (see the PLL in Fig. 24) and an AM de-
modulator (see the analog multiplier and low-pass filter in circuit. As shown in Fig. 25, the nonlinear operation precedes
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VCO output is

2 cos(ωit + θo) (87)

The output of the low-pass filters in the Q- and I-arms are
m(t) sin(	i � 	o), and m(t) cos(	i � 	o), respectively. Taking
into account that m2(t) � 1, one may express the output of the
baseband multiplier as

1
2

m2(t) sin[2(θi − θo)] ∼ sin(2θe) (88)

By comparing Eqs. (10) and (88) we conclude that, in the
noise-free case, the output of the baseband multiplier in a

Input
signal

Frequency
doubler

(⋅)2

Recovered carrier
  iω

1
2

VCO

F(s)

m2(t) cos(2  it + 2  i)θω

m(t) sin(  it +   i)θω
2  iω

Costas loop is equal to the PD output of a conventional APLL.
Figure 25. Suppressed carrier recovery by squaring loop. The only difference is that the phase error is multiplied by a

constant of two that results in a higher PD gain.
In addition to carrier tracking, the Costas loop demodu-

the narrowband PLL. From Eq. (84) the output of frequency lates the incoming BPSK signal. If the phase error is small,
doubler circuit is obtained: then the output of the low-pass filter in the I-arm becomes

m(t) cos(θi − θo) ≈ m(t) (89)vx(t) = v2
i (t) = 1

2
m2(t)[1 − cos(2ω i t + 2θi)] (85)

Inverse Modulator. Two slightly different versions of an in-Taking into account that m(t) � �1, that is, m2(t) � 1 one
verse modulator or remodulator can be found in the literaturemay write
(10). The terms ‘‘inverse modulator’’ and ‘‘remodulator’’ are
used interchangeably and indiscriminantly. As an example,vx(t) ∼ cos(2ωit + 2θi) (86)
the operation of an inverse modulator is discussed here.

Equation (86) shows that, after the frequency doubler, a con- The block diagram of an inverse modulator contains de-
ventional narrowband PLL can be used to recover the second modulator and modulator circuits, as shown in Fig. 27. As-
harmonic of the carrier. Finally, the double-frequency output sume that the PLL involved has achieved the phase-locked
of the PLL is frequency divided by two, in order to recover the condition and that the VCO output is
original carrier signal.

2 cos(ω i t + θo) (90)
Costas Loop. In the squaring loop the nonlinear operation

Then the output of the demodulator can be expressed asis performed in the RF band. The Costas loop offers an alter-
native solution, where the BPSK modulation is removed in
the baseband. m(t − td ) cos(θi − θo) (91)

The block diagram of Costas loop is shown in Fig. 26. The
where (	i � 	o) is the phase error of the PLL and td denotescircuit contains in-phase (I-arm) and quadrature (Q-arm)
the time delay of the low-pass filter involved in the demodula-channels and an analog multiplier, that is, a phase detector
tor. This demodulated signal modulates the recovered carrierthat precedes the loop filter. The I- and Q-arms consist of an
in the modulator and produces an outputanalog multiplier and a low-pass filter.

To understand the operation of Costas loop, assume that
the phase-locked condition has been achieved and that the 2m(t − td ) cos(θi − θo) cos(ω i t + θo) (92)

Figure 26. Demodulation of BPSK signal
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Figure 27. Block diagram of the inverse
modulator.
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which is multiplied in the phase detector by the delayed input of clock recovery circuits. These approaches offer the simplest
solution, but their performance is only suboptimal. Note thatsignal m(t � td) sin(�it � 	i). The input signal has to be de-
these solutions are analogous to the squaring loop used inlayed, in order to cancel the effect of the delay in the demodu-
suppressed carrier recovery. Examples for these circuits arelator.
the cross-symbol synchronizer (44) and the squaring loopNeglecting the sum frequency component the PD output is
symbol synchronizer (45).obtained:

The other class of clock recovery circuits is based on maxi-
mum a posteriori estimation (MAP) techniques (7,46). Manym2(t − td ) cos(θi − θo) sin(θi − θo) ∼ sin(2θe) (93)
variants of this technique are currently used; they differ
mainly in the phase, that is, clock error, detector characteris-As in Eq. (88), this signal can be considered as the PD output
tics. The operation of the early-late gate clock recovery circuitof an equivalent PLL. Observe that if the phase error is small
(47), as an example, will be discussed here.enough, then the demodulator output is equal to m(t).

The block diagram of the early-late gate clock recovery cir-
cuit is shown in Fig. 28. The circuit contains a pair of gated

Clock Recovery Circuit integrators called early and late gates, each performing its
integration over a time interval of T/2 s. The input bit streamIn addition to the carrier, the timing information, that is, the
isclock signal, also has to be recovered in the digital telecom-

munication systems (7,20). There are two basic classes of
clock recovery circuits, but a PLL can be recognized behind

∑
n

an p(t − nT ) (94)

both solutions.
The clock frequency component is regenerated from the in- where T is the symbol duration and p(t) denotes a rectangular

pulse width duration T. Integration by the early and latecoming signal via some nonlinear operation in the first class

Figure 28. Block diagram of the early-
late gate clock recovery circuit.
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cuit may be needed before the phase detector, in order to keep
the input amplitude constant.

If one plots the PD output voltage against the phase error,
two important PD characteristics can be observed. The phase
range over which the feedback is negative in the loop is lim-
ited. Furthermore, the region over which the linear approxi-
mation is valid for the PD limits the maximum of allowable
excursion of the phase error in many applications. The sizes
of these regions are different for different phase detectors.

Many phase detectors implemented by digital circuitry are
edge-triggered circuits. In certain applications, the phase de-

Perfect timing
vd = 0

t t t t

τ τ

No transition
vd = 0

Late
vd > 0

Early
vd < 0

T

   = 0τ

T T T

tector must operate in very noisy environment. However,
Figure 29. Typical waveforms in the early-late gate clock recovery edge-triggered PDs are intolerant of missing or extra signal
circuit. transitions. This transition-sensitive property makes the use

of edge-triggered PDs impossible if the input SNR is low.
In addition to the desired dc voltage, a periodic signal ap-

gates are performed during the T/2 s, just before and after,
pears at the output of the PD under phase-locked condition.

respectively, the estimated location of data transition. Gate
This periodic signal is attenuated, but cannot be completely

intervals adjoin each other, but do not overlap.
suppressed by the low-pass filter included in the phase detec-

Waveforms helping to understand the operation of clock
tor and the loop filter. The periodic signal getting through to

recovery circuit are shown in Fig. 29. If the timing error is
the VCO input causes unwanted frequency modulation of the

zero, then the data transition falls just on the boundary be-
output signal, that is, sidebands appear. These sidebands are

tween the operation of the early and late gates. In this case,
especially unwelcome in frequency synthesizer applications.

the estimated and incoming data transitions coincide with
Earlier it was mentioned that the PLL acquisition consists

each other, and the output of the two integrators, stored in
of frequency and phase pull-in processes. In higher-order

the hold capacitors CH, are equal. As a result, the error volt-
PLLs, the pull-in time can be extremely long; worse still, for

age vd(t) becomes zero.
many loop configurations there is no guarantee that the

Because the error voltage is produced from the absolute
phase-locked condition will be reached. This problem can be

values of the integrator outputs, it is also zero if the data
overcome by means of a phase-frequency detector, which oper-

transition is missing.
ates as a phase detector under phase-locked condition, but

If a transition of input data does not coincide with the esti-
provides a frequency-sensitive signal to aid frequency pull-in

mated time instant of a transition, then a timing error de-
when the loop is out of lock.

noted by � in Fig. 29 appears. In this case, the data transition
Certain types of phase detectors, like a high-speed sam-

falls not on the boundary of operation of the early and late
pler, can be used in the extremely high-frequency region,

gates, but occurs within the operation interval of one or other
while others, such as the sample-and-hold phase detector,

gates as shown in Fig. 29. Since the input signal changes its
may operate up to about 1 MHz. The operating frequency re-

polarity during the gate operation, the associated integration
gion is another important PD characteristic.

reaches a smaller magnitude than for the other gate, where a
From an operation point of view, one must distinguish

transition does not occur. Comparing the magnitudes of the
between analog and edge-triggered phase detectors. In edge-

two integrators gives the error voltage vd(t), which can be
triggered circuits, the information is transmitted only at dis-

used after low-pass filtering to control the VCO frequency.
crete-time instants. Examples of edge-triggered phase detec-
tors are the RS flip-flop, sample-and-hold phase detector, and
phase-frequency detector. Digital frequency dividers used inPHASE DETECTORS
the feedback path are also edge-triggered circuits. If a PLL
contains edge-triggered circuit(s) then an integro-differenceThe loop component that has the greatest influence on the

performance of a PLL is the phase detector. There are many equation is required to model its operation correctly. How-
ever, if the closed loop bandwidth of the PLL is less than one-types of phase detectors, each having its own special benefits.

Some can be used at very high frequencies; others may oper- tenth of the input frequency, then the continuous-time ap-
proximation can be used, that is, the APLL theory may beate in a noisy environment. Different types of phase detectors

are used in various applications in order to obtain the best applied (26).
In addition to phase detectors, many other loop compo-performance. In this section, we consider the most important

characteristics of a PD and discuss commonly used PD con- nents are used in various PLL applications, from frequency
dividers to VCO circuits. Discussion of these loop componentsfigurations.

It has been shown that the gain of the phase detector Kd goes beyond the scope of this article; the interested readers
should consult the literature. The components of the APLL[or AKd, in the sinusoidal APLL, see Eq. (10)] has a direct

influence on every PLL parameter from the quiescent value are surveyed in (10); for the components of frequency synthe-
sizers, see (36–39); the building blocks of digital PLLs areof the phase error to the noise bandwidth. In the majority of

applications, these parameters have to be kept constant, even discussed in (48).
Gardner has distinguished in (10) two basic categories ofif the amplitude of the incoming signal varies. However, the

product AKd appears in the loop equations for certain phase phase detectors: the multiplier-type and sequential circuits.
The multiplier-type phase detector determines the productdetectors, in which case all of the loop parameters depend on

the input amplitude. In these cases, an AGC or limiting cir- of the input and VCO waveforms. The PD output, which is
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used as an error signal in the PLL, is the average value of
this product. These circuits have no memory and they can
operate in very noisy environments.

The output of a sequential phase detector is proportional
to the time interval between the zero crossings of the input
and VCO waveforms. The information is carried by the posi-
tion of signal transitions; other details of waveforms have no
influence on the PD output. These detectors contain a mem-
ory of past crossing events. Since these phase detectors are

–2π π– 0 π

π

π2
θe

vd(t)

π2
controlled by the signal transitions, missing or extra edges
disturb their operation. In general, they are more sensitive to Figure 30. The average output voltage of the exclusive-OR (solid
noise then multiplier-type phase detectors. line) and edge-triggered RS flip-flop (dashed line) if they are used as

phase detectors. The linear phase regions are marked.
Multiplier-Type Phase Detectors

Four-Quadrant Analog Multiplier. Four-quadrant analog If both inputs have a 50% duty cycle, then the phase detec-
multipliers can be used as multiplier-type phase detectors tor has a triangular characteristic, as shown in Fig. 30, where
(10). Assume that the PD inputs are sine and cosine wave- the average value of the gate output is plotted against the
forms. Then the output of the four-quadrant analog multiplier phase error. The harmonic content of output and the PD char-
can be expressed as acteristic for other duty cycles are given in (39).

The exclusive-OR gate must be driven by standard digital
signals, which are not usually available in communicationsvd = AKd[sin θe + sin(2ω0t + θe)] (95)
receivers. The high level of periodic output prohibits their use
in high-quality frequency synthesis. They are used in digitalwhere �0 is the frequency of two inputs, Vo � Kd, A and Vo
environments and narrowband loops, particularly when thedenote the RMS amplitude of the input signals.
unwanted output sidebands can be tolerated. They are oftenEquation (95) shows the disadvantages of the circuit. In
used in frequency synthesis, not as the phase detector but asaddition to the phase error, the PD output also depends on
a lock indicator.the amplitudes of the input signals. This means that the

steady-state phase error 	ss, the stability, and every closed-
High-Speed Sampler. The high-speed sampler is commonlyloop parameter vary with A. Furthermore, an unwanted si-

used in frequency synthesis to lock a VCO to an integer multi-nusoidal signal at the second harmonic of the input frequency
ple of a reference frequency. The high-speed sampler is basi-also appears at the output of the PD, with an amplitude equal
cally a single-balanced mixer, driven by a narrow pulse onto the maximum available dc output. This sinusoidal signal
the local input (39). The sampling signal, that is, the streamresults in unwanted FM at the VCO output. of narrow pulses, is generated by a step-recovery diode from

On the other hand, analog multipliers can be used at very the reference frequency. For the sampling signal the mixer is
low values of input SNR. This is why they are almost exclu- balanced. During a pulse, the two diodes of the sampling gate
sively used in coherent demodulators and suppressed carrier conduct and charge the output capacitors.
recovery circuits. The phase detection capability of the high-speed sampler

can be understood easily in the frequency domain. Harmonics
Balanced Mixers. Balanced mixers offer another possible of the reference frequency are generated by the step-recovery

implementation of multiplier-type phase detector, which can diode and the appropriate harmonic of the reference signal is
operate at extremely high frequencies. Monolithic integrated multiplied by the VCO signal. The difference-frequency com-
circuits and extremely wideband diode rings can be used even ponent is used as the PD output. The only difference between
in the microwave frequency region (10). These circuits are the high-speed sampler and a harmonic mixer is that there
also multipliers, where the VCO signal (also called the local are two hold capacitors in the sampler that enhance the level
signal) drives the transistors or diodes into saturation, that of the low-frequency PD output.
is, they operate in switching mode. For the other input, also The main disadvantage of every phase detector, based on
called the received signal, the balanced mixer is linear. sampling, is that any periodic disturbances or noise about any

The advantages and disadvantages of balanced mixers and harmonics of the reference, that is, the sampling frequency,
analog multipliers are the same. The only difference is caused are translated to the low-frequency region. All of these signals
by the high level of local signal. Balanced mixers have a so- appear at the PD output as unwanted signals. It must be em-
called local leakage, that is, in addition to the sum-frequency phasized that the sampling process also folds a broadband
component, the input frequency component also appears at noise floor over many times, aliasing the noise from the vicin-

ity of many harmonics of the sampling frequency to the low-the output of the PD.
frequency region. This is why sampling-type PDs can be used
for reference signals with very high spectral purity; other-Exclusive-OR Gate. The exclusive-OR gate can be consid-
wise, a bandpass filter must preceed the PD, in order to rejectered as a digital implementation of a balanced mixer. The
the unwanted signals.balanced mixer operates as an exclusive-OR gate when it is

driven by rectangular waveforms of appropriate amplitude.
Sequential Phase DetectorsThe output of an exclusive-OR gate is a square wave,

whose duty cycle depends on the phase error. The average Edge-Triggered Flip-Flop. The edge-triggered RS flip-flop
can be used as a sequential phase detector (39). The inputvalue of this square wave is taken to be the PD output.
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and VCO signals are connected to the S and R inputs of a
flip-flop, respectively. The PD output signal appears at the Q
output, which is a square wave; its average value is propor-
tional to the phase difference between the S and R inputs.
This phase detector has a sawtooth characteristic, as shown
in Fig. 30.

The benefits of the edge-triggered RS flip-flop are: it offers
a simple and digital-compatible phase detector; furthermore
it has a 2�-wide and linear phase range. The first disadvan-
tage results from its edge-triggered operation; it cannot be
used in a noisy environment. The second drawback is that the
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Figure 32. Waveforms in the sample-and-hold phase detector.
Sample-and-Hold Phase Detector. Sample-and-hold phase

detectors are often used for frequency synthesis and in zero-
crossing digital phase-locked loops (ZC-DPLL). less than the sampling time tS. Note that the sampled signal

Frequency synthesizers have to produce signals with ex- is kept constant during the finite sampling time tS. This must
tremely high spectral purity. The phase detectors discussed be done in order to avoid the appearance of a periodic signal
so far have a periodic output in their steady-state, which at the PD output in steady-state.
causes unwanted sidebands at the PLL output. The unique Figure 33 shows the waveforms of sample-and-hold phase
feature of the sample-and-hold phase detector is that its out- detector in steady-state. Since the sampled signal (solid line)
put is a pure dc signal under phase-locked condition. is kept constant during the finite sampling time, the PD out-

The sample-and-hold PD shown in Fig. 31 is an edge-trig- put (dashed line) becomes a pure dc voltage.
gered circuit, that is, a sequential phase detector. Let fR de- More details on the sample-and-hold phase detector and
note the frequency of the reference signal. The first block gen- its design are given in (38) and (39).
erates the sampled signal vR(t), which is synchronized with
the reference signal. The sampled signal may have any shape; Phase-Frequency Detector with Charge Pump. Most of the
assume that it has a sawtooth waveform in our case. Since phase detectors discussed so far have two disadvantages:
the PD is edge-triggered, this sawtooth waveform converts
the time interval between transitions of the reference and 1. Since they are not sensitive to the frequency error, their
sampling signals into a voltage. The sampling switch is closed pull-in time can be extremely long.
at the sampling time instants denoted by tk, k � 0, 1, 2, . . . 2. Apart from the sample-and-hold phase detector, they
and the voltage of the hold capacitor CH becomes equal to the have a periodic steady-state output.
instantaneous value of the sampled signal. Note that the volt-
age vd(t) of the hold capacitor, which is the PD output, is lin- The phase-frequency detector provides a signal that is sen-
early proportional to the time between transitions of the ref- sitive to the frequency error during acquisition and operates
erence and sampling signals, that is, to the phase error. The as a phase detector under phase-locked condition. As shown
capacitor CH holds this voltage until the next sampling time in Fig. 34, it contains a logic circuit (the phase-frequency de-
instant. tector) and a charge pump circuit, implemented by controlled

The sampling switch can be implemented by an integrated current sources IU and ID. The output of the phase detector is
CMOS or discrete FET switch. In both cases, the switch has a current id(t).a series resistance which is modeled by RS in Fig. 31. Due to The edge-triggered phase-frequency detector is driven by
RS, a finite sampling time is required to charge or discharge the reference and frequency-divided VCO signals s(t) and
the hold capacitor. The sampling switch is closed at the sam- vo(t), respectively. The logic circuit has two outputs; if one of
pling time instant tk and remains closed during the sampling these is active, then the other output is disabled. If the di-
time tS.

The sampled signal vR(t) and PD output vd(t) are plotted by
solid and dashed lines, respectively, in Fig. 32. When the
sampling switch is closed, the PD output voltage vd(t) varies
exponentially from its previous value to the new one. The
time constant RSCH of the sampling switch has to be much
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Figure 33. Steady-state waveforms in the sample-and-hold phase
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the reference and divided VCO signals coincide with each
other. This means that the steady-state phase error is zero in
the charge pump PLL.

The final advantage of the phase-frequency detector is that
its linear phase region is 4�.

OTHER PLL CONFIGURATIONS

The operation, baseband model, and analysis of analog PLLs
have been discussed earlier. The APLL contains only analog
loop components and its operation can be described by a pure
differential equation.

Continued progress in the production of digital integrated
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circuits and the widespread use of digital signal processing
have resulted in strong interest in the implementation ofFigure 34. Simplified circuit diagram of phase-frequency detector
PLLs directly in the digital domain. Various implementationswith charge pump circuit.
of DPLLs contain only digital loop components, that is, their
operation can be modeled by a pure difference equation.

In other applications, the circuit configuration requires thevided VCO frequency is greater than the reference frequency,
use of edge-triggered or digital loop components (e.g., fre-then the U output is active and the D output is zero. In the
quency synthesis), or they are used to achieve the best PLLopposite case, the U output becomes zero and the output sig-
performance (e.g., sample-and-hold phase detector). Thesenal appears at the D output. The current sources IU and ID
PLLs are called hybrid phase-locked loops and their operationare controlled by the U and D outputs. Depending on the sign
can be described by an integro-difference equation.of the frequency error, the PD output contains only positive

PLLs are categorized into three basic classes in the litera-or negative current pulses. This behavior of the logic circuit
ture (14):provides frequency detection capability for the phase detector.

The output of the logic circuit is a rectangular pulse, the
1. analog;duration of which depends on the phase error. The input sig-

nals of the phase-frequency detector and the output current 2. digital; and
of the charge pump circuit are shown in Fig. 35. The PD out- 3. hybrid
put current id(t) has the following properties:

phase-locked loops. The most important characteristics of
• The sign of current pulses is determined by the sign of

PLLs are summarized in Table 4. Sampling and charge pumpfrequency error; and
PLLs belong to the class of hybrid phase-locked loops.

• The duration of current pulses is proportional to the In contrast with the APLL, a general theory does not exist
phase error. for these circuits. As typical examples, we will discuss the

operation of the ZC-DPLL, SPLL and charge pump PLL is
The VCO control voltage is equal to the output voltage this section.

vf (t) of the charge pump circuit. In steady-state, the VCO out-
put frequency, and hence vf (t), becomes constant. It can be Digital Phase-Locked Loops
achieved only if id(t) � 0, that is, if both the U and D outputs

Various circuit configurations have been proposed by differentof the logic circuit become zero. It follows from the operation
authors for the implementation of the DPLL concept. Lindseyof the phase-frequency detector that in this case the edges of
and Chie (48) have grouped the implementations into four
classes, according to the operation of their phase detectors:

1. Flip-Flop (FF)-DPLL, in which a positive zero-crossing
of the input signal sets a flip-flop circuit and the local
clock resets it. The phase error is derived from the
elapsed time between the set and reset time instants.

2. Nyquist Rate (NR)-DPLL, in which the input signal is
sampled at the Nyquist rate.

3. Lead/Lag (LL)-DPLL, in which the PD determines at
each cycle, whether the input leads or lags the local
clock signal.

4. Zero crossing (ZC)-DPLL, in which the loop tracks the
zero crossings of the incoming sinusoidal signal.

id(t)

IU

TR TR

t

t

t
0

ID

vo(t)

s(t)

In this section, as an example, only the theory of ZC-DPLLFigure 35. Input signals of the phase-frequency detector and output
current of the charge pump circuit. is surveyed. This DPLL configuration is the easiest to model
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Table 4. Most Important Characteristics of Phase-Locked Loops

Type of PLL PD Loop Filter VCO Loop Equation

APLL Analog multiplier Analog Analog Pure differential
ZC-DPLL Ideal sampler Digital Digital Pure difference
SPLL Sample-and-hold Analog Analog Integro-difference
Charge-pump PLL Phase-frequency detector with charge pump Analog Analog Integro-difference

The hybrid PLL comprises the SPLL and charge pump PLL.

and analyze; however, its operation is indicative of the gen- where 	ek � 	ik � 	ok is the phase error. The output of the
digital loop filter iseral behavior of any DPLL.

The block diagram of ZC-DPLL proposed by Natali (49) is
shown in Fig. 36. In the following equations, the time variable yk = D(z)xk = D(z)(

√
2A sin θek + nik) (100)

t is again suppressed for conciseness, where it does not cause
misunderstanding. The time elapsed between the (k � 1)th and kth samples

Let the incoming signal be is denoted by

s(t) =
√

2A sin(ωR t + θi) (96) Tk = tk − tk−1, k = 1, 2, 3, . . . (101)

where �R is the center frequency, that is, the carrier fre- and the output of the digital filter is used to control the next
quency of s(t), and 	i(t) denotes the input phase modulation. period of a digital clock, according to the algorithm
The incoming signal is corrupted by bandpass filtered
Gaussian white noise ni(t). The signal s(t) � ni(t) is sampled Tk = T − yk−1 = T − z−1D(z)(

√
2A sin θek + nik) (102)

by an ideal sampler (i.e., RS � tS � 0) at the sampling time
instants tk, k � 0, 1, 2, . . ., the samples are held by CH and

In Eq. (102), T is the nominal clock period that can be M/fR,converted to a digital signal xk by an analog-to-digital con-
M � 1, 2, 3, . . .. For M � 1, the ZC-DPLL takes samples atverter (ADC). The incoming signal, sampling time instants
every positive zero crossing of the incoming signal, whileand output of the ADC are plotted in Fig. 37 for the noise-
M � 1 indicates subharmonic locking.free case.

Let f o denote the PLL output frequency. Subharmonic lock-In order to express the phase error, the sampling time in-
ing, that is, f o � fR/M, M � 2, 3, 4, . . . may occur in everystants determined by the digital clock have to be mapped to
PLL where a sampling phase detector is used. Subharmonicthe phase of an equivalent sinusoidal signal. Let tk be as-
locking means that the PD takes one sample at every Mthsigned by the positive zero-crossings of the equivalent sinusoi-
period of s(t). For the sake of simplicity, it will be assumeddal signal characterized by its phase �Rt � 	o(t). Then the
that M � 1 in this section.positive zero-crossings

The difference between the kth and (k � 1)th phase error
samples is

ωR tk + θo(tk) = ωR tk + θok = 2πk (97)

θek − θek−1 = θik − θik−1 − (θok − θok−1) (103)
that is, the sampling time instants, can be expressed as

similarly, from Eq. (97) one may get
tk = 2πk − θok

ωR
(98)

θok − θok−1 = 2π − ωR(tk − tk−1) = 2π − ωRTk (104)

where 	o0 � 0 and k � 0, 1, 2, . . .. Knowing the sampling
time instants, one may express the output of the ADC as

xk =
√

2A sin(ωR tk + θik) + nik =
√

2A sin θek + nik (99)
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Figure 37. Waveforms of a ZC-DPLL in absence of noise.Figure 36. Block diagram of the ZC-DPLL.
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to xk. In the time interval (tk � tS, tk�1) the sampling switch is
open, that is, vd(t) � xk.

Here only the course and milestones of SPLL analysis are
discussed. The equations will be given only for the simplest
case, when F(s) � A0. The details of SPLL theory and many
design equations can be found in (53).

The development of a baseband model for the SPLL can be
divided into three main steps:

2Asin(⋅)

nik

D(z)

+
++

–

z–1

1–z–1

ikθ ekθ

yk

ω R

1. First, the synchronization of vR(t) with the noisy refer-
ence signal has to be modeled.Figure 38. Nonlinear baseband model of ZC-DPLL.

2. Then, the next sampling time instant tk�1 has to be de-
termined.

If M � 1, then T � 2�/�R. Using the unit delay operator 3. Finally, all signals have to be generated in the continu-
z�1 and substituting Eq. (102) into Eq. (104) and the result ous-time domain.
into Eq. (103), one gets the loop equation

Let �R, �R0 and 	̂R(t) denote the frequency, phase, and
phase modulation of the reference signalθek = θik + ωR

z−1

1 − z−1 D(z)(
√

2A sin θek + nik) (105)

s(t) =
√

2VR sin[ωRt + ϕR0 + θ̂R(t)] (106)which is a nonlinear stochastic difference equation.
In Eq. (105), the unit delay operator appears. Sometimes

The synchronization of vR(t) is edge-triggered, that is, a newit is claimed that the z-transform can be used only in case of
voltage ramp is started when the noisy reference signal be-uniform sampling. Here is used the definition of z�1 given in
comes zero. Thus,(50), which is valid for arbitrary time sequences. In the ZC-

DPLL and SPLL (see next section), the sampling time in-
s(tn) + ni(tn) = 0 (107)stants are varied; this is how the feedback is used to control

the operation of the loop.
where tn, n � 0, 1, 2, . . . denotes the starting time instantsFrom Eq. (105), a nonlinear baseband model of the ZC-
of voltage ramps. In the general case, the synchronization andDPLL can be constructed. The model is shown in Fig. 38,
sampling are independent of each other. Note that the valuewhere �Rz�1/(1 � z�1) denotes the transfer function of digital
of the sampled signal at tk depends on two variables n and k,clock. Note that the baseband models of the analog (see Fig.
where n describes the synchronization, while k appears due3) and digital PLLs are structurally equivalent.
to sampling. A baseband model for the general case cannotLinear and nonlinear theories of DPLLs are surveyed in
be developed.(48); the stability of the ZC-DPLL is analyzed in (51) and (52).

Because of sampling, subharmonic locking is also possible.Interested readers are referred to these papers.
Assume that one sample is taken in every Mth reference pe-
riod, that is, the output frequency isSampling Phase-Locked Loop

A block diagram of the SPLL is shown in Fig. 39. The sinusoi-
dal reference signal s(t) corrupted by noise ni(t) synchronizes fo = N

M
fR (108)

a sawtooth waveform in the phase detector. The sampled sig-
nal vR(t) is kept constant during the finite sampling time tS, It has been shown in (53) that if cycle slip does not occur,
as shown in Fig. 32. The PD output vd(t) is an analog signal then one may write
that is processed by an analog loop filter F(s). The instanta-
neous VCO frequency is controlled by vc(t) and is divided by a

n = Mk (109)frequency divider; the division ratio is N. The sampling time
instants tk are determined by the frequency divider output.

and the independent variable n can be canceled from theThe waveforms of the sample-and-hold phase detector are
equations. Then the sampled signal at tk can be expressed asshown in Fig. 32. Let xk denote the value of the sampled sig-

nal at tk and assume that RSCH � tS. While the sampling
switch is closed, the PD output voltage vd(t) varies from xk�1

xk = vR(tk) = g(θek) (110)

Figure 39. Block diagram of SPLL. A fre-
quency divider with a division ratio of N
has been placed in the feedback path.

fo =
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where the nonlinear periodic function g( 
 ) describes the The determination of tk�1 requires the solution of the integro-
difference equation given by Eq. (114).shape of sampled signal and 	ek is the phase error

Equation (114) cannot be solved in closed form, it must be
separated into a pure difference and a pure differential equa-
tion. Kolumbán has shown that this separation can be per-

θek = θRk − M
N

θok (111)

formed in three cases (53):
In Eq. (111), 	ok is the output phase modulation and the

equivalent input phase modulation 	Rk involves the effects of 1. If the dominant time constant of the open loop transfer
both noise and phase modulation of the reference signal function is much less than tS;

2. If the dominant time constant of the open loop transfer
function is much greater than Tk; and

3. If the SPLL remains in the neighborhood of equilibrium
θRk = ϕR0 + θ̂R

(
kMTR − ϕR0

ωR

)
+ 1√

2VR

ni

(
kMTR − ϕR0

ωR

)
(112) during the operation.

Let Tk�1 � tk�1 � tk denote the time between two adjacent
Fortunately, at least one of these conditions is almost alwayssampling time instants. Then following the method shown
valid in practice.earlier for the ZC-DPLL, one may express the phase error as

For example, consider the case when the loop filter is omit-
ted, that is, F(s) � A0. In this case, the dominant time con-
stant is RSCH, which is much less than tS. The elapsed timeθek = θRk − ωR

z−1

1 − z−1 (MTR − Tk+1) (113)
between two adjacent sampling time instants can be ex-
pressed as

The main difference between the ZC-DPLL and SPLL circuits
is in the signal processing technique by which the next sam-
pling time instant tk�1 is determined. In the SPLL, the PD Tk+1 = 2πN + A0K v(xk − xk−1)RSCH

ω0 + A0K v xk
(115)

output is an analog voltage and is processed by the analog
loop filter and VCO circuits.

The outputs of the SPLL are analog signals. EquationsNote that the time interval Tk�1 can be divided into two
(113) and (110) give the sampled signal at the sampling timedistinct periods; from tk to tk � tS the sampling switch is
instants only; the analog signals have to be expressed inclosed, while from tk � tS to tk�1 the sampling switch is open.
terms of xk. It has been shown in (53) that the PD outputThis means that the topology of the SPLL is changed at tk voltage vd(t) can be generated from xk by means of a zero-orderand tk � tS. Since the VCO output is a sinusoidal signal and
hold circuit and an RC low-pass filter as shown in Fig. 40. Itthe frequency divider is edge-triggered, the variation in the
must be emphasized that the sampling is not uniform in theVCO phase is 2�N between tk and tk�1. Let �0 denote the VCO
SPLL, that is, the hold time of the zero-order hold circuit var-center frequency. Then the variation in the VCO phase can
ies during its operation.be expressed as

The nonlinear baseband model of the SPLL can be con-
structed from Eqs. (113) and (110). Then the discrete-time
signal xk is converted to the continuous-time domain by a
zero-order hold circuit as shown in Fig. 40. The time interval
Tk�1 can be calculated from Eq. (115) if the loop filter is omit-
ted. Expressions for Tk�1 for other loop configurations can be
found in (53).

∫ tk+1

tk

[ω0 + Kvvc(t)] dt =ω0Tk+1 + K v

[∫ tk+ts

tk

vc(t) dt

+
∫ tk+1

tk+ts

vc(t) dt

]
≡ 2πN

(114)

Figure 40. Nonlinear baseband model of
SPLL. The dashed line separates the dis-
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SPLLs are used primarily in frequency synthesis, because crete-time domain; their functions are not expressed in the
they offer excellent spectral purity. Due to their discrete-time continuous-time domain.
operation, the frequency switching time can be minimized if Gardner has determined the transient response, using
all poles of closed-loop transfer function are placed as close to both the continuous-time approximations, that is, the APLL
the origin in the z-plane as possible (54). The SPLL can be model, and the exact nonlinear difference equations. By com-
also used as an FM or PM modulator (55). This section has paring the results, he has shown that if the reference fre-
shown only the main steps of SPLL analysis; a complete anal- quency fR exceeds ten times the closed loop bandwidth, then
ysis in the frequency domain is given in (40). The SPLL is the continuous-time approximation can be used in circuit de-
especially suited to applications where a very simple high- sign (26).
performance synthesizer is required (56). The primary disadvantage of the charge pump PLL, and

the reason why it is not suitable for high-quality frequency
synthesis, is the so-called crossover distortion (39). ThisCharge-Pump Phase-Locked Loop
means that, compared with its nominal value, the PD gainCharge pump PLLs are widely used for frequency synthesis,
varies from �20 dB to �10 dB if the phase error is reducedsince
below a certain value. This effect appears, due to an internal
logic race condition in the digital part of the phase-frequency

• their phase-frequency detector is sensitive to both phase detector. To avoid instability problems, the phase error has to
and frequency errors; and be pushed out of this region, generally a 1 M� resistor is con-

• they are available as cheap integrated circuits. nected in parallel with the series R2–C circuit. However, this
means that the phase error is greater than zero in steady-

The block diagram of a charge pump PLL is shown in Fig. state, and an unwanted FM appears at the output of every
41. The operation of the phase-frequency detector has been built charge pump PLL.
discussed earlier. The PD output id(t) charges or discharges To exploit the excellent frequency acquisition property of
the capacitor C. The resistor R2 introduces a zero into the the phase-frequency detector and the high spectral purity of-
open-loop transfer function, that is, it ensures the stability of fered by the sample-and-hold PD, both phase detectors are
the loop. Charge pump PLLs are widely used in frequency implemented on the same integrated circuit. The phase-
synthesis, normally with a frequency divider with division ra- frequency detector operates during the frequency pull-in and,
tio N in the feedback path. if the phase error goes below a certain threshold, then the

Depending on the phase and/or frequency error, id(t) phase-frequency detector is switched off and the sample-and-
charges or discharges C. The VCO control voltage vc(t) is de- hold PD is used. In this way, the performance of a frequency
termined by the capacitor voltage. If the reference signal is synthesizer can be optimized during both the pull-in transient
unmodulated, then, in steady-state, vc(t) is a dc voltage, that and in steady-state.
is, the charge stored on C should be constant. This will hap-
pen only if id(t) � 0, that is, current pulses do not appear at
the PD output in steady-state. Fortunately, if there are no
current pulses at the PD output in steady-state, then un- CLOSING REMARKS
wanted FM does not appear at the PLL output.

The charge pump PLL contains both edge-triggered and The goal of this article was to survey the theory and most
analog circuits, just like the SPLL. By contrast, a baseband important applications of phase-locked loops. The main em-
model for the charge pump PLL has not yet been published. phasis was put on the APLL theory, because it is the simplest
Gardner has developed a system of nonlinear difference equa- to understand and it is the basis of every other PLL analysis.
tions in (26), which can be solved numerically to determine While the APLL theory has been very well established, the
the transient response of the loop. The equations have been theory of the digital and hybrid PLLs is subject to continuous
linearized, in order to perform the stability analysis of the development. For example, the effect of quantization that ap-
loop. However, the signals can be calculated only in the dis- pears in DPLLs was neglected in this article. Gardner has

shown that the quantizing nonlinearity leads to a limit cycle
under the phase-locked condition (57).

A new model which can describe the transient behavior of
the charge pump PLL even if it is not locked has been devel-
oped in (58).

Clock generation and distribution is a very important prob-
lem in high performance microelectronics. This question is
discussed in (59,60).

The clock recovery circuit is one of the key elements of digi-
tal data communication equipment. It is hard to find the opti-
mum trade-off between acquisition, tracking, and noise prop-
erties. A systematic design and optimization procedure has
been proposed in (61).

Last but not least it must be emphasized that another arti-
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cle in this encyclopedia has been devoted to the latest results
on applications of PLLs.Figure 41. Block diagram of a charge pump phase-locked loop.
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